#include "boundarylayer.hpp" #include "boundarylayer_limiter.hpp" #include #include #include "debugging.hpp" #include "global.hpp" #include "meshfunc.hpp" namespace netgen { struct SpecialPointException : public Exception { SpecialPointException() : Exception("") {} }; std::tuple FindCloseVectors(FlatArray> ns, bool find_max = true) { int maxpos1; int maxpos2; double val = find_max ? -1e99 : 1e99; for (auto i : Range(ns)) for (auto j : Range(i + 1, ns.Size())) { double ip = ns[i] * ns[j]; if ((find_max && (ip > val)) || (!find_max && (ip < val))) { val = ip; maxpos1 = i; maxpos2 = j; } } return {maxpos1, maxpos2}; } Vec<3> CalcGrowthVector(FlatArray> ns) { if (ns.Size() == 0) return {0, 0, 0}; if (ns.Size() == 1) return ns[0]; if (ns.Size() == 2) { auto gw = ns[0]; auto n = ns[1]; auto npn = gw * n; auto npnp = gw * gw; auto nn = n * n; if (fabs(nn - npn * npn / npnp) < 1e-6) return n; gw += (nn - npn) / (nn - npn * npn / npnp) * (n - npn / npnp * gw); return gw; } if (ns.Size() == 3) { DenseMatrix mat(3, 3); for (auto i : Range(3)) for (auto j : Range(3)) mat(i, j) = ns[i][j]; if (fabs(mat.Det()) > 1e-6) { DenseMatrix mat(3, 3); for (auto i : Range(3)) for (auto j : Range(3)) mat(i, j) = ns[i] * ns[j]; Vector rhs(3); rhs = 1.; Vector res(3); DenseMatrix inv(3, ns.Size()); CalcInverse(mat, inv); inv.Mult(rhs, res); Vec<3> growth = 0.; for (auto i : Range(ns)) growth += res[i] * ns[i]; return growth; } } auto [maxpos1, maxpos2] = FindCloseVectors(ns); Array> new_normals; new_normals = ns; const auto dot = ns[maxpos1] * ns[maxpos2]; auto average = 0.5 * (ns[maxpos1] + ns[maxpos2]); average.Normalize(); new_normals[maxpos1] = average; new_normals.DeleteElement(maxpos2); auto gw = CalcGrowthVector(new_normals); for (auto n : ns) if (n * gw < 0) throw SpecialPointException(); return gw; } SpecialBoundaryPoint ::GrowthGroup ::GrowthGroup(FlatArray faces_, FlatArray> normals) { faces = faces_; growth_vector = CalcGrowthVector(normals); } SpecialBoundaryPoint ::SpecialBoundaryPoint( const std::map> &normals) { // find opposing face normals Array> ns; Array faces; for (auto [face, normal] : normals) { ns.Append(normal); faces.Append(face); } auto [minface1, minface2] = FindCloseVectors(ns, false); minface1 = faces[minface1]; minface2 = faces[minface2]; Array g1_faces; g1_faces.Append(minface1); Array g2_faces; g2_faces.Append(minface2); auto n1 = normals.at(minface1); auto n2 = normals.at(minface2); separating_direction = 0.5 * (n2 - n1); Array> normals1, normals2; for (auto [facei, normali] : normals) if (facei != minface1 && facei != minface2) { g1_faces.Append(facei); g2_faces.Append(facei); } for (auto fi : g1_faces) normals1.Append(normals.at(fi)); for (auto fi : g2_faces) normals2.Append(normals.at(fi)); growth_groups.Append(GrowthGroup(g1_faces, normals1)); growth_groups.Append(GrowthGroup(g2_faces, normals2)); } Vec<3> BoundaryLayerTool ::getEdgeTangent(PointIndex pi, int edgenr, FlatArray segs) { Vec<3> tangent = 0.0; ArrayMem pts; for (auto *p_seg : segs) { auto &seg = *p_seg; if (seg.edgenr != edgenr) continue; PointIndex other = seg[0] + seg[1] - pi; if (!pts.Contains(other)) pts.Append(other); } if (pts.Size() != 2) { cout << "getEdgeTangent pi = " << pi << ", edgenr = " << edgenr << endl; cout << pts << endl; for (auto *p_seg : segs) cout << *p_seg << endl; throw NG_EXCEPTION("Something went wrong in getEdgeTangent!"); } tangent = mesh[pts[1]] - mesh[pts[0]]; return tangent.Normalize(); } void BoundaryLayerTool ::LimitGrowthVectorLengths() { static Timer tall("BoundaryLayerTool::LimitGrowthVectorLengths"); RegionTimer rtall(tall); GrowthVectorLimiter limiter(*this); limiter.Perform(); } // depending on the geometry type, the mesh contains