rational spline weights to obtain circles

This commit is contained in:
Joachim Schoeberl 2011-04-28 19:41:22 +00:00
parent 63022fe1b9
commit cc81dab63e
2 changed files with 111 additions and 103 deletions

View File

@ -33,6 +33,109 @@ namespace netgen
} }
template<int D>
SplineSeg3<D> :: SplineSeg3 (const GeomPoint<D> & ap1,
const GeomPoint<D> & ap2,
const GeomPoint<D> & ap3)
: p1(ap1), p2(ap2), p3(ap3)
{
weight = Dist (p1, p3) / sqrt (0.5 * (Dist2 (p1, p2) + Dist2 (p2, p3)));
// weight = sqrt(2);
// cout << "weight = " << weight << endl;
proj_latest_t = 0.5;
}
template<int D>
inline Point<D> SplineSeg3<D> :: GetPoint (double t) const
{
double x, y, w;
double b1, b2, b3;
b1 = (1-t)*(1-t);
b2 = weight * t * (1-t);
b3 = t * t;
x = p1(0) * b1 + p2(0) * b2 + p3(0) * b3;
y = p1(1) * b1 + p2(1) * b2 + p3(1) * b3;
w = b1 + b2 + b3;
if(D==3)
{
double z = p1(2) * b1 + p2(2) * b2 + p3(2) * b3;
return Point<D> (x/w, y/w, z/w);
}
else
return Point<D> (x/w, y/w);
}
template<int D>
Vec<D> SplineSeg3<D> :: GetTangent (const double t) const
{
const double b1 = (1.-t)*((weight-2.)*t-weight);
const double b2 = weight*(1.-2.*t);
const double b3 = t*((weight-2)*t+2.);
Vec<D> retval;
for(int i=0; i<D; i++)
retval(i) = b1*p1(i) + b2*p2(i) + b3*p3(i);
return retval;
}
template<int D>
void SplineSeg3<D> :: GetCoeff (Vector & u) const
{
DenseMatrix a(6, 6);
DenseMatrix ata(6, 6);
Vector f(6);
u.SetSize(6);
// ata.SetSymmetric(1);
double t = 0;
for (int i = 0; i < 5; i++, t += 0.25)
{
Point<D> p = GetPoint (t);
a(i, 0) = p(0) * p(0);
a(i, 1) = p(1) * p(1);
a(i, 2) = p(0) * p(1);
a(i, 3) = p(0);
a(i, 4) = p(1);
a(i, 5) = 1;
}
a(5, 0) = 1;
CalcAtA (a, ata);
u = 0;
u(5) = 1;
a.MultTrans (u, f);
ata.Solve (f, u);
// the sign
Point<D> p0 = GetPoint(0);
Vec<D> ht = GetTangent(0);
Vec<2> tang(ht(0), ht(1));
double gradx = 2.*u(0)*p0(0) + u(2)*p0(1) + u(3);
double grady = 2.*u(1)*p0(1) + u(2)*p0(0) + u(4);
Vec<2> gradn (grady, -gradx);
if (tang * gradn < 0) u *= -1;
}
template<int D> template<int D>
@ -208,20 +311,20 @@ namespace netgen
Vec<D> v1(p1), v2(p2), v3(p3); Vec<D> v1(p1), v2(p2), v3(p3);
double b1 = (1.-t)*(1.-t); double b1 = (1.-t)*(1.-t);
double b2 = sqrt(2.)*t*(1.-t); double b2 = weight*t*(1.-t);
double b3 = t*t; double b3 = t*t;
double w = b1+b2+b3; double w = b1+b2+b3;
b1 *= 1./w; b2 *= 1./w; b3 *= 1./w; b1 *= 1./w; b2 *= 1./w; b3 *= 1./w;
double b1p = 2.*(t-1.); double b1p = 2.*(t-1.);
double b2p = sqrt(2.)*(1.-2.*t); double b2p = weight*(1.-2.*t);
double b3p = 2.*t; double b3p = 2.*t;
const double wp = b1p+b2p+b3p; const double wp = b1p+b2p+b3p;
const double fac1 = wp/w; const double fac1 = wp/w;
b1p *= 1./w; b2p *= 1./w; b3p *= 1./w; b1p *= 1./w; b2p *= 1./w; b3p *= 1./w;
const double b1pp = 2.; const double b1pp = 2.;
const double b2pp = -2.*sqrt(2.); const double b2pp = -2.*weight;
const double b3pp = 2.; const double b3pp = 2.;
const double wpp = b1pp+b2pp+b3pp; const double wpp = b1pp+b2pp+b3pp;
const double fac2 = (wpp*w-2.*wp*wp)/(w*w); const double fac2 = (wpp*w-2.*wp*wp)/(w*w);
@ -278,10 +381,10 @@ namespace netgen
double t; double t;
const double c1 = a*p1(0) - sqrt(2.)*a*p2(0) + a*p3(0) const double c1 = a*p1(0) - weight*a*p2(0) + a*p3(0)
+ b*p1(1) - sqrt(2.)*b*p2(1) + b*p3(1) + b*p1(1) - weight*b*p2(1) + b*p3(1)
+ (2.-sqrt(2.))*c; + (2.-weight)*c;
const double c2 = -2.*a*p1(0) + sqrt(2.)*a*p2(0) -2.*b*p1(1) + sqrt(2.)*b*p2(1) + (sqrt(2.)-2.)*c; const double c2 = -2.*a*p1(0) + weight*a*p2(0) -2.*b*p1(1) + weight*b*p2(1) + (weight-2.)*c;
const double c3 = a*p1(0) + b*p1(1) + c; const double c3 = a*p1(0) + b*p1(1) + c;
if(fabs(c1) < 1e-20) if(fabs(c1) < 1e-20)

