extended wrappers for spline approximation; enable spline surface interpolation

This commit is contained in:
Matthias Rambausek 2021-11-22 15:23:34 +01:00
parent 74192981cf
commit f2c6a0f8c0

View File

@ -35,6 +35,10 @@
#include <Geom_BSplineCurve.hxx> #include <Geom_BSplineCurve.hxx>
#include <Geom_BezierCurve.hxx> #include <Geom_BezierCurve.hxx>
#include <GeomAPI_PointsToBSpline.hxx> #include <GeomAPI_PointsToBSpline.hxx>
#include <GeomAbs_Shape.hxx>
#include <Geom_BSplineSurface.hxx>
#include <GeomAPI_PointsToBSplineSurface.hxx>
#include <GeomAPI_Interpolate.hxx>
#include <GC_MakeSegment.hxx> #include <GC_MakeSegment.hxx>
#include <GC_MakeCircle.hxx> #include <GC_MakeCircle.hxx>
#include <GC_MakeArcOfCircle.hxx> #include <GC_MakeArcOfCircle.hxx>
@ -685,8 +689,6 @@ DLL_HEADER void ExportNgOCCShapes(py::module &m)
.value("SHAPE", TopAbs_SHAPE) .value("SHAPE", TopAbs_SHAPE)
.export_values() .export_values()
; ;
py::class_<TopoDS_Shape> (m, "TopoDS_Shape") py::class_<TopoDS_Shape> (m, "TopoDS_Shape")
@ -1712,6 +1714,22 @@ DLL_HEADER void ExportNgOCCShapes(py::module &m)
}) })
; ;
py::enum_<GeomAbs_Shape>(m, "ShapeContinuity", "Wrapper for OCC enum GeomAbs_Shape")
.value("C0", GeomAbs_Shape::GeomAbs_C0)
.value("C1", GeomAbs_Shape::GeomAbs_C1)
.value("C2", GeomAbs_Shape::GeomAbs_C2)
.value("C3", GeomAbs_Shape::GeomAbs_C3)
.value("CN", GeomAbs_Shape::GeomAbs_CN)
.value("G1", GeomAbs_Shape::GeomAbs_G1)
.value("G2", GeomAbs_Shape::GeomAbs_G2);
py::enum_<Approx_ParametrizationType>(m, "ApproxParamType", "Wrapper for Approx_ParametrizationType")
.value("Centripetal", Approx_ParametrizationType::Approx_Centripetal)
.value("ChordLength", Approx_ParametrizationType::Approx_ChordLength)
.value("IsoParametric", Approx_ParametrizationType::Approx_IsoParametric);
m.def("HalfSpace", [] (gp_Pnt p, gp_Vec n) m.def("HalfSpace", [] (gp_Pnt p, gp_Vec n)
{ {
gp_Pln plane(p, n); gp_Pln plane(p, n);
@ -1994,14 +2012,230 @@ DLL_HEADER void ExportNgOCCShapes(py::module &m)
return BRepBuilderAPI_MakeEdge(curve).Edge(); return BRepBuilderAPI_MakeEdge(curve).Edge();
}, py::arg("points"), "create Bezier curve"); }, py::arg("points"), "create Bezier curve");
m.def("SplineApproximation", [](std::vector<gp_Pnt> pnts, double tol) { m.def("SplineApproximation", [](py::object pnts, Approx_ParametrizationType approx_type, int deg_min,
TColgp_Array1OfPnt points(0, pnts.size()-1); int deg_max, GeomAbs_Shape continuity, double tol) {
for (int i = 0; i < pnts.size(); i++) TColgp_Array1OfPnt points(0, 0);
points.SetValue(i, pnts[i]); if (py::extract<std::vector<gp_Pnt>>(pnts).check()) {
GeomAPI_PointsToBSpline builder(points); std::vector<gp_Pnt> pnt_list{py::extract<std::vector<gp_Pnt>>(pnts)()};
points.Resize(0, pnt_list.size()-1, true);
for (int i = 0; i < pnt_list.size(); i++)
points.SetValue(i, pnt_list[i]);
} else if (py::extract<py::array_t<double>>(pnts).check()) {
py::array_t<double> pnt_array{py::extract<py::array_t<double>>(pnts)()};
if (pnt_array.ndim() != 2)
throw Exception("`points` array must have dimension 2.");
if (pnt_array.shape(1) != 3)
throw Exception("The second dimension must have size 3.");
points.Resize(0, pnt_array.shape(0)-1, true);
auto pnts_unchecked = pnt_array.unchecked<2>();
for (int i = 0; i < pnt_array.shape(0); ++i)
points.SetValue(i, gp_Pnt(pnts_unchecked(i, 0), pnts_unchecked(i, 1), pnts_unchecked(i, 2)));
} else
throw Exception("Not able to process the data type of points");
GeomAPI_PointsToBSpline builder(points, approx_type, deg_min, deg_max, continuity, tol);
return BRepBuilderAPI_MakeEdge(builder.Curve()).Edge(); return BRepBuilderAPI_MakeEdge(builder.Curve()).Edge();
}, py::arg("points"), py::arg("tol"), },
"Generate spline-curve approximating list of points up to tolerance tol"); py::arg("points"),
py::arg("approx_type") = Approx_ParametrizationType::Approx_ChordLength,
py::arg("deg_min") = 3,
py::arg("deg_max") = 8,
py::arg("continuity") = GeomAbs_Shape::GeomAbs_C2,
py::arg("tol")=1e-8,
R"delimiter(
Generate a piecewise continuous spline-curve approximating a list of points.