segments multiple times // (once for each face) bool HaveSingleSegments(const Mesh &mesh) { auto &topo = mesh.GetTopology(); NgArray surf_els; for (auto segi : Range(mesh.LineSegments())) { mesh.GetTopology().GetSegmentSurfaceElements(segi + 1, surf_els); if (surf_els.Size() < 2) continue; auto seg = mesh[segi]; auto pi0 = min(seg[0], seg[1]); auto pi1 = max(seg[0], seg[1]); auto p0_segs = topo.GetVertexSegments(seg[0]); for (auto segi_other : p0_segs) { if (segi_other == segi) continue; auto seg_other = mesh[segi_other]; auto pi0_other = min(seg_other[0], seg_other[1]); auto pi1_other = max(seg_other[0], seg_other[1]); if (pi0_other == pi0 && pi1_other == pi1) return false; } // found segment with multiple adjacent surface elements but no other // segments with same points -> have single segments return true; } return true; } // duplicates segments (and sets seg.si accordingly) to have a unified data // structure for all geometry types Array BuildSegments(Mesh &mesh) { Array segments; // auto& topo = mesh.GetTopology(); NgArray surf_els; for (auto segi : Range(mesh.LineSegments())) { auto seg = mesh[segi]; mesh.GetTopology().GetSegmentSurfaceElements(segi + 1, surf_els); for (auto seli : surf_els) { const auto &sel = mesh[seli]; seg.si = sel.GetIndex(); auto np = sel.GetNP(); for (auto i : Range(np)) { if (sel[i] == seg[0]) { if (sel[(i + 1) % np] != seg[1]) swap(seg[0], seg[1]); break; } } segments.Append(seg); } } return segments; } void MergeAndAddSegments(Mesh &mesh, FlatArray segments, FlatArray new_segments) { INDEX_2_HASHTABLE already_added(segments.Size() + 2 * new_segments.Size()); mesh.LineSegments().SetSize0(); auto addSegment = [&](const auto &seg) { INDEX_2 i2(seg[0], seg[1]); i2.Sort(); if (!already_added.Used(i2)) { mesh.AddSegment(seg); already_added.Set(i2, true); } }; for (const auto &seg : segments) addSegment(seg); for (const auto &seg : new_segments) addSegment(seg); } BoundaryLayerTool::BoundaryLayerTool(Mesh &mesh_, const BoundaryLayerParameters ¶ms_) : mesh(mesh_), topo(mesh_.GetTopology()), params(params_) { static Timer timer("BoundaryLayerTool::ctor"); RegionTimer regt(timer); ProcessParameters(); if (domains.NumSet() == 0) return; topo.SetBuildVertex2Element(true); mesh.UpdateTopology(); have_single_segments = HaveSingleSegments(mesh); if (have_single_segments) segments = BuildSegments(mesh); else segments = mesh.LineSegments(); np = mesh.GetNP(); ne = mesh.GetNE(); nse = mesh.GetNSE(); nseg = segments.Size(); p2sel = mesh.CreatePoint2SurfaceElementTable(); nfd_old = mesh.GetNFD(); moved_surfaces.SetSize(nfd_old + 1); moved_surfaces.Clear(); si_map.SetSize(nfd_old + 1); for (auto i : Range(nfd_old + 1)) si_map[i] = i; } void BoundaryLayerTool ::CreateNewFaceDescriptors() { surfacefacs.SetSize(nfd_old + 1); surfacefacs = 0.0; // create new FaceDescriptors for (auto i : Range(1, nfd_old + 1)) { const auto &fd = mesh.GetFaceDescriptor(i); string name = fd.GetBCName(); if (par_surfid.Contains(i)) { if (auto isIn = domains.Test(fd.DomainIn()); isIn != domains.Test(fd.DomainOut())) { int new_si = mesh.GetNFD() + 1; surfacefacs[i] = isIn ? 1. : -1.; moved_surfaces.SetBit(i); if (!insert_only_volume_elements) { // -1 surf nr is so that curving does not do anything FaceDescriptor new_fd(-1, isIn ? new_mat_nrs[i] : fd.DomainIn(), isIn ? fd.DomainOut() : new_mat_nrs[i], -1); new_fd.SetBCProperty(new_si); new_fd.SetSurfColour(fd.SurfColour()); mesh.AddFaceDescriptor(new_fd); si_map[i] = new_si; mesh.SetBCName(new_si - 1, "mapped_" + name); } } // curving of surfaces with boundary layers will often // result in pushed through elements, since we do not (yet) // curvature through layers. // Therefore we disable curving for