View File

@ -141,7 +141,7 @@ namespace netgen
{ {
/// ///
GeomPoint<D> p1, p2, p3; GeomPoint<D> p1, p2, p3;
double weight;
mutable double proj_latest_t; mutable double proj_latest_t;
public: public:
/// ///
@ -406,101 +406,6 @@ namespace netgen
template<int D>
SplineSeg3<D> :: SplineSeg3 (const GeomPoint<D> & ap1,
const GeomPoint<D> & ap2,
const GeomPoint<D> & ap3)
: p1(ap1), p2(ap2), p3(ap3)
{
proj_latest_t = 0.5;
}
template<int D>
inline Point<D> SplineSeg3<D> :: GetPoint (double t) const
{
double x, y, w;
double b1, b2, b3;
b1 = (1-t)*(1-t);
b2 = sqrt(2.0) * t * (1-t);
b3 = t * t;
x = p1(0) * b1 + p2(0) * b2 + p3(0) * b3;
y = p1(1) * b1 + p2(1) * b2 + p3(1) * b3;
w = b1 + b2 + b3;
if(D==3)
{
double z = p1(2) * b1 + p2(2) * b2 + p3(2) * b3;
return Point<D> (x/w, y/w, z/w);
}
else
return Point<D> (x/w, y/w);
}
template<int D>
Vec<D> SplineSeg3<D> :: GetTangent (const double t) const
{
const double b1 = (1.-t)*((sqrt(2.)-2.)*t-sqrt(2.));
const double b2 = sqrt(2.)*(1.-2.*t);
const double b3 = t*((sqrt(2.)-2)*t+2.);
Vec<D> retval;
for(int i=0; i<D; i++)
retval(i) = b1*p1(i) + b2*p2(i) + b3*p3(i);
return retval;
}
template<int D>
void SplineSeg3<D> :: GetCoeff (Vector & u) const
{
DenseMatrix a(6, 6);
DenseMatrix ata(6, 6);
Vector f(6);
u.SetSize(6);
// ata.SetSymmetric(1);
double t = 0;
for (int i = 0; i < 5; i++, t += 0.25)
{
Point<D> p = GetPoint (t);
a(i, 0) = p(0) * p(0);
a(i, 1) = p(1) * p(1);
a(i, 2) = p(0) * p(1);
a(i, 3) = p(0);
a(i, 4) = p(1);
a(i, 5) = 1;
}
a(5, 0) = 1;
CalcAtA (a, ata);
u = 0;
u(5) = 1;
a.MultTrans (u, f);
ata.Solve (f, u);
// the sign
Point<D> p0 = GetPoint(0);
Vec<D> ht = GetTangent(0);
Vec<2> tang(ht(0), ht(1));
double gradx = 2.*u(0)*p0(0) + u(2)*p0(1) + u(3);
double grady = 2.*u(1)*p0(1) + u(2)*p0(0) + u(4);
Vec<2> gradn (grady, -gradx);
if (tang * gradn < 0) u *= -1;
}
/* /*
template<int D> template<int D>
double SplineSeg3<D> :: MaxCurvature(void) const double SplineSeg3<D> :: MaxCurvature(void) const