Parameters
----------
points : List[gp_Pnt] or Tuple[gp_Pnt] or np.ndarray[double]
List (or tuple) of gp_Pnt. If a numpy array is provided instead, the data must contain the coordinates
approx_type : ApproxParamType
Assumption on location of parameters wrt points.
deg_min : int
Minimum polynomial degree of splines
deg_max : int
Maxmium polynomial degree of splines
continuity : ShapeContinuity
Continuity requirement on the approximating surface
tol : float
Tolerance for the distance from individual points to the approximating curve.
)delimiter");
// CRASHES BADLY during call of Curve()!
// m.def("SplineInterpolation", [](py::object pnts, bool periodic, double tol) {
// cout << "enter" << endl;
// TColgp_Array1OfPnt points(0, 0);
// cout << "points array exists" << endl;
// if (py::extract<std::vector<gp_Pnt>>(pnts).check()) {
// std::vector<gp_Pnt> pnt_list{py::extract<std::vector<gp_Pnt>>(pnts)()};
// points.Resize(1, pnt_list.size(), true);
// for (int i = 0; i < pnt_list.size(); i++)
// points.SetValue(i+1, pnt_list[i]);
// } else if (py::extract<py::array_t<double>>(pnts).check()) {
// py::array_t<double> pnt_array{py::extract<py::array_t<double>>(pnts)()};
// if (pnt_array.ndim() != 2)
// throw Exception("`points` array must have dimension 2.");
// if (pnt_array.shape(1) != 3)
// throw Exception("The second dimension must have size 3.");
// cout << "resize" << endl;
// points.Resize(1, pnt_array.shape(0), true);
// auto pnts_unchecked = pnt_array.unchecked<2>();
// for (int i = 0; i < pnt_array.shape(0); ++i)
// points.SetValue(i+1, gp_Pnt(pnts_unchecked(i, 0), pnts_unchecked(i, 1), pnts_unchecked(i, 2)));
// cout << "values set" << endl;
// } else
// throw Exception("Not able to process the data type of points");
//
// TColgp_HArray1OfPnt hpoints{points};
// const auto _handle = opencascade::handle<TColgp_HArray1OfPnt>{&hpoints};
// cout << "build" << endl;
// GeomAPI_Interpolate builder(_handle, periodic, tol);
// cout << "done" << endl;
// auto curve = builder.Curve();
// cout << "curve done" << endl;
// return BRepBuilderAPI_MakeEdge(curve);
//// return BRepBuilderAPI_MakeEdge(builder.Curve()).Edge();
// },
// py::arg("points"),
// py::arg("periodic")=false,
// py::arg("tol")=1e-8,
// R"delimiter(
//Generate a piecewise continuous spline-curve interpolating a list of points.
//
//Parameters
//----------
//
//points : List[gp_Pnt] or Tuple[gp_Pnt] or np.ndarray[double]
// List (or tuple) of gp_Pnt. If a numpy array is provided instead, the data must contain the coordinates
//
//periodic : bool
// Whether the result should be periodic
//
//tol : float
// Tolerance for the distance between points.