these surfaces. if (!params.keep_surfaceindex) mesh.GetFaceDescriptor(i).SetSurfNr(-1); } } for (auto si : par_surfid) if (surfacefacs[si] == 0.0) throw Exception("Surface " + to_string(si) + " is not a boundary of the domain to be grown into!"); } void BoundaryLayerTool ::CreateFaceDescriptorsSides() { if (insert_only_volume_elements) return; BitArray face_done(mesh.GetNFD() + 1); face_done.Clear(); for (const auto &sel : mesh.SurfaceElements()) { auto facei = sel.GetIndex(); if (face_done.Test(facei)) continue; bool point_moved = false; // bool point_fixed = false; for (auto pi : sel.PNums()) { if (growthvectors[pi].Length() > 0) point_moved = true; /* else point_fixed = true; */ } if (point_moved && !moved_surfaces.Test(facei)) { int new_si = mesh.GetNFD() + 1; const auto &fd = mesh.GetFaceDescriptor(facei); // auto isIn = domains.Test(fd.DomainIn()); // auto isOut = domains.Test(fd.DomainOut()); int si = params.sides_keep_surfaceindex ? facei : -1; // domin and domout can only be set later FaceDescriptor new_fd(si, -1, -1, si); new_fd.SetBCProperty(new_si); mesh.AddFaceDescriptor(new_fd); si_map[facei] = new_si; mesh.SetBCName(new_si - 1, fd.GetBCName()); face_done.SetBit(facei); } } } void BoundaryLayerTool ::CalculateGrowthVectors() { growthvectors.SetSize(np); growthvectors = 0.; for (auto pi : mesh.Points().Range()) { const auto &p = mesh[pi]; if (p.Type() == INNERPOINT) continue; std::map> normals; // calculate one normal vector per face (average with angles as weights for // multiple surface elements within a face) for (auto sei : p2sel[pi]) { const auto &sel = mesh[sei]; auto facei = sel.GetIndex(); if (!par_surfid.Contains(facei)) continue; auto n = surfacefacs[sel.GetIndex()] * getNormal(sel); int itrig = sel.PNums().Pos(pi); itrig += sel.GetNP(); auto v0 = (mesh[sel.PNumMod(itrig + 1)] - mesh[pi]).Normalize(); auto v1 = (mesh[sel.PNumMod(itrig - 1)] - mesh[pi]).Normalize(); if (normals.count(facei) == 0) normals[facei] = {0., 0., 0.}; normals[facei] += acos(v0 * v1) * n; } for (auto &[facei, n] : normals) n *= 1.0 / n.Length(); // combine normal vectors for each face to keep uniform distances ArrayMem, 5> ns; for (auto &[facei, n] : normals) { ns.Append(n); } try { growthvectors[pi] = CalcGrowthVector(ns); } catch (const SpecialPointException &e) { special_boundary_points.emplace(pi, normals); growthvectors[pi] = special_boundary_points[pi].growth_groups[0].growth_vector; } } } Array>, SegmentIndex> BoundaryLayerTool ::BuildSegMap() { // Bit array to keep track of segments already processed BitArray segs_done(nseg + 1); segs_done.Clear(); // map for all segments with same points // points to pair of SegmentIndex, int // int is type of other segment, either: // 0 == adjacent surface grows layer // 1 == adjacent surface doesn't grow layer, but layer ends on it // 2 == adjacent surface is interior surface that ends on layer // 3 == adjacent surface is exterior surface that ends on layer (not allowed // yet) Array>, SegmentIndex> segmap(segments.Size()); // moved segments is_edge_moved.SetSize(max_edge_nr + 1); is_edge_moved = false; // boundaries to project endings to is_boundary_projected.SetSize(nfd_old + 1); is_boundary_projected.Clear(); is_boundary_moved.SetSize(nfd_old + 1); is_boundary_moved.Clear(); for (auto si : Range(segments)) { if (segs_done[si]) continue; const auto &segi = segments[si]; if (!moved_surfaces.Test(segi.si)) continue; segs_done.SetBit(si); segmap[si].Append(make_pair(si, 0)); moved_segs.Append(si); is_edge_moved.SetBit(segi.edgenr); for (auto sj : Range(segments)) { if (segs_done.Test(sj)) continue; const auto &segj = segments[sj]; if ((segi[0] == segj[0] && segi[1] == segj[1]) || (segi[0] == segj[1] && segi[1] == segj[0])) { segs_done.SetBit(sj); int