mirror of
https://github.com/NGSolve/netgen.git
synced 2025-01-11 21:50:34 +05:00
Merge branch 'occ_spline_tools' into 'master'
Adds wrappers for various OCC spline interpolation and approximation routines See merge request jschoeberl/netgen!472
This commit is contained in:
commit
c5886cfe05
@ -47,13 +47,19 @@
|
||||
#include <GC_MakeCircle.hxx>
|
||||
#include <GC_MakeSegment.hxx>
|
||||
#include <GProp_GProps.hxx>
|
||||
#include <Geom2d_BSplineCurve.hxx>
|
||||
#include <Geom2d_Curve.hxx>
|
||||
#include <Geom2d_Ellipse.hxx>
|
||||
#include <Geom2d_TrimmedCurve.hxx>
|
||||
#include <Geom2dAPI_Interpolate.hxx>
|
||||
#include <Geom2dAPI_PointsToBSpline.hxx>
|
||||
#include <GeomAPI_Interpolate.hxx>
|
||||
#include <GeomAPI_PointsToBSpline.hxx>
|
||||
#include <GeomAPI_PointsToBSplineSurface.hxx>
|
||||
#include <GeomLProp_SLProps.hxx>
|
||||
#include <Geom_BSplineCurve.hxx>
|
||||
#include <Geom_BezierCurve.hxx>
|
||||
#include <Geom_BSplineCurve.hxx>
|
||||
#include <Geom_BSplineSurface.hxx>
|
||||
#include <Geom_Plane.hxx>
|
||||
#include <Geom_TrimmedCurve.hxx>
|
||||
#include <IntTools_Context.hxx>
|
||||
@ -230,6 +236,20 @@ public:
|
||||
return shared_from_this();
|
||||
}
|
||||
|
||||
auto StartPnt() const {
|
||||
return startpnt;
|
||||
}
|
||||
|
||||
auto CurrentLocation() const
|
||||
{
|
||||
return localpos.Location();
|
||||
}
|
||||
|
||||
auto CurrentDirection() const
|
||||
{
|
||||
return gp_Vec2d(localpos.Direction());
|
||||
}
|
||||
|
||||
auto MoveTo (double h, double v)
|
||||
{
|
||||
startpnt = gp_Pnt2d(h,v);
|
||||
@ -311,6 +331,90 @@ public:
|
||||
return shared_from_this();
|
||||
}
|
||||
|
||||
auto Spline(const std::vector<gp_Pnt2d> &points, bool periodic, double tol, const std::map<int, gp_Vec2d> &tangents,
|
||||
bool start_from_localpos)
|
||||
{
|
||||
gp_Pnt2d P1 = start_from_localpos ? localpos.Location() : points.front();
|
||||
gp_Pnt P13d = surf->Value(P1.X(), P1.Y());
|
||||
|
||||
gp_Pnt2d PLast = points.back();
|
||||
gp_Pnt PLast3d = surf->Value(PLast.X(), PLast.Y());
|
||||
|
||||
Handle(TColgp_HArray1OfPnt2d) allpoints;
|
||||
if (start_from_localpos)
|
||||
{
|
||||
if (points.front().Distance(P1) <= tol)
|
||||
throw Exception("First item of given list of points is too close to current position (distance <= tol).");
|
||||
allpoints = new TColgp_HArray1OfPnt2d(1, points.size() + 1);
|
||||
allpoints->SetValue(1, P1);
|
||||
for (int i = 0; i < points.size(); i++)
|
||||
allpoints->SetValue(i + 2, points[i]);
|
||||
}
|
||||
else
|
||||
{
|
||||
allpoints = new TColgp_HArray1OfPnt2d(1, points.size());
|
||||
for (int i = 0; i < points.size(); i++)
|
||||
allpoints->SetValue(i + 1, points[i]);
|
||||
}
|
||||
|
||||
Geom2dAPI_Interpolate builder(allpoints, periodic, tol);
|
||||
|
||||
if (tangents.size() > 0)
|
||||
{
|
||||
const gp_Vec2d dummy_vec = tangents.begin()->second;
|
||||
TColgp_Array1OfVec2d tangent_vecs(1, allpoints->Length());
|
||||
Handle(TColStd_HArray1OfBoolean) tangent_flags = new TColStd_HArray1OfBoolean(1, allpoints->Length());
|
||||
for (int i : Range(allpoints->Length()))
|
||||
{
|
||||
if (tangents.count(i) > 0)
|
||||
{
|
||||
tangent_vecs.SetValue(i+1, tangents.at(i));
|
||||
tangent_flags->SetValue(i+1, true);
|
||||
}
|
||||
else
|
||||
{
|
||||
tangent_vecs.SetValue(i+1, dummy_vec);
|
||||
tangent_flags->SetValue(i+1, false);
|
||||
}
|
||||
}
|
||||
builder.Load(tangent_vecs, tangent_flags);
|
||||
}
|
||||
|
||||
|
||||
builder.Perform();
|
||||
auto curve2d = builder.Curve();
|
||||
|
||||
