mirror of
https://github.com/NGSolve/netgen.git
synced 2024-12-26 05:50:32 +05:00
extended wrappers for spline approximation; enable spline surface interpolation
This commit is contained in:
parent
74192981cf
commit
f2c6a0f8c0
@ -35,6 +35,10 @@
|
||||
#include <Geom_BSplineCurve.hxx>
|
||||
#include <Geom_BezierCurve.hxx>
|
||||
#include <GeomAPI_PointsToBSpline.hxx>
|
||||
#include <GeomAbs_Shape.hxx>
|
||||
#include <Geom_BSplineSurface.hxx>
|
||||
#include <GeomAPI_PointsToBSplineSurface.hxx>
|
||||
#include <GeomAPI_Interpolate.hxx>
|
||||
#include <GC_MakeSegment.hxx>
|
||||
#include <GC_MakeCircle.hxx>
|
||||
#include <GC_MakeArcOfCircle.hxx>
|
||||
@ -685,8 +689,6 @@ DLL_HEADER void ExportNgOCCShapes(py::module &m)
|
||||
.value("SHAPE", TopAbs_SHAPE)
|
||||
.export_values()
|
||||
;
|
||||
|
||||
|
||||
|
||||
|
||||
py::class_<TopoDS_Shape> (m, "TopoDS_Shape")
|
||||
@ -1712,6 +1714,22 @@ DLL_HEADER void ExportNgOCCShapes(py::module &m)
|
||||
})
|
||||
;
|
||||
|
||||
|
||||
py::enum_<GeomAbs_Shape>(m, "ShapeContinuity", "Wrapper for OCC enum GeomAbs_Shape")
|
||||
.value("C0", GeomAbs_Shape::GeomAbs_C0)
|
||||
.value("C1", GeomAbs_Shape::GeomAbs_C1)
|
||||
.value("C2", GeomAbs_Shape::GeomAbs_C2)
|
||||
.value("C3", GeomAbs_Shape::GeomAbs_C3)
|
||||
.value("CN", GeomAbs_Shape::GeomAbs_CN)
|
||||
.value("G1", GeomAbs_Shape::GeomAbs_G1)
|
||||
.value("G2", GeomAbs_Shape::GeomAbs_G2);
|
||||
|
||||
py::enum_<Approx_ParametrizationType>(m, "ApproxParamType", "Wrapper for Approx_ParametrizationType")
|
||||
.value("Centripetal", Approx_ParametrizationType::Approx_Centripetal)
|
||||
.value("ChordLength", Approx_ParametrizationType::Approx_ChordLength)
|
||||
.value("IsoParametric", Approx_ParametrizationType::Approx_IsoParametric);
|
||||
|
||||
|
||||
m.def("HalfSpace", [] (gp_Pnt p, gp_Vec n)
|
||||
{
|
||||
gp_Pln plane(p, n);
|
||||
@ -1994,14 +2012,230 @@ DLL_HEADER void ExportNgOCCShapes(py::module &m)
|
||||
return BRepBuilderAPI_MakeEdge(curve).Edge();
|
||||
}, py::arg("points"), "create Bezier curve");
|
||||
|
||||
m.def("SplineApproximation", [](std::vector<gp_Pnt> pnts, double tol) {
|
||||
TColgp_Array1OfPnt points(0, pnts.size()-1);
|
||||
for (int i = 0; i < pnts.size(); i++)
|
||||
points.SetValue(i, pnts[i]);
|
||||
GeomAPI_PointsToBSpline builder(points);
|
||||
m.def("SplineApproximation", [](py::object pnts, Approx_ParametrizationType approx_type, int deg_min,
|
||||
int deg_max, GeomAbs_Shape continuity, double tol) {
|
||||
TColgp_Array1OfPnt points(0, 0);
|
||||
if (py::extract<std::vector<gp_Pnt>>(pnts).check()) {
|
||||
std::vector<gp_Pnt> pnt_list{py::extract<std::vector<gp_Pnt>>(pnts)()};
|
||||
points.Resize(0, pnt_list.size()-1, true);
|
||||
for (int i = 0; i < pnt_list.size(); i++)
|
||||
points.SetValue(i, pnt_list[i]);
|
||||
} else if (py::extract<py::array_t<double>>(pnts).check()) {
|
||||
py::array_t<double> pnt_array{py::extract<py::array_t<double>>(pnts)()};
|
||||
if (pnt_array.ndim() != 2)
|
||||
throw Exception("`points` array must have dimension 2.");
|
||||
if (pnt_array.shape(1) != 3)
|
||||
throw Exception("The second dimension must have size 3.");
|
||||
|
||||