type; if (moved_surfaces.Test(segj.si)) { type = 0; moved_segs.Append(sj); } else if (const auto &fd = mesh.GetFaceDescriptor(segj.si); domains.Test(fd.DomainIn()) && domains.Test(fd.DomainOut())) { type = 2; if (fd.DomainIn() == 0 || fd.DomainOut() == 0) is_boundary_projected.SetBit(segj.si); } else if (const auto &fd = mesh.GetFaceDescriptor(segj.si); !domains.Test(fd.DomainIn()) && !domains.Test(fd.DomainOut())) { type = 3; is_boundary_moved.SetBit(segj.si); } else { type = 1; // in case 1 we project the growthvector onto the surface is_boundary_projected.SetBit(segj.si); } segmap[si].Append(make_pair(sj, type)); } } } return segmap; } BitArray BoundaryLayerTool ::ProjectGrowthVectorsOnSurface() { BitArray in_surface_direction(nfd_old + 1); in_surface_direction.Clear(); // project growthvector on surface for inner angles if (params.grow_edges) { for (const auto &sel : mesh.SurfaceElements()) if (is_boundary_projected.Test(sel.GetIndex())) { auto n = getNormal(sel); for (auto i : Range(sel.PNums())) { auto pi = sel.PNums()[i]; if (growthvectors[pi].Length2() == 0.) continue; auto next = sel.PNums()[(i + 1) % sel.GetNV()]; auto prev = sel.PNums()[i == 0 ? sel.GetNV() - 1 : i - 1]; auto v1 = (mesh[next] - mesh[pi]).Normalize(); auto v2 = (mesh[prev] - mesh[pi]).Normalize(); auto v3 = growthvectors[pi]; v3.Normalize(); auto tol = v1.Length() * 1e-12; if ((v1 * v3 > -tol) && (v2 * v3 > -tol)) in_surface_direction.SetBit(sel.GetIndex()); else continue; if (!par_project_boundaries.Contains(sel.GetIndex())) continue; auto &g = growthvectors[pi]; auto ng = n * g; auto gg = g * g; auto nn = n * n; // if(fabs(ng*ng-nn*gg) < 1e-12 || fabs(ng) < 1e-12) continue; auto a = -ng * ng / (ng * ng - nn * gg); auto b = ng * gg / (ng * ng - nn * gg); g += a * g + b * n; } } } else { for (const auto &seg : segments) { int count = 0; for (const auto &seg2 : segments) if (((seg[0] == seg2[0] && seg[1] == seg2[1]) || (seg[0] == seg2[1] && seg[1] == seg2[0])) && par_surfid.Contains(seg2.si)) count++; if (count == 1) { growthvectors[seg[0]] = {0., 0., 0.}; growthvectors[seg[1]] = {0., 0., 0.}; } } } return in_surface_direction; } void BoundaryLayerTool ::InsertNewElements( FlatArray>, SegmentIndex> segmap, const BitArray &in_surface_direction) { static Timer timer("BoundaryLayerTool::InsertNewElements"); RegionTimer rt(timer); mapto.SetSize(0); mapto.SetSize(np); mapfrom.SetSize(mesh.GetNP()); mapfrom = PointIndex::INVALID; auto changed_domains = domains; if (!params.outside) changed_domains.Invert(); auto &identifications = mesh.GetIdentifications(); const int identnr = identifications.GetNr("boundarylayer"); auto add_points = [&](PointIndex pi, Vec<3> &growth_vector, Array &new_points) { Point<3> p = mesh[pi]; PointIndex pi_last = pi; double height = 0.0; for (auto i : Range(par_heights)) { height += par_heights[i]; auto pi_new = mesh.AddPoint(p); mapfrom.Append(pi); new_points.Append(pi_new); growth_vector_map[pi_new] = {&growth_vector, height}; if (special_boundary_points.count(pi) > 0) mesh.AddLockedPoint(pi_new); pi_last = pi_new; } }; // insert new points for (PointIndex pi = 1; pi <= np; pi++) { if (growthvectors[pi].Length2() != 0) { if (special_boundary_points.count(pi)) { for (auto &group : special_boundary_points[pi].growth_groups) add_points(pi, group.growth_vector, group.new_points); } else add_points(pi, growthvectors[pi], mapto[pi]); } } // get point from mapto (or the group if point is mapped to multiple new // points) layer = -1 means last point (top of boundary layer) auto newPoint = [&](PointIndex pi, int layer = -1, int group = 0) { if (layer == -1) layer = par_heights.Size() - 1; if (special_boundary_points.count(pi)) return special_boundary_points[pi].growth_groups[group].new_points[layer]; else return mapto[pi][layer]; }; auto hasMoved = [&](PointIndex pi) { return mapto[pi].Size() > 0 || special_boundary_points.count(pi); }; auto numGroups = [&](PointIndex pi) -> size_t { if (special_boundary_points.count(pi)) return special_boundary_points[pi].growth_groups.Size(); else return 1; }; auto getGroups = [&](PointIndex pi, int face_index) -> Array { auto n = numGroups(pi); Array groups; if (n == 1) { groups.Append(0); return groups; } const auto &all_groups = special_boundary_points[pi].growth_groups; for (auto i : Range(n)) if (all_groups[i].faces.Contains(face_index)) groups.Append(i); // cout << "groups " << pi << ", " << face_index << endl << groups; return groups; }; // add 2d quads on required surfaces map, int> seg2edge; map edge_map; int edge_nr = max_edge_nr; auto getEdgeNr = [&](int ei) { if (edge_map.count(ei) == 0) edge_map[ei] = ++edge_nr; return edge_map[ei]; }; if (params.grow_edges) { for (auto sei : moved_segs) { // copy here since we will add segments and this would // invalidate a reference! // auto segi = segments[sei]; for (auto [sej, type] : segmap[sei]) { auto segj = segments[sej]; if (type == 0) { auto addSegment = [&](PointIndex p0, PointIndex p1, bool extra_edge_nr = false) { Segment s; s[0] = p0; s[1] = p1; s[2] = PointIndex::INVALID; auto pair = s[0] < s[1] ? make_pair(s[0], s[1]) : make_pair(s[1], s[0]); if (extra_edge_nr) s.edgenr = ++edge_nr; else s.edgenr = getEdgeNr(segj.edgenr); s.si = si_map[segj.si]; new_segments.Append(s); // cout << __LINE__ <<"\t" << s << endl; return s; }; auto p0 = segj[0], p1 = segj[1]; auto g0 = getGroups(p0, segj.si); auto g1 = getGroups(p1, segj.si); if (g0.Size() == 1 && g1.Size() == 1) auto s = addSegment(newPoint(p0, -1, g0[0]), newPoint(p1, -1, g1[0])); else { if (g0.Size() == 2) addSegment(newPoint(p0, -1, g0[0]), newPoint(p0, -1, g0[1])); if (g1.Size() == 2) addSegment(newPoint(p1, -1, g1[0]), newPoint(p1, -1, g1[1])); } } // here we need to grow the quad elements else if (type == 1) { PointIndex pp1 = segj[1]; PointIndex pp2 = segj[0]; if (in_surface_direction.Test(segj.si)) { Swap(pp1, pp2); is_boundary_moved.SetBit(segj.si); } PointIndex p1 = pp1; PointIndex p2 = pp2; PointIndex p3, p4; Segment s0; s0[0] = p1; s0[1] = p2; s0[2] = PointIndex::INVALID; s0.edgenr = segj.edgenr; s0.si = segj.si; new_segments.Append(s0); for (auto i : Range(par_heights)) { Element2d sel(QUAD); p3 = newPoint(pp2, i); p4 = newPoint(pp1, i); sel[0] = p1; sel[1] = p2; sel[2] = p3; sel[3] = p4; for (auto i : Range(4)) { sel.GeomInfo()[i].u = 0.0; sel.GeomInfo()[i].v = 0.0; } sel.SetIndex(si_map[segj.si]); new_sels.Append(sel); new_sels_on_moved_bnd.Append(sel); // TODO: Too many, would be enough to only add outermost ones Segment s1; s1[0] = p2; s1[1] = p3; s1[2] = PointIndex::INVALID; auto pair = make_pair(p2, p3); s1.edgenr = getEdgeNr(segj.edgenr); s1.si = segj.si; // new_segments.Append(s1); Segment s2; s2[0] = p4; s2[1] = p1; s2[2] = PointIndex::INVALID; pair = make_pair(p1, p4); s2.edgenr = getEdgeNr(segj.edgenr); s2.si = segj.si; // new_segments.Append(s2); p1 = p4; p2 = p3; } Segment s3; s3[0] = p3; s3[1] = p4; s3[2] = PointIndex::INVALID; auto pair = p3 < p4 ? make_pair(p3, p4) : make_pair(p4, p3); s3.edgenr = getEdgeNr(segj.edgenr); s3.si = segj.si; new_segments.Append(s3); } } } } auto getClosestGroup = [&](PointIndex pi, SurfaceElementIndex sei) { auto n = numGroups(pi); if (n == 1) return 0; const auto &sel = mesh[sei]; auto groups = getGroups(pi, sel.GetIndex()); if (groups.Size() == 1) return groups[0]; auto &growth_groups = special_boundary_points[pi].growth_groups; auto vdir = Center(mesh[sel[0]], mesh[sel[1]], mesh[sel[2]]) - mesh[pi]; auto dot = vdir * special_boundary_points[pi].separating_direction; return dot > 0 ? 