const bool closing = periodic || PLast.Distance(startpnt) < 1e-10;
|
||||
if (startvertex.IsNull())
|
||||
startvertex = lastvertex = BRepBuilderAPI_MakeVertex(P13d).Vertex();
|
||||
auto endv = closing ? startvertex : BRepBuilderAPI_MakeVertex(PLast3d).Vertex();
|
||||
|
||||
//create 3d edge from 2d curve using surf
|
||||
auto edge = BRepBuilderAPI_MakeEdge(curve2d, surf, lastvertex, endv).Edge();
|
||||
lastvertex = endv;
|
||||
BRepLib::BuildCurves3d(edge);
|
||||
wire_builder.Add(edge);
|
||||
|
||||
// update localpos
|
||||
localpos.SetLocation(PLast);
|
||||
|
||||
//compute angle of rotation
|
||||
//compute tangent t2 in PLast
|
||||
const auto dir = localpos.Direction();
|
||||
gp_Vec2d t = gp_Vec2d(dir.X(), dir.Y());
|
||||
gp_Vec2d t2 = curve2d->DN(curve2d->LastParameter(), 1);
|
||||
|
||||
double angle = t.Angle(t2); //angle \in [-pi,pi]
|
||||
|
||||
//update localpos.Direction()
|
||||
Rotate(angle*180/M_PI);
|
||||
|
||||
if (closing)
|
||||
Finish();
|
||||
|
||||
return shared_from_this();
|
||||
}
|
||||
|
||||
auto ArcTo (double h, double v, const gp_Vec2d t)
|
||||
{
|
||||
gp_Pnt2d P1 = localpos.Location();
|
||||
@ -561,8 +665,6 @@ DLL_HEADER void ExportNgOCCShapes(py::module &m)
|
||||
.value("SHAPE", TopAbs_SHAPE)
|
||||
.export_values()
|
||||
;
|
||||
|
||||
|
||||
|
||||
|
||||
py::class_<TopoDS_Shape> (m, "TopoDS_Shape")
|
||||
@ -1597,6 +1699,22 @@ DLL_HEADER void ExportNgOCCShapes(py::module &m)
|
||||
})
|
||||
;
|
||||
|
||||
|
||||
py::enum_<GeomAbs_Shape>(m, "ShapeContinuity", "Wrapper for OCC enum GeomAbs_Shape")
|
||||
.value("C0", GeomAbs_Shape::GeomAbs_C0)
|
||||
.value("C1", GeomAbs_Shape::GeomAbs_C1)
|
||||
.value("C2", GeomAbs_Shape::GeomAbs_C2)
|
||||
.value("C3", GeomAbs_Shape::GeomAbs_C3)
|
||||
.value("CN", GeomAbs_Shape::GeomAbs_CN)
|
||||
.value("G1", GeomAbs_Shape::GeomAbs_G1)
|
||||
.value("G2", GeomAbs_Shape::GeomAbs_G2);
|
||||
|
||||
py::enum_<Approx_ParametrizationType>(m, "ApproxParamType", "Wrapper for Approx_ParametrizationType")
|
||||
.value("Centripetal", Approx_ParametrizationType::Approx_Centripetal)
|
||||
.value("ChordLength", Approx_ParametrizationType::Approx_ChordLength)
|
||||
.value("IsoParametric", Approx_ParametrizationType::Approx_IsoParametric);
|
||||
|
||||
|
||||
m.def("HalfSpace", [] (gp_Pnt p, gp_Vec n)
|
||||
{
|
||||
gp_Pln plane(p, n);
|
||||
@ -1719,6 +1837,100 @@ DLL_HEADER void ExportNgOCCShapes(py::module &m)
|
||||
return curve;
|
||||
*/
|
||||
}, py::arg("c"), py::arg("r"), "create 2d circle curve");
|
||||
|
||||
m.def("SplineApproximation", [](const std::vector<gp_Pnt2d> &points, Approx_ParametrizationType approx_type, int deg_min,
|
||||
int deg_max, GeomAbs_Shape continuity, double tol) -> Handle(Geom2d_Curve) {
|
||||
TColgp_Array1OfPnt2d hpoints(0, 0);
|
||||
hpoints.Resize(0, points.size() - 1, true);
|
||||
for (int i = 0; i < points.size(); i++)
|
||||
hpoints.SetValue(i, points[i]);
|
||||
|
||||
Geom2dAPI_PointsToBSpline builder(hpoints, approx_type, deg_min, deg_max, continuity, tol);
|
||||
return Handle(Geom2d_BSplineCurve)(builder.Curve());
|
||||
},
|
||||
py::arg("points"),
|
||||
py::arg("approx_type") = Approx_ParametrizationType::Approx_ChordLength,
|
||||
py::arg("deg_min") = 3,
|
||||
py::arg("deg_max") = 8,
|
||||
py::arg("continuity") = GeomAbs_Shape::GeomAbs_C2,
|
||||
py::arg("tol")=1e-8,
|
||||
R"delimiter(
|
||||
Generate a piecewise continuous spline-curve approximating a list of points in 2d.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
points : List|Tuple[gp_Pnt2d]
|
||||
List (or tuple) of gp_Pnt.