//
//)delimiter");
m.def("SplineSurfaceApproximation", [](py::array_t<double> pnt_array,
Approx_ParametrizationType approx_type, int deg_min, int deg_max, GeomAbs_Shape continuity, double tol,
bool periodic, double degen_tol) {
if (pnt_array.ndim() != 3)
throw Exception("`points` array must have dimension 3.");
if (pnt_array.shape(2) != 3)
throw Exception("The third dimension must have size 3.");
auto array = py::extract<py::array_t<double>>(pnt_array)();
TColgp_Array2OfPnt points(1, pnt_array.shape(0), 1, pnt_array.shape(1));
auto pnts_unchecked = pnt_array.unchecked<3>();
for (int i = 0; i < pnt_array.shape(0); ++i)
for (int j = 0; j < pnt_array.shape(1); ++j)
points.SetValue(i+1, j+1, gp_Pnt(pnts_unchecked(i, j, 0), pnts_unchecked(i, j, 1), pnts_unchecked(i, j, 2)));
GeomAPI_PointsToBSplineSurface builder;
builder.Init(points, approx_type, deg_min, deg_max, continuity, tol, periodic);
return BRepBuilderAPI_MakeFace(builder.Surface(), tol).Face();
},
py::arg("points"),
py::arg("approx_type") = Approx_ParametrizationType::Approx_ChordLength,
py::arg("deg_min") = 3,
py::arg("deg_max") = 8,
py::arg("continuity") = GeomAbs_Shape::GeomAbs_C2,
py::arg("tol") = 1e-3,
py::arg("periodic") = false,
py::arg("degen_tol") = 1e-8,
R"delimiter(
Generate a piecewise continuous spline-surface approximating an array of points.
Parameters
----------
points : np.ndarray
Array of points coordinates. The first dimension corresponds to the first surface coordinate point
index, the second dimension to the second surface coordinate point index. The third dimension refers to physical
coordinates. Such an array can be generated with code like::
px, py = np.meshgrid(*[np.linspace(0, 1, N)]*2)
points = np.array([[(px[i,j], py[i,j], px[i,j]*py[i,j]**2) for j in range(N)] for i in range(N)])
approx_type : ApproxParamType
Assumption on location of parameters wrt points.
deg_min : int
Minimum polynomial degree of splines
deg_max : int
Maxmium polynomial degree of splines
continuity : ShapeContinuity
Continuity requirement on the approximating surface
tol : float
Tolerance for the distance from individual points to the approximating surface.
periodic : bool
Whether the result should be periodic
degen_tol : double
Tolerance for resolution of degenerate edges
)delimiter");
m.def("SplineSurfaceInterpolation", [](
py::array_t<double> pnt_array, Approx_ParametrizationType approx_type, bool periodic, double degen_tol) {
if (pnt_array.ndim() != 3)
throw Exception("`points` array must have dimension 3.");
if (pnt_array.shape(2) != 3)
throw Exception("The third dimension must have size 3.");
auto array = py::extract<py::array_t<double>>(pnt_array)();
TColgp_Array2OfPnt points(1, pnt_array.shape(0), 1, pnt_array.shape(1));
auto pnts_unchecked = pnt_array.unchecked<3>();
for (int i = 0; i < pnt_array.shape(0); ++i)
for (int j = 0; j < pnt_array.shape(1); ++j)
points.SetValue(i+1, j+1, gp_Pnt(pnts_unchecked(i, j, 0), pnts_unchecked(i, j, 1), pnts_unchecked(i, j, 2)));
GeomAPI_PointsToBSplineSurface builder;
builder.Interpolate(points, approx_type, periodic);
return BRepBuilderAPI_MakeFace(builder.Surface(), degen_tol).Face();
},
py::arg("points"),
py::arg("approx_type") = Approx_ParametrizationType::Approx_ChordLength,
py::arg("periodic") = false,
py::arg("degen_tol") = 1e-8,
R"delimiter(
Generate a piecewise continuous spline-surface interpolating an array of points.
Parameters
----------
points : np.ndarray
Array of points coordinates. The first dimension corresponds to the first surface coordinate point
index, the second dimension to the second surface coordinate point index. The third dimension refers to physical
coordinates. Such an array can be generated with code like::
px, py = np.meshgrid(*[np.linspace(0, 1, N)]*2)
points = np.array([[(px[i,j], py[i,j], px[i,j]*py[i,j]**2) for j in range(N)] for i in range(N)])
approx_type : ApproxParamType
Assumption on location of parameters wrt points.
periodic : bool
Whether the result should be periodic
degen_tol : double
Tolerance for resolution of degenerate edges
)delimiter");
m.def("MakeFillet", [](TopoDS_Shape shape, std::vector<TopoDS_Shape> edges, double r) { m.def("MakeFillet", [](TopoDS_Shape shape, std::vector<TopoDS_Shape> edges, double r) {