1 : 0; }; BitArray fixed_points(np + 1); fixed_points.Clear(); auto p2el = mesh.CreatePoint2ElementTable(); for (SurfaceElementIndex si = 0; si < nse; si++) { // copy because surfaceels array will be resized! const auto sel = mesh[si]; if (moved_surfaces.Test(sel.GetIndex())) { Array points(sel.PNums()); if (surfacefacs[sel.GetIndex()] > 0) Swap(points[0], points[2]); ArrayMem groups(points.Size()); for (auto i : Range(points)) groups[i] = getClosestGroup(sel[i], si); bool add_volume_element = true; for (auto pi : sel.PNums()) if (numGroups(pi) > 1) add_volume_element = false; for (auto j : Range(par_heights)) { auto eltype = points.Size() == 3 ? PRISM : HEX; Element el(eltype); for (auto i : Range(points)) el[i] = points[i]; for (auto i : Range(points)) points[i] = newPoint(sel.PNums()[i], j, groups[i]); if (surfacefacs[sel.GetIndex()] > 0) Swap(points[0], points[2]); for (auto i : Range(points)) el[sel.PNums().Size() + i] = points[i]; auto new_index = new_mat_nrs[sel.GetIndex()]; if (new_index == -1) throw Exception("Boundary " + ToString(sel.GetIndex()) + " with name " + mesh.GetBCName(sel.GetIndex() - 1) + " extruded, but no new material specified for it!"); el.SetIndex(new_mat_nrs[sel.GetIndex()]); if (add_volume_element) mesh.AddVolumeElement(el); else { // Let the volume mesher fill the hole with pyramids/tets // To insert pyramids, we need close surface identifications on open // quads for (auto i : Range(points)) if (numGroups(sel[i]) == 1) identifications.Add(el[i], el[i + points.Size()], identnr); } } Element2d newel = sel; for (auto i : Range(points)) newel[i] = newPoint(sel[i], -1, groups[i]); newel.SetIndex(si_map[sel.GetIndex()]); new_sels.Append(newel); } if (is_boundary_moved.Test(sel.GetIndex())) { for (auto &p : mesh[si].PNums()) if (hasMoved(p)) p = newPoint(p); } } // for (SegmentIndex sei = 0; sei < nseg; sei++) { // auto &seg = segments[sei]; // if (is_boundary_moved.Test(seg.si)) { // if(insert_only_volume_elements) throw // Exception("insert_only_volume_elements and is_boundary_moved are // incompatible"); for (auto &p : seg.PNums()) // if (hasMoved(p)) // p = newPoint(p); // } // } // fill holes in surface mesh at special boundary points (i.e. points with >=4 // adjacent boundary faces) auto p2sel = ngcore::CreateSortedTable( new_sels.Range(), [&](auto &table, SurfaceElementIndex ei) { for (PointIndex pi : new_sels[ei].PNums()) table.Add(pi, ei); }, mesh.GetNP()); for (auto &[special_pi, special_point] : special_boundary_points) { if (special_point.growth_groups.Size() != 2) throw Exception("special_point.growth_groups.Size() != 2"); // Special points are split into two new points, when mapping a surface // element, we choose the closer one to the center. Now, find points which // are mapped to both new points (for different surface elements they belong // to). At exactly these points we need to insert new surface elements to // fill the hole. std::map, 2>> close_group; for (auto sei : p2sel[special_pi]) { const auto &sel = mesh[sei]; for (auto p : sel.PNums()) if (p != special_pi) close_group[sel.GetIndex()][getClosestGroup(special_pi, sei)].insert( p); } for (auto [fi, groups] : close_group) { const auto mapped_fi = si_map[fi]; std::set common_points; for (auto pi : groups[0]) if (groups[1].count(pi) == 1) common_points.insert(pi); if (common_points.size() > 0) { auto pi_common = mapto[*common_points.begin()].Last(); auto new_special_pi0 = special_point.growth_groups[0].new_points.Last(); auto new_special_pi1 = special_point.growth_groups[1].new_points.Last(); for (auto sei : p2sel[pi_common]) { if (mesh[sei].GetIndex() == mapped_fi && mesh[sei].PNums().Contains(new_special_pi0)) { auto sel = mesh[sei]; sel.Invert(); for (auto &pi : sel.PNums()) if (pi != pi_common && pi != new_special_pi0) pi = new_special_pi1; new_sels.Append(sel); } } } } } for (auto &[pi, special_point] : special_boundary_points) { if (special_point.growth_groups.Size() != 2) throw Exception("special_point.growth_groups.Size() != 2"); for (auto igroup : Range(2)) { auto &group = special_point.growth_groups[igroup]; std::set faces; for (auto face : group.faces) faces.insert(si_map[face]); auto pi_new = group.new_points.Last(); auto pi_new_other = special_point.growth_groups[1 - igroup].new_points.Last(); for (auto sei : p2sel[pi_new]) faces.erase(mesh[sei].GetIndex()); for (auto face : faces) for (auto seg : new_segments) { if ( // seg.si == face (seg[0] == pi_new || seg[1] == pi_new) && (seg[0] != pi_new_other && seg[1] != pi_new_other)) { bool is_correct_face = false; auto pi_other = seg[0] == pi_new ? seg[1] : seg[0]; for (auto sei : p2sel[pi_other]) { if (mesh[sei].GetIndex() == face) { is_correct_face = true; break; } } if (is_correct_face) { Element2d sel; sel[0] = seg[1]; sel[1] = seg[0]; sel[2] = pi_new_other; sel.SetIndex(face); new_sels.Append(sel); } } } } } } void BoundaryLayerTool ::SetDomInOut() { if (insert_only_volume_elements) return; for (auto i : Range(1, nfd_old + 1)) if (moved_surfaces.Test(i)) { if (auto dom = mesh.GetFaceDescriptor(si_map[i]).DomainIn(); dom > ndom_old) mesh.GetFaceDescriptor(i).SetDomainOut(dom); else mesh.GetFaceDescriptor(i).SetDomainIn( mesh.GetFaceDescriptor(si_map[i]).DomainOut()); } } void BoundaryLayerTool ::SetDomInOutSides() { if (insert_only_volume_elements) return; BitArray done(mesh.GetNFD() + 1); done.Clear(); for (auto sei : Range(mesh.SurfaceElements())) { auto &sel = mesh[sei]; auto index = sel.GetIndex(); if (done.Test(index)) continue; done.SetBit(index); auto &fd = mesh.GetFaceDescriptor(index); if (fd.DomainIn() != -1) continue; int e1, e2; mesh.GetTopology().GetSurface2VolumeElement(sei + 1, e1, e2); if (e1 == 0) fd.SetDomainIn(0); else fd.SetDomainIn(mesh.VolumeElement(e1).GetIndex()); if (e2 == 0) fd.SetDomainOut(0); else fd.SetDomainOut(mesh.VolumeElement(e2).GetIndex()); } } void BoundaryLayerTool ::AddSegments() { if (insert_only_volume_elements) return; if (have_single_segments) MergeAndAddSegments(mesh, segments, new_segments); else { mesh.LineSegments() = segments; for (auto &seg : new_segments) mesh.AddSegment(seg); } } void BoundaryLayerTool ::AddSurfaceElements() { for (auto &sel : insert_only_volume_elements ? new_sels_on_moved_bnd : new_sels) { cout << "add surface element " << sel << endl; mesh.AddSurfaceElement(sel); } } void BoundaryLayerTool ::ProcessParameters() { if (int *bc = get_if(¶ms.boundary); bc) { for (int i = 1; i <= mesh.GetNFD(); i++) if (mesh.GetFaceDescriptor(i).BCProperty() == *bc) par_surfid.Append(i); } else if (string *s = get_if(¶ms.boundary); s) { regex pattern(*s); BitArray boundaries(mesh.GetNFD() + 1); boundaries.Clear(); for (int i = 1; i <= mesh.GetNFD(); i++) { auto &fd = mesh.GetFaceDescriptor(i); if (regex_match(fd.GetBCName(), pattern)) { boundaries.SetBit(i); auto dom_pattern = get_if(¶ms.domain); // only add if adjacent to domain if (dom_pattern) { regex pattern(*dom_pattern); bool mat1_match = fd.DomainIn() > 0 && regex_match(mesh.GetMaterial(fd.DomainIn()), pattern); bool mat2_match = fd.DomainOut() > 0 && regex_match(mesh.GetMaterial(fd.DomainOut()), pattern); // if boundary is inner or outer remove from list if (mat1_match == mat2_match) boundaries.Clear(i); // if((fd.DomainIn() > 0 && // regex_match(mesh.GetMaterial(fd.DomainIn()), pattern)) || // (fd.DomainOut() > 0 && // regex_match(self.GetMaterial(fd.DomainOut()), pattern))) // boundaries.Clear(i); // par_surfid.Append(i); } // else // par_surfid.Append(i); } } for (int i = 1; i <= mesh.GetNFD(); i++) if (boundaries.Test(i)) par_surfid.Append(i); } else { auto &surfids = *get_if>(¶ms.boundary); for (auto id : surfids) par_surfid.Append(id); } insert_only_volume_elements = !params.new_material.has_value(); if (params.new_material) { if (string *mat = get_if(&*params.new_material); mat) par_new_mat = {{".