|
||||
|
||||
approx_type : ApproxParamType
|
||||
Assumption on location of parameters wrt points.
|
||||
|
||||
deg_min : int
|
||||
Minimum polynomial degree of splines
|
||||
|
||||
deg_max : int
|
||||
Maximum polynomial degree of splines
|
||||
|
||||
continuity : ShapeContinuity
|
||||
Continuity requirement on the approximating surface
|
||||
|
||||
tol : float
|
||||
Tolerance for the distance from individual points to the approximating curve.
|
||||
|
||||
)delimiter");
|
||||
|
||||
m.def("SplineInterpolation", [](const std::vector<gp_Pnt2d> &points, bool periodic, double tol, const std::map<int, gp_Vec2d> &tangents) -> Handle(Geom2d_Curve) {
|
||||
Handle(TColgp_HArray1OfPnt2d) hpoints = new TColgp_HArray1OfPnt2d(1, points.size());
|
||||
for (int i = 0; i < points.size(); i++)
|
||||
hpoints->SetValue(i+1, points[i]);
|
||||
Geom2dAPI_Interpolate builder(hpoints, periodic, tol);
|
||||
|
||||
if (tangents.size() > 0)
|
||||
{
|
||||
const gp_Vec2d dummy_vec = tangents.begin()->second;
|
||||
TColgp_Array1OfVec2d tangent_vecs(1, points.size());
|
||||
Handle(TColStd_HArray1OfBoolean) tangent_flags = new TColStd_HArray1OfBoolean(1, points.size());
|
||||
for (int i : Range(points.size()))
|
||||
{
|
||||
if (tangents.count(i) > 0)
|
||||
{
|
||||
tangent_vecs.SetValue(i+1, tangents.at(i));
|
||||
tangent_flags->SetValue(i+1, true);
|
||||
} else{
|
||||
tangent_vecs.SetValue(i+1, dummy_vec);
|
||||
tangent_flags->SetValue(i+1, false);
|
||||
}
|
||||
}
|
||||
builder.Load(tangent_vecs, tangent_flags);
|
||||
}
|
||||
|
||||
builder.Perform();
|
||||
return Handle(Geom2d_BSplineCurve)(builder.Curve());
|
||||
},
|
||||
py::arg("points"),
|
||||
py::arg("periodic")=false,
|
||||
py::arg("tol")=1e-8,
|
||||
py::arg("tangents")=std::map<int, gp_Vec2d>{},
|
||||
R"delimiter(
|
||||
Generate a piecewise continuous spline-curve interpolating a list of points in 2d.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
points : List|Tuple[gp_Pnt2d]
|
||||
List (or tuple) of gp_Pnt2d.
|
||||
|
||||
periodic : bool
|
||||
Whether the result should be periodic
|
||||
|
||||
tol : float
|
||||
Tolerance for the distance between points.
|
||||
|
||||
tangents : Dict[int, gp_Vec2d]
|
||||
Tangent vectors for the points indicated by the key value (0-based).
