#include #include "meshing.hpp" namespace netgen { static const int deltetfaces[][3] = { { 1, 2, 3 }, { 2, 0, 3 }, { 0, 1, 3 }, { 1, 0, 2 } }; class DelaunayTet { PointIndex pnums[4]; int nb[4]; public: DelaunayTet () { ; } DelaunayTet (const DelaunayTet & el) { for (int i = 0; i < 4; i++) pnums[i] = el[i]; } DelaunayTet (const Element & el) { for (int i = 0; i < 4; i++) pnums[i] = el[i]; } PointIndex & operator[] (int i) { return pnums[i]; } PointIndex operator[] (int i) const { return pnums[i]; } int & NB1(int i) { return nb[i-1]; } int NB1(int i) const { return nb[i-1]; } int & NB(int i) { return nb[i]; } int NB(int i) const { return nb[i]; } int FaceNr (INDEX_3 & face) const // which face nr is it ? { for (int i = 0; i < 3; i++) if (pnums[i] != face.I1() && pnums[i] != face.I2() && pnums[i] != face.I3()) return i; return 3; } void GetFace1 (int i, INDEX_3 & face) const { face.I(1) = pnums[deltetfaces[i-1][0]]; face.I(2) = pnums[deltetfaces[i-1][1]]; face.I(3) = pnums[deltetfaces[i-1][2]]; } void GetFace (int i, INDEX_3 & face) const { face.I(1) = pnums[deltetfaces[i][0]]; face.I(2) = pnums[deltetfaces[i][1]]; face.I(3) = pnums[deltetfaces[i][2]]; } INDEX_3 GetFace1 (int i) const { return INDEX_3 (pnums[deltetfaces[i-1][0]], pnums[deltetfaces[i-1][1]], pnums[deltetfaces[i-1][2]]); } INDEX_3 GetFace (int i) const { return INDEX_3 (pnums[deltetfaces[i][0]], pnums[deltetfaces[i][1]], pnums[deltetfaces[i][2]]); } void GetFace1 (int i, Element2d & face) const { // face.SetType(TRIG); face[0] = pnums[deltetfaces[i-1][0]]; face[1] = pnums[deltetfaces[i-1][1]]; face[2] = pnums[deltetfaces[i-1][2]]; } }; /* Table to maintain neighbour elements */ class MeshNB { // face nodes -> one element INDEX_3_CLOSED_HASHTABLE faces; // Array & tets; public: // estimated number of points MeshNB (Array & atets, int np) : faces(200), tets(atets) { ; } // add element with 4 nodes void Add (int elnr); // delete element with 4 nodes void Delete (int elnr) { DelaunayTet & el = tets.Elem(elnr); for (int i = 0; i < 4; i++) faces.Set (el.GetFace(i).Sort(), el.NB(i)); } // get neighbour of element elnr in direction fnr int GetNB (int elnr, int fnr) { return tets.Get(elnr).NB1(fnr); } // void ResetFaceHT (int size) { faces.SetSize (size); } }; void MeshNB :: Add (int elnr) { DelaunayTet & el = tets.Elem(elnr); for (int i = 0; i < 4; i++) { INDEX_3 i3 = INDEX_3::Sort (el.GetFace(i)); int posnr; if (!faces.PositionCreate (i3, posnr)) { // face already in use int othertet = faces.GetData (posnr); el.NB(i) = othertet; if (othertet) { int fnr = tets.Get(othertet).FaceNr (i3); tets.Elem(othertet).NB(fnr) = elnr; } } else { faces.SetData (posnr, elnr); el.NB(i) = 0; } } } /* connected lists of cosphereical elements */ class SphereList { Array links; public: SphereList () { ; } void AddElement (int elnr) { if (elnr > links.Size()) links.Append (1); links.Elem(elnr) = elnr; } void DeleteElement (int elnr) { links.Elem(elnr) = 0; } void ConnectElement (int eli, int toi) { links.Elem (eli) = links.Get (toi); links.Elem (toi) = eli; } void GetList (int eli, Array & linked) const; }; void SphereList :: GetList (int eli, Array & linked) const { linked.SetSize (0); int pi = eli; do { if (pi <= 0 || pi > links.Size()) { cerr << "link, error " << endl; cerr << "pi = " << pi << " linked.s = " << linked.Size() << endl; exit(1); } if (linked.Size() > links.Size()) { cerr << "links have loop" << endl; exit(1); } linked.Append (pi); pi = links.Get(pi); } while (pi != eli); } void AddDelaunayPoint (PointIndex newpi, const Point3d & newp, Array & tempels, Mesh & mesh, Box3dTree & tettree, MeshNB & meshnb, Array > & centers, Array & radi2, Array & connected, Array & treesearch, Array & freelist, SphereList & list, IndexSet & insphere, IndexSet & closesphere) { /* find any sphere, such that newp is contained in */ DelaunayTet el; int cfelind = -1; const Point<3> * pp[4]; Point<3> pc; double r2; Point3d tpmin, tpmax; tettree.GetIntersecting (newp, newp, treesearch); double quot,minquot(1e20); for (int j = 0; j < treesearch.Size(); j++) { int jjj = treesearch[j]; quot = Dist2 (centers.Get(jjj), newp) / radi2.Get(jjj); if((cfelind == -1 || quot < 0.99*minquot) && quot < 1) { minquot = quot; el = tempels.Get(jjj); cfelind = jjj; if(minquot < 0.917632) break; } } /* int i, j, k, l; if (!felind) { cerr << "not in any sphere, 1" << endl; // old, non tree search double mindist = 1e10; for (j = 1; j <= tempels.Size(); j++) { if (tempels.Get(j).PNum(1)) { double toofar = Dist2 (centers.Get(j), newp) - radi2.Get(j); if (toofar < mindist || toofar < 1e-7) { mindist = toofar; cout << " dist2 = " << Dist2 (centers.Get(j), newp) << " radi2 = " << radi2.Get(j) << endl; } if (toofar < 0) { el = tempels.Get(j); felind = j; cout << "sphere found !" << endl; break; } } } cout << "point is too far from sheres: " << mindist << endl; } */ if (cfelind == -1) { PrintWarning ("Delaunay, point not in any sphere"); return; } /* insphere: point is in sphere -> delete element closesphere: point is close to sphere -> considered for same center */ // save overestimate insphere.SetMaxIndex (2 * tempels.Size() + 5 * mesh.GetNP()); closesphere.SetMaxIndex (2 * tempels.Size() + 5 * mesh.GetNP()); insphere.Clear(); closesphere.Clear(); insphere.Add (cfelind); int changed = 1; int nstarti = 1, starti; while (changed) { changed = 0; starti = nstarti; nstarti = insphere.GetArray().Size()+1; // if point in sphere, then it is also closesphere for (int j = starti; j < nstarti; j++) { int helind = insphere.GetArray().Get(j); if (!closesphere.IsIn (helind)) closesphere.Add (helind); } // add connected spheres to insphere - list for (int j = starti; j < nstarti; j++) { list.GetList (insphere.GetArray().Get(j), connected); for (int k = 0; k < connected.Size(); k++) { int celind = connected[k]; if (tempels.Get(celind)[0] != -1 && !insphere.IsIn (celind)) { changed = 1; insphere.Add (celind); } } } // check neighbour-tets for (int j = starti; j < nstarti; j++) for (int k = 1; k <= 4; k++) { int helind = insphere.GetArray().Get(j); int nbind = meshnb.GetNB (helind, k); if (nbind && !insphere.IsIn (nbind) ) { //changed //int prec = testout->precision(); //testout->precision(12); //(*testout) << "val1 " << Dist2 (centers.Get(nbind), newp) // << " val2 " << radi2.Get(nbind) * (1+1e-8) // << " val3 " << radi2.Get(nbind) // << " val1 / val3 " << Dist2 (centers.Get(nbind), newp)/radi2.Get(nbind) << endl; //testout->precision(prec); if (Dist2 (centers.Get(nbind), newp) < radi2.Get(nbind) * (1+1e-8) ) closesphere.Add (nbind); if (Dist2 (centers.Get(nbind), newp) < radi2.Get(nbind) * (1 + 1e-12)) { // point is in sphere -> remove tet insphere.Add (nbind); changed = 1; } else { /* Element2d face; tempels.Get(helind).GetFace (k, face); const Point3d & p1 = mesh.Point (face.PNum(1)); const Point3d & p2 = mesh.Point (face[1]); const Point3d & p3 = mesh.Point (face[2]); */ INDEX_3 i3 = tempels.Get(helind).GetFace (k-1); const Point3d & p1 = mesh.Point ( PointIndex (i3.I1())); const Point3d & p2 = mesh.Point ( PointIndex (i3.I2())); const Point3d & p3 = mesh.Point ( PointIndex (i3.I3())); Vec3d v1(p1, p2); Vec3d v2(p1, p3); Vec3d n = Cross (v1, v2); n /= n.Length(); if (n * Vec3d (p1, mesh.Point (tempels.Get(helind)[k-1])) > 0) n *= -1; double dist = n * Vec3d (p1, newp); if (dist > -1e-10) // 1e-10 { insphere.Add (nbind); changed = 1; } } } } } // while (changed) // (*testout) << "newels: " << endl; Array newels; Element2d face(TRIG); for (int j = 1; j <= insphere.GetArray().Size(); j++) for (int k = 1; k <= 4; k++) { // int elind = insphere.GetArray().Get(j); int celind = insphere.GetArray().Get(j); int nbind = meshnb.GetNB (celind, k); if (!nbind || !insphere.IsIn (nbind)) { tempels.Get (celind).GetFace1 (k, face); Element newel(TET); for (int l = 0; l < 3; l++) newel[l] = face[l]; newel[3] = newpi; newels.Append (newel); Vec<3> v1 = mesh[face[1]] - mesh[face[0]]; Vec<3> v2 = mesh[face[2]] - mesh[face[0]]; Vec<3> n = Cross (v1, v2); n.Normalize(); if (n * Vec3d(mesh.Point (face[0]), mesh.Point (tempels.Get(insphere.GetArray().Get(j))[k-1])) > 0) n *= -1; double hval = n * ( newp - mesh[face[0]]); if (hval > -1e-12) { cerr << "vec to outer" << endl; (*testout) << "vec to outer, hval = " << hval << endl; (*testout) << "v1 x v2 = " << Cross (v1, v2) << endl; (*testout) << "facep: " << mesh.Point (face[0]) << " " << mesh.Point (face[1]) << " " << mesh.Point (face[2]) << endl; } } } meshnb.ResetFaceHT (10*insphere.GetArray().Size()+1); for (int j = 1; j <= insphere.GetArray().Size(); j++) { // int elind = int celind = insphere.GetArray().Get(j); meshnb.Delete (celind); list.DeleteElement (celind); for (int k = 0; k < 4; k++) tempels.Elem(celind)[k] = -1; ((ADTree6&)tettree.Tree()).DeleteElement (celind); freelist.Append (celind); } int hasclose = 0; for (int j = 1; j <= closesphere.GetArray().Size(); j++) { int ind = closesphere.GetArray().Get(j); if (!insphere.IsIn(ind) && fabs (Dist2 (centers.Get (ind), newp) - radi2.Get(ind)) < 1e-8 ) hasclose = 1; } for (int j = 1; j <= newels.Size(); j++) { int nelind; if (!freelist.Size()) { tempels.Append (newels.Get(j)); nelind = tempels.Size(); } else { nelind = freelist.Last(); freelist.DeleteLast(); tempels.Elem(nelind) = newels.Get(j); } meshnb.Add (nelind); list.AddElement (nelind); for (int k = 0; k < 4; k++) pp[k] = &mesh.Point (newels.Get(j)[k]); if (CalcSphereCenter (&pp[0], pc) ) { PrintSysError ("Delaunay: New tet is flat"); (*testout) << "new tet is flat" << endl; for (int k = 1; k <= 4; k++) (*testout) << newels.Get(j).PNum(k) << " "; (*testout) << endl; for (int k = 1; k <= 4; k++) (*testout) << *pp[k-1] << " "; (*testout) << endl; } r2 = Dist2 (*pp[0], pc); if (hasclose) for (int k = 1; k <= closesphere.GetArray().Size(); k++) { int csameind = closesphere.GetArray().Get(k); if (!insphere.IsIn(csameind) && fabs (r2 - radi2.Get(csameind)) < 1e-10 && Dist (pc, centers.Get(csameind)) < 1e-10) { pc = centers.Get(csameind); r2 = radi2.Get(csameind); list.ConnectElement (nelind, csameind); break; } } if (centers.Size() < nelind) { centers.Append (pc); radi2.Append (r2); } else { centers.Elem(nelind) = pc; radi2.Elem(nelind) = r2; } closesphere.Add (nelind); tpmax = tpmin = *pp[0]; for (int k = 1; k <= 3; k++) { tpmin.SetToMin (*pp[k]); tpmax.SetToMax (*pp[k]); } tpmax = tpmax + 0.01 * (tpmax - tpmin); tettree.Insert (tpmin, tpmax, nelind); } } void Delaunay1 (Mesh & mesh, const MeshingParameters & mp, AdFront3 * adfront, Array & tempels, int oldnp, DelaunayTet & startel, Point3d & pmin, Point3d & pmax) { int i, j, k; const Point<3> * pp[4]; Array > centers; Array radi2; Point3d tpmin, tpmax; // new: local box mesh.GetBox (pmax, pmin); // lower bound for pmax, upper for pmin for (i = 1; i <= adfront->GetNF(); i++) { const MiniElement2d & face = adfront->GetFace(i); for (j = 0; j < face.GetNP(); j++) { pmin.SetToMin (mesh.Point (face[j])); pmax.SetToMax (mesh.Point (face[j])); } } for (i = 0; i < mesh.LockedPoints().Size(); i++) { pmin.SetToMin (mesh.Point (mesh.LockedPoints()[i])); pmax.SetToMax (mesh.Point (mesh.LockedPoints()[i])); } Vec3d vdiag(pmin, pmax); // double r1 = vdiag.Length(); double r1 = sqrt (3.0) * max3(vdiag.X(), vdiag.Y(), vdiag.Z()); vdiag = Vec3d (r1, r1, r1); //double r2; Point3d pmin2 = pmin - 8 * vdiag; Point3d pmax2 = pmax + 8 * vdiag; Point3d cp1(pmin2), cp2(pmax2), cp3(pmax2), cp4(pmax2); cp2.X() = pmin2.X(); cp3.Y() = pmin2.Y(); cp4.Z() = pmin2.Z(); int np = mesh.GetNP(); startel[0] = mesh.AddPoint (cp1); startel[1] = mesh.AddPoint (cp2); startel[2] = mesh.AddPoint (cp3); startel[3] = mesh.AddPoint (cp4); // flag points to use for Delaunay: BitArrayChar usep(np); usep.Clear(); for (i = 1; i <= adfront->GetNF(); i++) { const MiniElement2d & face = adfront->GetFace(i); for (j = 0; j < face.GetNP(); j++) usep.Set (face[j]); } for (i = oldnp + PointIndex::BASE; i < np + PointIndex::BASE; i++) usep.Set (i); for (i = 0; i < mesh.LockedPoints().Size(); i++) usep.Set (mesh.LockedPoints()[i]); Array freelist; int cntp = 0; MeshNB meshnb (tempels, mesh.GetNP() + 5); SphereList list; pmin2 = pmin2 + 0.1 * (pmin2 - pmax2); pmax2 = pmax2 + 0.1 * (pmax2 - pmin2); Box3dTree tettree(pmin2, pmax2); tempels.Append (startel); meshnb.Add (1); list.AddElement (1); Array connected, treesearch; tpmin = tpmax = mesh.Point(startel[0]); for (k = 1; k < 4; k++) { tpmin.SetToMin (mesh.Point (startel[k])); tpmax.SetToMax (mesh.Point (startel[k])); } tpmax = tpmax + 0.01 * (tpmax - tpmin); tettree.Insert (tpmin, tpmax, 1); Point<3> pc; for (k = 0; k < 4; k++) { pp[k] = &mesh.Point (startel[k]); } CalcSphereCenter (&pp[0], pc); centers.Append (pc); radi2.Append (Dist2 (*pp[0], pc)); IndexSet insphere(mesh.GetNP()); IndexSet closesphere(mesh.GetNP()); // "random" reordering of points (speeds a factor 3 - 5 !!!) Array mixed(np); int prims[] = { 11, 13, 17, 19, 23, 29, 31, 37 }; int prim; i = 0; while (np % prims[i] == 0) i++; prim = prims[i]; for (i = 1; i <= np; i++) mixed.Elem(i) = (prim * i) % np + PointIndex::BASE; for (i = 1; i <= np; i++) { if (i % 1000 == 0) { if (i % 10000 == 0) PrintDot ('+'); else PrintDot ('.'); } multithread.percent = 100.0 * i / np; if (multithread.terminate) break; PointIndex newpi = mixed.Get(i); if (!usep.Test(newpi)) continue; cntp++; const Point3d & newp = mesh.Point(newpi); AddDelaunayPoint (newpi, newp, tempels, mesh, tettree, meshnb, centers, radi2, connected, treesearch, freelist, list, insphere, closesphere); } for (i = tempels.Size(); i >= 1; i--) if (tempels.Get(i)[0] <= 0) tempels.DeleteElement (i); PrintDot ('\n'); PrintMessage (3, "Points: ", cntp); PrintMessage (3, "Elements: ", tempels.Size()); // (*mycout) << cntp << " / " << tempels.Size() << " points/elements" << endl; /* cout << "tempels: "; tempels.PrintMemInfo(cout); cout << "Searchtree: "; tettree.Tree().PrintMemInfo(cout); cout << "MeshNB: "; meshnb.PrintMemInfo(cout); */ } void Meshing3 :: Delaunay (Mesh & mesh, int domainnr, const MeshingParameters & mp) { int np, ne; PrintMessage (1, "Delaunay meshing"); PrintMessage (3, "number of points: ", mesh.GetNP()); PushStatus ("Delaunay meshing"); Array tempels; Point3d pmin, pmax; DelaunayTet startel; int oldnp = mesh.GetNP(); if (mp.blockfill) { BlockFillLocalH (mesh, mp); PrintMessage (3, "number of points: ", mesh.GetNP()); } np = mesh.GetNP(); Delaunay1 (mesh, mp, adfront, tempels, oldnp, startel, pmin, pmax); { // improve delaunay - mesh by swapping !!!! Mesh tempmesh; for (PointIndex pi = PointIndex::BASE; pi < mesh.GetNP()+PointIndex::BASE; pi++) tempmesh.AddPoint (mesh[pi]); for (int i = 1; i <= tempels.Size(); i++) { Element el(4); for (int j = 0; j < 4; j++) el[j] = tempels.Elem(i)[j]; el.SetIndex (1); const Point3d & lp1 = mesh.Point (el[0]); const Point3d & lp2 = mesh.Point (el[1]); const Point3d & lp3 = mesh.Point (el[2]); const Point3d & lp4 = mesh.Point (el[3]); Vec3d v1(lp1, lp2); Vec3d v2(lp1, lp3); Vec3d v3(lp1, lp4); Vec3d n = Cross (v1, v2); double vol = n * v3; if (vol > 0) swap (el[2], el[3]); tempmesh.AddVolumeElement (el); } MeshQuality3d (tempmesh); tempmesh.AddFaceDescriptor (FaceDescriptor (1, 1, 0, 0)); tempmesh.AddFaceDescriptor (FaceDescriptor (2, 1, 0, 0)); for (int i = 1; i <= mesh.GetNOpenElements(); i++) { Element2d sel = mesh.OpenElement(i); sel.SetIndex(1); tempmesh.AddSurfaceElement (sel); swap (sel[1], sel[2]); tempmesh.AddSurfaceElement (sel); } for (int i = 1; i <= 4; i++) { Element2d self(TRIG); self.SetIndex (1); startel.GetFace1 (i, self); tempmesh.AddSurfaceElement (self); } // for (i = mesh.GetNP() - 3; i <= mesh.GetNP(); i++) // tempmesh.AddLockedPoint (i); for (PointIndex pi = PointIndex::BASE; pi < tempmesh.GetNP() + PointIndex::BASE; pi++) tempmesh.AddLockedPoint (pi); // tempmesh.PrintMemInfo(cout); // tempmesh.Save ("tempmesh.vol"); for (int i = 1; i <= 2; i++) { tempmesh.FindOpenElements (); PrintMessage (5, "Num open: ", tempmesh.GetNOpenElements()); tempmesh.CalcSurfacesOfNode (); tempmesh.FreeOpenElementsEnvironment (1); MeshOptimize3d meshopt(mp); // tempmesh.CalcSurfacesOfNode(); meshopt.SwapImprove(tempmesh, OPT_CONFORM); } MeshQuality3d (tempmesh); tempels.SetSize(0); for (int i = 1; i <= tempmesh.GetNE(); i++) tempels.Append (tempmesh.VolumeElement(i)); } // remove degenerated BitArray badnode(mesh.GetNP()); badnode.Clear(); int ndeg = 0; for (int i = 1; i <= tempels.Size(); i++) { Element el(4); for (int j = 0; j < 4; j++) el[j] = tempels.Elem(i)[j]; // Element & el = tempels.Elem(i); const Point3d & lp1 = mesh.Point (el[0]); const Point3d & lp2 = mesh.Point (el[1]); const Point3d & lp3 = mesh.Point (el[2]); const Point3d & lp4 = mesh.Point (el[3]); Vec3d v1(lp1, lp2); Vec3d v2(lp1, lp3); Vec3d v3(lp1, lp4); Vec3d n = Cross (v1, v2); double vol = n * v3; double h = v1.Length() + v2.Length() + v3.Length(); if (fabs (vol) < 1e-8 * (h * h * h) && (el[0] <= np && el[1] <= np && el[2] <= np && el[3] <= np) ) // old: 1e-12 { badnode.Set(el[0]); badnode.Set(el[1]); badnode.Set(el[2]); badnode.Set(el[3]); ndeg++; (*testout) << "vol = " << vol << " h = " << h << endl; } if (vol > 0) Swap (el[2], el[3]); } ne = tempels.Size(); for (int i = ne; i >= 1; i--) { const DelaunayTet & el = tempels.Get(i); if (badnode.Test(el[0]) || badnode.Test(el[1]) || badnode.Test(el[2]) || badnode.Test(el[3]) ) tempels.DeleteElement(i); } PrintMessage (3, ndeg, " degenerated elements removed"); // find surface triangles which are no face of any tet INDEX_3_HASHTABLE openeltab(mesh.GetNOpenElements()+3); Array openels; for (int i = 1; i <= mesh.GetNOpenElements(); i++) { const Element2d & tri = mesh.OpenElement(i); INDEX_3 i3(tri[0], tri[1], tri[2]); i3.Sort(); openeltab.Set (i3, i); } for (int i = 1; i <= tempels.Size(); i++) { for (int j = 0; j < 4; j++) { INDEX_3 i3 = tempels.Get(i).GetFace (j); i3.Sort(); if (openeltab.Used(i3)) openeltab.Set (i3, 0); } } // and store them in openels for (int i = 1; i <= openeltab.GetNBags(); i++) for (int j = 1; j <= openeltab.GetBagSize(i); j++) { INDEX_3 i3; int fnr; openeltab.GetData (i, j, i3, fnr); if (fnr) openels.Append (fnr); } // find open triangle with close edge (from halfening of surface squares) INDEX_2_HASHTABLE twotrias(mesh.GetNOpenElements()+5); // for (i = 1; i <= mesh.GetNOpenElements(); i++) for (int ii = 1; ii <= openels.Size(); ii++) { int i = openels.Get(ii); const Element2d & el = mesh.OpenElement(i); for (int j = 1; j <= 3; j++) { INDEX_2 hi2 (el.PNumMod (j), el.PNumMod(j+1)); hi2.Sort(); if (twotrias.Used(hi2)) { INDEX_2 hi3; hi3 = twotrias.Get (hi2); hi3.I2() = el.PNumMod (j+2); twotrias.Set (hi2, hi3); } else { INDEX_2 hi3(el.PNumMod (j+2), 0); twotrias.Set (hi2, hi3); } } } INDEX_2_HASHTABLE tetedges(tempels.Size() + 5); for (int i = 1; i <= tempels.Size(); i++) { const DelaunayTet & el = tempels.Get(i); INDEX_2 i2; for (int j = 1; j <= 6; j++) { switch (j) { case 1: i2.I1()=el[0]; i2.I2()=el[1]; break; case 2: i2.I1()=el[0]; i2.I2()=el[2]; break; case 3: i2.I1()=el[0]; i2.I2()=el[3]; break; case 4: i2.I1()=el[1]; i2.I2()=el[2]; break; case 5: i2.I1()=el[1]; i2.I2()=el[3]; break; case 6: i2.I1()=el[2]; i2.I2()=el[3]; break; default: i2.I1()=i2.I2()=0; break; } i2.Sort(); tetedges.Set (i2, 1); } } // cout << "tetedges:"; // tetedges.PrintMemInfo (cout); for (INDEX_2_HASHTABLE::Iterator it = twotrias.Begin(); it != twotrias.End(); it++) { INDEX_2 hi2, hi3; twotrias.GetData (it, hi2, hi3); hi3.Sort(); if (tetedges.Used (hi3)) { const Point3d & p1 = mesh.Point ( PointIndex (hi2.I1())); const Point3d & p2 = mesh.Point ( PointIndex (hi2.I2())); const Point3d & p3 = mesh.Point ( PointIndex (hi3.I1())); const Point3d & p4 = mesh.Point ( PointIndex (hi3.I2())); Vec3d v1(p1, p2); Vec3d v2(p1, p3); Vec3d v3(p1, p4); Vec3d n = Cross (v1, v2); double vol = n * v3; double h = v1.Length() + v2.Length() + v3.Length(); if (fabs (vol) < 1e-4 * (h * h * h)) // old: 1e-12 { badnode.Set(hi3.I1()); badnode.Set(hi3.I2()); } } } /* for (i = 1; i <= twotrias.GetNBags(); i++) for (j = 1; j <= twotrias.GetBagSize (i); j++) { INDEX_2 hi2, hi3; twotrias.GetData (i, j, hi2, hi3); hi3.Sort(); if (tetedges.Used (hi3)) { const Point3d & p1 = mesh.Point (hi2.I1()); const Point3d & p2 = mesh.Point (hi2.I2()); const Point3d & p3 = mesh.Point (hi3.I1()); const Point3d & p4 = mesh.Point (hi3.I2()); Vec3d v1(p1, p2); Vec3d v2(p1, p3); Vec3d v3(p1, p4); Vec3d n = Cross (v1, v2); double vol = n * v3; double h = v1.Length() + v2.Length() + v3.Length(); if (fabs (vol) < 1e-4 * (h * h * h)) // old: 1e-12 { badnode.Set(hi3.I1()); badnode.Set(hi3.I2()); } } } */ ne = tempels.Size(); for (int i = ne; i >= 1; i--) { const DelaunayTet & el = tempels.Get(i); if (badnode.Test(el[0]) || badnode.Test(el[1]) || badnode.Test(el[2]) || badnode.Test(el[3]) ) tempels.DeleteElement(i); } // find intersecting: PrintMessage (3, "Remove intersecting"); if (openels.Size()) { Box3dTree setree(pmin, pmax); /* cout << "open elements in search tree: " << openels.Size() << endl; cout << "pmin, pmax = " << pmin << " - " << pmax << endl; */ for (int i = 1; i <= openels.Size(); i++) { int fnr; fnr = openels.Get(i); if (fnr) { const Element2d & tri = mesh.OpenElement(fnr); Point3d ltpmin (mesh.Point(tri[0])); Point3d ltpmax (ltpmin); for (int k = 2; k <= 3; k++) { ltpmin.SetToMin (mesh.Point (tri.PNum(k))); ltpmax.SetToMax (mesh.Point (tri.PNum(k))); } setree.Insert (ltpmin, ltpmax, fnr); } } Array neartrias; for (int i = 1; i <= tempels.Size(); i++) { const Point<3> *pp[4]; int tetpi[4]; DelaunayTet & el = tempels.Elem(i); int intersect = 0; for (int j = 0; j < 4; j++) { pp[j] = &mesh.Point(el[j]); tetpi[j] = el[j]; } Point3d tetpmin(*pp[0]); Point3d tetpmax(tetpmin); for (int j = 1; j < 4; j++) { tetpmin.SetToMin (*pp[j]); tetpmax.SetToMax (*pp[j]); } tetpmin = tetpmin + 0.01 * (tetpmin - tetpmax); tetpmax = tetpmax + 0.01 * (tetpmax - tetpmin); setree.GetIntersecting (tetpmin, tetpmax, neartrias); // for (j = 1; j <= mesh.GetNSE(); j++) // { for (int jj = 1; jj <= neartrias.Size(); jj++) { int j = neartrias.Get(jj); const Element2d & tri = mesh.OpenElement(j); const Point<3> *tripp[3]; int tripi[3]; for (int k = 1; k <= 3; k++) { tripp[k-1] = &mesh.Point (tri.PNum(k)); tripi[k-1] = tri.PNum(k); } if (IntersectTetTriangle (&pp[0], &tripp[0], tetpi, tripi)) { /* int il1, il2; (*testout) << "intersect !" << endl; (*testout) << "triind: "; for (il1 = 0; il1 < 3; il1++) (*testout) << " " << tripi[il1]; (*testout) << endl; (*testout) << "tetind: "; for (il2 = 0; il2 < 4; il2++) (*testout) << " " << tetpi[il2]; (*testout) << endl; (*testout) << "trip: "; for (il1 = 0; il1 < 3; il1++) (*testout) << " " << *tripp[il1]; (*testout) << endl; (*testout) << "tetp: "; for (il2 = 0; il2 < 4; il2++) (*testout) << " " << *pp[il2]; (*testout) << endl; */ intersect = 1; break; } } if (intersect) { tempels.DeleteElement(i); i--; } } } PrintMessage (3, "Remove outer"); // find connected tets (with no face between, and no hole due // to removed intersecting tets. // INDEX_3_HASHTABLE innerfaces(np); INDEX_3_HASHTABLE boundaryfaces(mesh.GetNOpenElements()/3+1); for (int i = 1; i <= mesh.GetNOpenElements(); i++) { const Element2d & tri = mesh.OpenElement(i); INDEX_3 i3 (tri[0], tri[1], tri[2]); i3.Sort(); boundaryfaces.PrepareSet (i3); } boundaryfaces.AllocateElements(); for (int i = 1; i <= mesh.GetNOpenElements(); i++) { const Element2d & tri = mesh.OpenElement(i); INDEX_3 i3 (tri[0], tri[1], tri[2]); i3.Sort(); boundaryfaces.Set (i3, 1); } for (int i = 0; i < tempels.Size(); i++) for (int j = 0; j < 4; j++) tempels[i].NB(j) = 0; TABLE elsonpoint(mesh.GetNP()); for (int i = 0; i < tempels.Size(); i++) { const DelaunayTet & el = tempels[i]; INDEX_4 i4(el[0], el[1], el[2], el[3]); i4.Sort(); elsonpoint.IncSizePrepare (i4.I1()); elsonpoint.IncSizePrepare (i4.I2()); } elsonpoint.AllocateElementsOneBlock(); for (int i = 0; i < tempels.Size(); i++) { const DelaunayTet & el = tempels[i]; INDEX_4 i4(el[0], el[1], el[2], el[3]); i4.Sort(); elsonpoint.Add (i4.I1(), i+1); elsonpoint.Add (i4.I2(), i+1); } // cout << "elsonpoint mem: "; // elsonpoint.PrintMemInfo(cout); INDEX_3_CLOSED_HASHTABLE faceht(100); Element2d hel(TRIG); for (PointIndex pi = PointIndex::BASE; pi < mesh.GetNP()+PointIndex::BASE; pi++) { faceht.SetSize (4 * elsonpoint[pi].Size()); for (int ii = 0; ii < elsonpoint[pi].Size(); ii++) { int i = elsonpoint[pi][ii]; const DelaunayTet & el = tempels.Get(i); for (int j = 1; j <= 4; j++) { el.GetFace1 (j, hel); hel.Invert(); hel.NormalizeNumbering(); if (hel[0] == pi) { INDEX_3 i3(hel[0], hel[1], hel[2]); if (!boundaryfaces.Used (i3)) { if (faceht.Used (i3)) { INDEX_2 i2 = faceht.Get(i3); tempels.Elem(i).NB1(j) = i2.I1(); tempels.Elem(i2.I1()).NB1(i2.I2()) = i; } else { hel.Invert(); hel.NormalizeNumbering(); INDEX_3 i3i(hel[0], hel[1], hel[2]); INDEX_2 i2(i, j); faceht.Set (i3i, i2); } } } } } } /* for (i = 1; i <= tempels.Size(); i++) { const DelaunayTet & el = tempels.Get(i); for (j = 1; j <= 4; j++) { INDEX_3 i3; Element2d face; el.GetFace1 (j, face); for (int kk = 1; kk <= 3; kk++) i3.I(kk) = face.PNum(kk); i3.Sort(); if (!boundaryfaces.Used (i3)) { if (innerfaces.Used(i3)) { INDEX_2 i2; i2 = innerfaces.Get(i3); i2.I2() = i; innerfaces.Set (i3, i2); } else { INDEX_2 i2; i2.I1() = i; i2.I2() = 0; innerfaces.Set (i3, i2); } } } } */ /* (*testout) << "nb elements:" << endl; for (i = 1; i <= tempels.Size(); i++) { (*testout) << i << " "; for (j = 1; j <= 4; j++) (*testout) << tempels.Get(i).NB1(j) << " "; (*testout) << endl; } (*testout) << "pairs:" << endl; for (i = 1; i <= innerfaces.GetNBags(); i++) for (j = 1; j <= innerfaces.GetBagSize(i); j++) { INDEX_3 i3; INDEX_2 i2; innerfaces.GetData (i, j, i3, i2); (*testout) << i2 << endl; } */ /* cout << "innerfaces: "; innerfaces.PrintMemInfo (cout); */ // cout << "boundaryfaces: "; // boundaryfaces.PrintMemInfo (cout); PrintMessage (5, "tables filled"); ne = tempels.Size(); BitArray inner(ne), outer(ne); inner.Clear(); outer.Clear(); Array elstack; /* int starti = 0; for (i = 1; i <= ne; i++) { const Element & el = tempels.Get(i); for (j = 1; j <= 4; j++) for (k = 1; k <= 4; k++) if (el.PNum(j) == startel.PNum(k)) { outer.Set(i); starti = i; } } */ while (1) { int inside; bool done = 1; int i; for (i = 1; i <= ne; i++) if (!inner.Test(i) && !outer.Test(i)) { done = 0; break; } if (done) break; const DelaunayTet & el = tempels.Get(i); const Point3d & p1 = mesh.Point (el[0]); const Point3d & p2 = mesh.Point (el[1]); const Point3d & p3 = mesh.Point (el[2]); const Point3d & p4 = mesh.Point (el[3]); Point3d ci = Center (p1, p2, p3, p4); inside = adfront->Inside (ci); /* cout << "startel: " << i << endl; cout << "inside = " << inside << endl; cout << "ins2 = " << adfront->Inside (Center (ci, p1)) << endl; cout << "ins3 = " << adfront->Inside (Center (ci, p2)) << endl; */ elstack.SetSize(0); elstack.Append (i); while (elstack.Size()) { int ei = elstack.Last(); elstack.DeleteLast(); if (!inner.Test(ei) && !outer.Test(ei)) { if (inside) inner.Set(ei); else outer.Set(ei); for (int j = 1; j <= 4; j++) { INDEX_3 i3 = tempels.Get(ei).GetFace1(j); /* Element2d face; tempels.Get(ei).GetFace(j, face); for (int kk = 1; kk <= 3; kk++) i3.I(kk) = face.PNum(kk); */ i3.Sort(); if (tempels.Get(ei).NB1(j)) elstack.Append (tempels.Get(ei).NB1(j)); /* if (innerfaces.Used(i3)) { INDEX_2 i2 = innerfaces.Get(i3); int other = i2.I1() + i2.I2() - ei; if (other != tempels.Get(ei).NB1(j)) cerr << "different1 !!" << endl; if (other) { elstack.Append (other); } } else if (tempels.Get(ei).NB1(j)) cerr << "different2 !!" << endl; */ } } } } // check outer elements if (debugparam.slowchecks) { for (int i = 1; i <= ne; i++) { const DelaunayTet & el = tempels.Get(i); const Point3d & p1 = mesh.Point (el[0]); const Point3d & p2 = mesh.Point (el[1]); const Point3d & p3 = mesh.Point (el[2]); const Point3d & p4 = mesh.Point (el[3]); Point3d ci = Center (p1, p2, p3, p4); // if (adfront->Inside (ci) != adfront->Inside (Center (ci, p1))) // cout << "ERROR: outer test unclear !!!" << endl; if (inner.Test(i) != adfront->Inside (ci)) { /* cout << "ERROR: outer test wrong !!!" << "inner = " << int(inner.Test(i)) << "outer = " << int(outer.Test(i)) << endl; cout << "Vol = " << Determinant(Vec3d(p1, p2), Vec3d(p1, p3), Vec3d(p1, p4)) << endl; */ for (int j = 1; j <= 4; j++) { Point3d hp; switch (j) { case 1: hp = Center (ci, p1); break; case 2: hp = Center (ci, p2); break; case 3: hp = Center (ci, p3); break; case 4: hp = Center (ci, p4); break; } // cout << "inside(" << hp << ") = " << adfront->Inside(hp) << endl; } } if (adfront->Inside(ci)) outer.Clear(i); else outer.Set(i); } } /* // find bug in innerfaces tempmesh.DeleteVolumeElements(); for (i = 1; i <= innerfaces.GetNBags(); i++) for (j = 1; j <= innerfaces.GetBagSize(i); j++) { INDEX_3 i3; INDEX_2 i2; innerfaces.GetData (i, j, i3, i2); if (i2.I2()) { if (outer.Test(i2.I1()) != outer.Test(i2.I2())) { tempmesh.AddVolumeElement (tempels.Get(i2.I1())); tempmesh.AddVolumeElement (tempels.Get(i2.I2())); cerr << "outer flag different for connected els" << endl; } } } cout << "Check intersectiong once more" << endl; for (i = 1; i <= openels.Size(); i++) { tempmesh.SurfaceElement(2*openels.Get(i)).SetIndex(2); tempmesh.SurfaceElement(2*openels.Get(i)-1).SetIndex(2); } // for (i = 1; i <= tempmesh.GetNE(); i++) // for (j = 1; j <= tempmesh.GetNSE(); j++) i = 6; j = 403; if (i <= tempmesh.GetNE() && j <= tempmesh.GetNSE()) if (tempmesh.SurfaceElement(j).GetIndex()==2) { const Element & el = tempmesh.VolumeElement(i); const Element2d & sel = tempmesh.SurfaceElement(j); const Point3d *tripp[3]; const Point3d *pp[4]; int tetpi[4], tripi[3]; for (k = 1; k <= 4; k++) { pp[k-1] = &tempmesh.Point(el.PNum(k)); tetpi[k-1] = el.PNum(k); } for (k = 1; k <= 3; k++) { tripp[k-1] = &tempmesh.Point (sel.PNum(k)); tripi[k-1] = sel.PNum(k); } (*testout) << "Check Triangle " << j << ":"; for (k = 1; k <= 3; k++) (*testout) << " " << sel.PNum(k); for (k = 1; k <= 3; k++) (*testout) << " " << tempmesh.Point(sel.PNum(k)); (*testout) << endl; (*testout) << "Check Tet " << i << ":"; for (k = 1; k <= 4; k++) (*testout) << " " << el.PNum(k); for (k = 1; k <= 4; k++) (*testout) << " " << tempmesh.Point(el.PNum(k)); (*testout) << endl; if (IntersectTetTriangle (&pp[0], &tripp[0], tetpi, tripi)) { cout << "Intesection detected !!" << endl; } } tempmesh.Save ("temp.vol"); // end bug search */ for (int i = ne; i >= 1; i--) { if (outer.Test(i)) tempels.DeleteElement(i); } // mesh.points.SetSize(mesh.points.Size()-4); for (int i = 0; i < tempels.Size(); i++) { Element el(4); for (int j = 0; j < 4; j++) el[j] = tempels[i][j]; mesh.AddVolumeElement (el); } PrintMessage (5, "outer removed"); mesh.FindOpenElements(domainnr); mesh.Compress(); PopStatus (); } }