points.Resize(0, pnt_array.shape(0)-1, true);
|
||||
auto pnts_unchecked = pnt_array.unchecked<2>();
|
||||
for (int i = 0; i < pnt_array.shape(0); ++i)
|
||||
points.SetValue(i, gp_Pnt(pnts_unchecked(i, 0), pnts_unchecked(i, 1), pnts_unchecked(i, 2)));
|
||||
} else
|
||||
throw Exception("Not able to process the data type of points");
|
||||
|
||||
GeomAPI_PointsToBSpline builder(points, approx_type, deg_min, deg_max, continuity, tol);
|
||||
return BRepBuilderAPI_MakeEdge(builder.Curve()).Edge();
|
||||
}, py::arg("points"), py::arg("tol"),
|
||||
"Generate spline-curve approximating list of points up to tolerance tol");
|
||||
},
|
||||
py::arg("points"),
|
||||
py::arg("approx_type") = Approx_ParametrizationType::Approx_ChordLength,
|
||||
py::arg("deg_min") = 3,
|
||||
py::arg("deg_max") = 8,
|
||||
py::arg("continuity") = GeomAbs_Shape::GeomAbs_C2,
|
||||
py::arg("tol")=1e-8,
|
||||
R"delimiter(
|
||||
Generate a piecewise continuous spline-curve approximating a list of points.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
points : List[gp_Pnt] or Tuple[gp_Pnt] or np.ndarray[double]
|
||||
List (or tuple) of gp_Pnt. If a numpy array is provided instead, the data must contain the coordinates
|
||||
|
||||
approx_type : ApproxParamType
|
||||
Assumption on location of parameters wrt points.
|
||||
|
||||
deg_min : int
|
||||
Minimum polynomial degree of splines
|
||||
|
||||
deg_max : int
|
||||
Maxmium polynomial degree of splines
|
||||
|
||||
continuity : ShapeContinuity
|
||||
Continuity requirement on the approximating surface
|
||||
|
||||
tol : float
|
||||
Tolerance for the distance from individual points to the approximating curve.
|
||||
|
||||
)delimiter");
|
||||
|
||||
// CRASHES BADLY during call of Curve()!
|
||||
// m.def("SplineInterpolation", [](py::object pnts, bool periodic, double tol) {
|
||||
// cout << "enter" << endl;
|
||||
// TColgp_Array1OfPnt points(0, 0);
|
||||
// cout << "points array exists" << endl;
|
||||
// if (py::extract<std::vector<gp_Pnt>>(pnts).check()) {
|
||||
// std::vector<gp_Pnt> pnt_list{py::extract<std::vector<gp_Pnt>>(pnts)()};
|
||||
// points.Resize(1, pnt_list.size(), true);
|
||||
// for (int i = 0; i < pnt_list.size(); i++)
|
||||
// points.SetValue(i+1, pnt_list[i]);
|
||||
// } else if (py::extract<py::array_t<double>>(pnts).check()) {
|
||||
// py::array_t<double> pnt_array{py::extract<py::array_t<double>>(pnts)()};
|
||||
// if (pnt_array.ndim() != 2)
|
||||
// throw Exception("`points` array must have dimension 2.");
|
||||
// if (pnt_array.shape(1) != 3)
|
||||
// throw Exception("The second dimension must have size 3.");
|
||||
// cout << "resize" << endl;
|
||||
// points.Resize(1, pnt_array.shape(0), true);
|
||||
// auto pnts_unchecked = pnt_array.unchecked<2>();
|
||||
// for (int i = 0; i < pnt_array.shape(0); ++i)
|
||||
// points.SetValue(i+1, gp_Pnt(pnts_unchecked(i, 0), pnts_unchecked(i, 1), pnts_unchecked(i, 2)));
|
||||
// cout << "values set" << endl;
|
||||
// } else
|
||||
// throw Exception("Not able to process the data type of points");
|
||||
//
|
||||
// TColgp_HArray1OfPnt hpoints{points};
|
||||
// const auto _handle = opencascade::handle<TColgp_HArray1OfPnt>{&hpoints};