|
||||
|
||||
)delimiter");
|
||||
|
||||
m.def("Glue", [] (const std::vector<TopoDS_Shape> shapes) -> TopoDS_Shape
|
||||
{
|
||||
@ -1879,14 +2091,214 @@ DLL_HEADER void ExportNgOCCShapes(py::module &m)
|
||||
return BRepBuilderAPI_MakeEdge(curve).Edge();
|
||||
}, py::arg("points"), "create Bezier curve");
|
||||
|
||||
m.def("SplineApproximation", [](std::vector<gp_Pnt> pnts, double tol) {
|
||||
TColgp_Array1OfPnt points(0, pnts.size()-1);
|
||||
for (int i = 0; i < pnts.size(); i++)
|
||||
points.SetValue(i, pnts[i]);
|
||||
GeomAPI_PointsToBSpline builder(points);
|
||||
|
||||
m.def("SplineApproximation", [](const std::vector<gp_Pnt> &points, Approx_ParametrizationType approx_type, int deg_min,
|
||||
int deg_max, GeomAbs_Shape continuity, double tol) {
|
||||
TColgp_Array1OfPnt hpoints(0, 0);
|
||||
hpoints.Resize(0, points.size() - 1, true);
|
||||
for (int i = 0; i < points.size(); i++)
|
||||
hpoints.SetValue(i, points[i]);
|
||||
|
||||
GeomAPI_PointsToBSpline builder(hpoints, approx_type, deg_min, deg_max, continuity, tol);
|
||||
return BRepBuilderAPI_MakeEdge(builder.Curve()).Edge();
|
||||
}, py::arg("points"), py::arg("tol"),
|
||||
"Generate spline-curve approximating list of points up to tolerance tol");
|
||||
},
|
||||
py::arg("points"),
|
||||
py::arg("approx_type") = Approx_ParametrizationType::Approx_ChordLength,
|
||||
py::arg("deg_min") = 3,
|
||||
py::arg("deg_max") = 8,
|
||||
py::arg("continuity") = GeomAbs_Shape::GeomAbs_C2,
|
||||
py::arg("tol")=1e-8,
|
||||
R"delimiter(
|
||||
Generate a piecewise continuous spline-curve approximating a list of points in 3d.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
points : List[gp_Pnt] or Tuple[gp_Pnt]
|
||||
List (or tuple) of gp_Pnt.
|
||||
|
||||
approx_type : ApproxParamType
|
||||
Assumption on location of parameters wrt points.
|
||||
|
||||
deg_min : int
|
||||
Minimum polynomial degree of splines
|
||||
|
||||
deg_max : int
|
||||
Maxmium polynomial degree of splines
|
||||
|
||||
continuity : ShapeContinuity
|
||||
Continuity requirement on the approximating surface
|
||||
|
||||
tol : float
|
||||
Tolerance for the distance from individual points to the approximating curve.
|
||||
|
||||
)delimiter");
|
||||
|
||||
m.def("SplineInterpolation", [](const std::vector<gp_Pnt> &points, bool periodic, double tol, const std::map<int, gp_Vec> &tangents) {
|
||||
Handle(TColgp_HArray1OfPnt) hpoints = new TColgp_HArray1OfPnt(1, points.size());
|
||||
for (int i = 0; i < points.size(); i++)
|
||||
hpoints->SetValue(i+1, points[i]);
|
||||
|
||||
GeomAPI_Interpolate builder(hpoints, periodic, tol);
|
||||
|
||||
if (tangents.size() > 0)
|
||||
{
|
||||
const gp_Vec dummy_vec = tangents.begin()->second;
|
||||
TColgp_Array1OfVec tangent_vecs(1, points.size());
|
||||
Handle(TColStd_HArray1OfBoolean) tangent_flags = new TColStd_HArray1OfBoolean(1, points.size());
|
||||
for (int i : Range(points.size()))
|
||||
{
|
||||
if (tangents.count(i) > 0)
|
||||
{
|
||||
tangent_vecs.SetValue(i+1, tangents.at(i));
|
||||
tangent_flags->SetValue(i+1, true);
|
||||
} else{
|
||||
tangent_vecs.SetValue(i+1, dummy_vec);
|
||||
tangent_flags->SetValue(i+1, false);
|
||||
}
|
||||
}
|
||||
builder.Load(tangent_vecs, tangent_flags);
|
||||
}
|
||||
|
||||
builder.Perform();
|
||||
return BRepBuilderAPI_MakeEdge(builder.Curve()).Edge();
|
||||
},
|
||||
py::arg("points"),
|
||||
py::arg("periodic")=false,
|
||||
py::arg("tol")=1e-8,
|
||||
py::arg("tangents")=std::map<int, gp_Vec>{},
|
||||
R"delimiter(
|
||||
Generate a piecewise continuous spline-curve interpolating a list of points in 3d.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
points : List|Tuple[gp_Pnt]
|
||||
List (or tuple) of gp_Pnt
|
||||
|
||||
periodic : bool
|
||||
Whether the result should be periodic
|
||||
|
||||
tol : float
|
||||
Tolerance for the distance between points.