*", *mat}}; else par_new_mat = *get_if>(&*params.new_material); } if (params.project_boundaries.has_value()) { auto proj_bnd = *params.project_boundaries; if (string *s = get_if(&proj_bnd); s) { regex pattern(*s); for (int i = 1; i <= mesh.GetNFD(); i++) if (regex_match(mesh.GetFaceDescriptor(i).GetBCName(), pattern)) par_project_boundaries.Append(i); } else { for (auto id : *get_if>(&proj_bnd)) par_project_boundaries.Append(id); } } if (double *height = get_if(¶ms.thickness); height) { par_heights.Append(*height); } else { auto &heights = *get_if>(¶ms.thickness); for (auto val : heights) par_heights.Append(val); } int nr_domains = mesh.GetNDomains(); domains.SetSize(nr_domains + 1); // one based domains.Clear(); if (string *pdomain = get_if(¶ms.domain); pdomain) { regex pattern(*pdomain); for (auto i : Range(1, nr_domains + 1)) if (regex_match(mesh.GetMaterial(i), pattern)) domains.SetBit(i); } else if (int *idomain = get_if(¶ms.domain); idomain) { domains.SetBit(*idomain); } else { for (auto i : *get_if>(¶ms.domain)) domains.SetBit(i); } if (domains.NumSet() == 0) return; total_height = 0.0; for (auto h : par_heights) total_height += h; max_edge_nr = -1; for (const auto &seg : mesh.LineSegments()) if (seg.edgenr > max_edge_nr) max_edge_nr = seg.edgenr; int ndom = mesh.GetNDomains(); ndom_old = ndom; new_mat_nrs.SetSize(mesh.FaceDescriptors().Size() + 1); new_mat_nrs = -1; if (insert_only_volume_elements) { for (auto i : Range(1, mesh.GetNFD() + 1)) { auto &fd = mesh.GetFaceDescriptor(i); auto domin = fd.DomainIn(); auto domout = fd.DomainOut(); for (int dom : {domin, domout}) if (domains.Test(dom)) { if (params.outside) { dom = domin + domout - dom; if (dom == 0) throw NG_EXCEPTION("No new material specified for boundarylayer " "on the outside of domain"); } new_mat_nrs[i] = dom; } } } else { for (auto [bcname, matname] : par_new_mat) { mesh.SetMaterial(++ndom, matname); regex pattern(bcname); for (auto i : Range(1, mesh.GetNFD() + 1)) { auto &fd = mesh.GetFaceDescriptor(i); if (regex_match(fd.GetBCName(), pattern)) new_mat_nrs[i] = ndom; } } } cout << "new mat numbers " << endl << new_mat_nrs << endl; if (!params.outside) domains.Invert(); } void BoundaryLayerTool ::Perform() { CreateNewFaceDescriptors(); CalculateGrowthVectors(); CreateFaceDescriptorsSides(); auto segmap = BuildSegMap(); auto in_surface_direction = ProjectGrowthVectorsOnSurface(); InsertNewElements(segmap, in_surface_direction); SetDomInOut(); AddSegments(); AddSurfaceElements(); mesh.CalcSurfacesOfNode(); topo.SetBuildVertex2Element(true); mesh.UpdateTopology(); InterpolateGrowthVectors(); InterpolateSurfaceGrowthVectors(); if (params.limit_growth_vectors) LimitGrowthVectorLengths(); for (auto [pi, data] : growth_vector_map) { auto [gw, height] = data; mesh[pi] += height * (*gw); } mesh.CalcSurfacesOfNode(); mesh.GetTopology().ClearEdges(); mesh.SetNextMajorTimeStamp(); mesh.UpdateTopology(); SetDomInOutSides(); } void GenerateBoundaryLayer(Mesh &mesh, const BoundaryLayerParameters &blp) { static Timer timer("Create Boundarylayers"); RegionTimer regt(timer); BoundaryLayerTool tool(mesh, blp); tool.Perform(); } } // namespace netgen