|
||||
// cout << "build" << endl;
|
||||
// GeomAPI_Interpolate builder(_handle, periodic, tol);
|
||||
// cout << "done" << endl;
|
||||
// auto curve = builder.Curve();
|
||||
// cout << "curve done" << endl;
|
||||
// return BRepBuilderAPI_MakeEdge(curve);
|
||||
//// return BRepBuilderAPI_MakeEdge(builder.Curve()).Edge();
|
||||
// },
|
||||
// py::arg("points"),
|
||||
// py::arg("periodic")=false,
|
||||
// py::arg("tol")=1e-8,
|
||||
// R"delimiter(
|
||||
//Generate a piecewise continuous spline-curve interpolating a list of points.
|
||||
//
|
||||
//Parameters
|
||||
//----------
|
||||
//
|
||||
//points : List[gp_Pnt] or Tuple[gp_Pnt] or np.ndarray[double]
|
||||
// List (or tuple) of gp_Pnt. If a numpy array is provided instead, the data must contain the coordinates
|
||||
//
|
||||
//periodic : bool
|
||||
// Whether the result should be periodic
|
||||
//
|
||||
//tol : float
|
||||
// Tolerance for the distance between points.
|
||||
//
|
||||
//)delimiter");
|
||||
|
||||
|
||||
m.def("SplineSurfaceApproximation", [](py::array_t<double> pnt_array,
|
||||
Approx_ParametrizationType approx_type, int deg_min, int deg_max, GeomAbs_Shape continuity, double tol,
|
||||
bool periodic, double degen_tol) {
|
||||
if (pnt_array.ndim() != 3)
|
||||
throw Exception("`points` array must have dimension 3.");
|
||||
if (pnt_array.shape(2) != 3)
|
||||
throw Exception("The third dimension must have size 3.");
|
||||
|
||||
auto array = py::extract<py::array_t<double>>(pnt_array)();
|
||||
TColgp_Array2OfPnt points(1, pnt_array.shape(0), 1, pnt_array.shape(1));
|
||||
auto pnts_unchecked = pnt_array.unchecked<3>();
|
||||
for (int i = 0; i < pnt_array.shape(0); ++i)
|
||||
for (int j = 0; j < pnt_array.shape(1); ++j)
|
||||
points.SetValue(i+1, j+1, gp_Pnt(pnts_unchecked(i, j, 0), pnts_unchecked(i, j, 1), pnts_unchecked(i, j, 2)));
|
||||
|
||||
GeomAPI_PointsToBSplineSurface builder;
|
||||
builder.Init(points, approx_type, deg_min, deg_max, continuity, tol, periodic);
|
||||
return BRepBuilderAPI_MakeFace(builder.Surface(), tol).Face();
|
||||
},
|
||||
py::arg("points"),
|
||||
py::arg("approx_type") = Approx_ParametrizationType::Approx_ChordLength,
|
||||
py::arg("deg_min") = 3,
|
||||
py::arg("deg_max") = 8,
|
||||
py::arg("continuity") = GeomAbs_Shape::GeomAbs_C2,
|
||||
py::arg("tol") = 1e-3,
|
||||
py::arg("periodic") = false,
|
||||
py::arg("degen_tol") = 1e-8,
|
||||
R"delimiter(
|
||||
Generate a piecewise continuous spline-surface approximating an array of points.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
points : np.ndarray
|
||||
Array of points coordinates. The first dimension corresponds to the first surface coordinate point
|
||||
index, the second dimension to the second surface coordinate point index. The third dimension refers to physical
|
||||
coordinates. Such an array can be generated with code like::
|
||||
|
||||
px, py = np.meshgrid(*[np.linspace(0, 1, N)]*2)
|
||||
points = np.array([[(px[i,j], py[i,j], px[i,j]*py[i,j]**2) for j in range(N)] for i in range(N)])
|
||||
|
||||
approx_type : ApproxParamType
|
||||
Assumption on location of parameters wrt points.