|
||||
|
||||
tangents : Dict[int, gp_Vec]
|
||||
Tangent vectors for the points indicated by the key value (0-based).
|
||||
|
||||
)delimiter");
|
||||
|
||||
|
||||
m.def("SplineSurfaceApproximation", [](py::array_t<double> pnt_array,
|
||||
Approx_ParametrizationType approx_type, int deg_min, int deg_max, GeomAbs_Shape continuity, double tol,
|
||||
bool periodic, double degen_tol) {
|
||||
if (pnt_array.ndim() != 3)
|
||||
throw Exception("`points` array must have dimension 3.");
|
||||
if (pnt_array.shape(2) != 3)
|
||||
throw Exception("The third dimension must have size 3.");
|
||||
|
||||
auto array = py::extract<py::array_t<double>>(pnt_array)();
|
||||
TColgp_Array2OfPnt points(1, pnt_array.shape(0), 1, pnt_array.shape(1));
|
||||
auto pnts_unchecked = pnt_array.unchecked<3>();
|
||||
for (int i = 0; i < pnt_array.shape(0); ++i)
|
||||
for (int j = 0; j < pnt_array.shape(1); ++j)
|
||||
points.SetValue(i+1, j+1, gp_Pnt(pnts_unchecked(i, j, 0), pnts_unchecked(i, j, 1), pnts_unchecked(i, j, 2)));
|
||||
|
||||
GeomAPI_PointsToBSplineSurface builder;
|
||||
builder.Init(points, approx_type, deg_min, deg_max, continuity, tol, periodic);
|
||||
return BRepBuilderAPI_MakeFace(builder.Surface(), tol).Face();
|
||||
},
|
||||
py::arg("points"),
|
||||
py::arg("approx_type") = Approx_ParametrizationType::Approx_ChordLength,
|
||||
py::arg("deg_min") = 3,
|
||||
py::arg("deg_max") = 8,
|
||||
py::arg("continuity") = GeomAbs_Shape::GeomAbs_C2,
|
||||
py::arg("tol") = 1e-3,
|
||||
py::arg("periodic") = false,
|
||||
py::arg("degen_tol") = 1e-8,
|
||||
R"delimiter(
|
||||
Generate a piecewise continuous spline-surface approximating an array of points.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
points : np.ndarray
|
||||
Array of points coordinates. The first dimension corresponds to the first surface coordinate point
|
||||
index, the second dimension to the second surface coordinate point index. The third dimension refers to physical
|
||||
coordinates. Such an array can be generated with code like::
|
||||
|
||||
px, py = np.meshgrid(*[np.linspace(0, 1, N)]*2)
|
||||
points = np.array([[(px[i,j], py[i,j], px[i,j]*py[i,j]**2) for j in range(N)] for i in range(N)])
|
||||
|
||||
approx_type : ApproxParamType
|
||||
Assumption on location of parameters wrt points.
|
||||
|
||||
deg_min : int
|
||||
Minimum polynomial degree of splines
|
||||
|
||||
deg_max : int
|
||||
Maxmium polynomial degree of splines
|
||||
|
||||
continuity : ShapeContinuity
|
||||
Continuity requirement on the approximating surface
|
||||
|
||||
tol : float
|
||||
Tolerance for the distance from individual points to the approximating surface.
|
||||
|
||||
periodic : bool
|
||||
Whether the result should be periodic in the first surface parameter
|
||||
|
||||
degen_tol : double
|
||||
Tolerance for resolution of degenerate edges
|
||||
|
||||
)delimiter");
|
||||
|
||||
m.def("SplineSurfaceInterpolation", [](
|
||||
py::array_t<double> pnt_array, Approx_ParametrizationType approx_type, bool periodic, double degen_tol) {
|
||||
|
||||
if (pnt_array.ndim() != 3)
|
||||
throw Exception("`points` array must have dimension 3.");
|
||||
if (pnt_array.shape(2) != 3)
|
||||
throw Exception("The third dimension must have size 3.");
|
||||
|
||||
auto array = py::extract<py::array_t<double>>(pnt_array)();
|
||||
TColgp_Array2OfPnt points(1, pnt_array.shape(0), 1, pnt_array.shape(1));
|
||||
auto pnts_unchecked = pnt_array.unchecked<3>();
|
||||
for (int i = 0; i < pnt_array.shape(0); ++i)
|
||||
for (int j = 0; j < pnt_array.shape(1); ++j)
|
||||
points.SetValue(i+1, j+1, gp_Pnt(pnts_unchecked(i, j, 0), pnts_unchecked(i, j, 1), pnts_unchecked(i, j, 2)));
|
||||
|
||||
GeomAPI_PointsToBSplineSurface builder;
|
||||
builder.Interpolate(points, approx_type, periodic);
|
||||
return BRepBuilderAPI_MakeFace(builder.Surface(), degen_tol).Face();
|
||||
},
|
||||
py::arg("points"),
|
||||
py::arg("approx_type") = Approx_ParametrizationType::Approx_ChordLength,
|
||||
py::arg("periodic") = false,
|
||||
py::arg("degen_tol") = 1e-8,
|
||||
R"delimiter(
|
||||
Generate a piecewise continuous spline-surface interpolating an array of points.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
points : np.ndarray
|
||||
Array of points coordinates. The first dimension corresponds to the first surface coordinate point
|
||||
index, the second dimension to the second surface coordinate point index. The third dimension refers to physical
|
||||
coordinates. Such an array can be generated with code like::
|
||||
|
||||
px, py = np.meshgrid(*[np.linspace(0, 1, N)]*2)
|
||||
points = np.array([[(px[i,j], py[i,j], px[i,j]*py[i,j]**2) for j in range(N)] for i in range(N)])
|
||||
|
||||
approx_type : ApproxParamType
|
||||
Assumption on location of parameters wrt points.
|
||||
|
||||
periodic : bool
|
||||
Whether the result should be periodic in the first surface parameter
|
||||
|
||||
degen_tol : double
|
||||
Tolerance for resolution of degenerate edges
|
||||
|
||||
)delimiter");
|
||||
|
||||
|
||||
m.def("MakeFillet", [](TopoDS_Shape shape, std::vector<TopoDS_Shape> edges, double r) {
|
||||
@ -1936,6 +2348,9 @@ DLL_HEADER void ExportNgOCCShapes(py::module &m)
|
||||
|
||||
py::class_<WorkPlane, shared_ptr<WorkPlane>> (m, "WorkPlane")
|
||||
.def(py::init<gp_Ax3, gp_Ax2d>(), py::arg("axes")=gp_Ax3(), py::arg("pos")=gp_Ax2d())
|
||||
.def_property_readonly("cur_loc", &WorkPlane::CurrentLocation)
|
||||
.def_property_readonly("cur_dir", &WorkPlane::CurrentDirection)
|
||||
.def_property_readonly("start_pnt", &WorkPlane::StartPnt)
|
||||
.def("MoveTo", &WorkPlane::MoveTo, py::arg("h"), py::arg("v"), "moveto (h,v), and start new wire")
|
||||
.def("Move", &WorkPlane::Move, py::arg("l"), "move 'l' from current position and direction, start new wire")
|
||||
.def("Direction", &WorkPlane::Direction, py::arg("dirh"), py::arg("dirv"), "reset direction to (dirh, dirv)")
|
||||
@ -1949,6 +2364,9 @@ DLL_HEADER void ExportNgOCCShapes(py::module &m)
|
||||
py::arg("l"), py::arg("name")=nullopt)
|
||||
.def("Line", [](WorkPlane&wp,double h,double v, optional<string> name) { return wp.Line(h,v,name); },
|
||||
py::arg("dx"), py::arg("dy"), py::arg("name")=nullopt)
|
||||
.def("Spline", &WorkPlane::Spline, py::arg("points"), py::arg("periodic")=false, py::arg("tol")=1e-8,
|
||||
py::arg("tangents")=std::map<int, gp_Vec2d>{}, py::arg("start_from_localpos")=true,
|
||||
"draw spline (default: starting from current position, which is implicitly added to given list of points), tangents can be specified for each point (0 refers to starting point)")
|
||||
.def("Rectangle", &WorkPlane::Rectangle, py::arg("l"), py::arg("w"), "draw rectangle, with current position as corner, use current direction")
|
||||
.def("RectangleC", &WorkPlane::RectangleCentered, py::arg("l"), py::arg("w"), "draw rectangle, with current position as center, use current direction")
|
||||
.def("Circle", [](WorkPlane&wp, double x, double y, double r) {
|
||||
|
Loading…
Reference in New Issue
Block a user