|
||||
|
||||
deg_min : int
|
||||
Minimum polynomial degree of splines
|
||||
|
||||
deg_max : int
|
||||
Maxmium polynomial degree of splines
|
||||
|
||||
continuity : ShapeContinuity
|
||||
Continuity requirement on the approximating surface
|
||||
|
||||
tol : float
|
||||
Tolerance for the distance from individual points to the approximating surface.
|
||||
|
||||
periodic : bool
|
||||
Whether the result should be periodic
|
||||
|
||||
degen_tol : double
|
||||
Tolerance for resolution of degenerate edges
|
||||
|
||||
)delimiter");
|
||||
|
||||
m.def("SplineSurfaceInterpolation", [](
|
||||
py::array_t<double> pnt_array, Approx_ParametrizationType approx_type, bool periodic, double degen_tol) {
|
||||
|
||||
if (pnt_array.ndim() != 3)
|
||||
throw Exception("`points` array must have dimension 3.");
|
||||
if (pnt_array.shape(2) != 3)
|
||||
throw Exception("The third dimension must have size 3.");
|
||||
|
||||
auto array = py::extract<py::array_t<double>>(pnt_array)();
|
||||
TColgp_Array2OfPnt points(1, pnt_array.shape(0), 1, pnt_array.shape(1));
|
||||
auto pnts_unchecked = pnt_array.unchecked<3>();
|
||||
for (int i = 0; i < pnt_array.shape(0); ++i)
|
||||
for (int j = 0; j < pnt_array.shape(1); ++j)
|
||||
points.SetValue(i+1, j+1, gp_Pnt(pnts_unchecked(i, j, 0), pnts_unchecked(i, j, 1), pnts_unchecked(i, j, 2)));
|
||||
|
||||
GeomAPI_PointsToBSplineSurface builder;
|
||||
builder.Interpolate(points, approx_type, periodic);
|
||||
return BRepBuilderAPI_MakeFace(builder.Surface(), degen_tol).Face();
|
||||
},
|
||||
py::arg("points"),
|
||||
py::arg("approx_type") = Approx_ParametrizationType::Approx_ChordLength,
|
||||
py::arg("periodic") = false,
|
||||
py::arg("degen_tol") = 1e-8,
|
||||
R"delimiter(
|
||||
Generate a piecewise continuous spline-surface interpolating an array of points.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
points : np.ndarray
|
||||
Array of points coordinates. The first dimension corresponds to the first surface coordinate point
|
||||
index, the second dimension to the second surface coordinate point index. The third dimension refers to physical
|
||||
coordinates. Such an array can be generated with code like::
|
||||
|
||||
px, py = np.meshgrid(*[np.linspace(0, 1, N)]*2)
|
||||
points = np.array([[(px[i,j], py[i,j], px[i,j]*py[i,j]**2) for j in range(N)] for i in range(N)])
|
||||
|
||||
approx_type : ApproxParamType
|
||||
Assumption on location of parameters wrt points.
|
||||
|
||||
periodic : bool
|
||||
Whether the result should be periodic
|
||||
|
||||
degen_tol : double
|
||||
Tolerance for resolution of degenerate edges
|
||||
|
||||
)delimiter");
|
||||
|
||||
|
||||
m.def("MakeFillet", [](TopoDS_Shape shape, std::vector<TopoDS_Shape> edges, double r) {
|
||||
|
Loading…
Reference in New Issue
Block a user