/* Spline curve for Mesh generator */ #include #include #include #include namespace netgen { #include "spline.hpp" // just for testing (JS) template void ProjectTrivial (const SplineSeg3 & seg, const Point point, Point & point_on_curve, double & t) { double mindist = -1; for (int i = 0; i <= 1000; i++) { double ht = double(i)/1000; Point p = seg.GetPoint(ht); double dist = Dist2 (p, point); if (i == 0 || dist < mindist) { mindist = dist; t = ht; } } point_on_curve = seg.GetPoint(t); } template void SplineSeg3 :: Project (const Point point, Point & point_on_curve, double & t) const { double t_old = -1; if(proj_latest_t > 0. && proj_latest_t < 1.) t = proj_latest_t; else t = 0.5; Point phi; Vec phip,phipp,phimp; int i=0; while(t > -0.5 && t < 1.5 && i<20 && fabs(t-t_old) > 1e-15 ) { GetDerivatives(t,phi,phip,phipp); t_old = t; phimp = phi-point; //t = min2(max2(t-(phip*phimp)/(phipp*phimp + phip*phip),0.),1.); t -= (phip*phimp)/(phipp*phimp + phip*phip); i++; } //if(i<10 && t > 0. && t < 1.) if(i<20 && t > -0.4 && t < 1.4) { if(t < 0) { t = 0.; } if(t > 1) { t = 1.; } point_on_curve = SplineSeg3::GetPoint(t); double dist = Dist(point,point_on_curve); phi = SplineSeg3 ::GetPoint(0); double auxdist = Dist(phi,point); if(auxdist < dist) { t = 0.; point_on_curve = phi; dist = auxdist; } phi = SplineSeg3 ::GetPoint(1); auxdist = Dist(phi,point); if(auxdist < dist) { t = 1.; point_on_curve = phi; dist = auxdist; } } else { double t0 = 0; double t1 = 0.5; double t2 = 1.; double d0,d1,d2; //(*testout) << "newtonersatz" << endl; while(t2-t0 > 1e-8) { phi = SplineSeg3 ::GetPoint(t0); d0 = Dist(phi,point); phi = SplineSeg3 ::GetPoint(t1); d1 = Dist(phi,point); phi = SplineSeg3 ::GetPoint(t2); d2 = Dist(phi,point); double a = (2.*d0 - 4.*d1 +2.*d2)/pow(t2-t0,2); if(a <= 0) { if(d0 < d2) t2 -= 0.3*(t2-t0); else t0 += 0.3*(t2-t0); t1 = 0.5*(t2+t0); } else { double b = (d1-d0-a*(t1*t1-t0*t0))/(t1-t0); double auxt1 = -0.5*b/a; if(auxt1 < t0) { t2 -= 0.4*(t2-t0); t0 = max2(0.,t0-0.1*(t2-t0)); } else if (auxt1 > t2) { t0 += 0.4*(t2-t0); t2 = min2(1.,t2+0.1*(t2-t0)); } else { t1 = auxt1; auxt1 = 0.25*(t2-t0); t0 = max2(0.,t1-auxt1); t2 = min2(1.,t1+auxt1); } t1 = 0.5*(t2+t0); } } phi = SplineSeg3 ::GetPoint(t0); d0 = Dist(phi,point); phi = SplineSeg3 ::GetPoint(t1); d1 = Dist(phi,point); phi = SplineSeg3 ::GetPoint(t2); d2 = Dist(phi,point); double mind = d0; t = t0; if(d1 < mind) { t = t1; mind = d1; } if(d2 < mind) { t = t2; mind = d2; } point_on_curve = SplineSeg3 ::GetPoint(t); } //(*testout) << " latest_t " << proj_latest_t << " t " << t << endl; proj_latest_t = t; /* // test it by trivial sampling double ht; Point hp; ProjectTrivial (*this, point, hp, ht); if (fabs (t-ht) > 1e-3) { // if (Dist2 (point, hp) < Dist2 (point, point_on_curve)) cout << "project is wrong" << endl; cout << "t = " << t << ", ht = " << ht << endl; cout << "dist org = " << Dist(point, point_on_curve) << endl; cout << "dist trivial = " << Dist(point, hp) << endl; } */ } template void SplineSeg3 :: GetDerivatives (const double t, Point & point, Vec & first, Vec & second) const { Vec v1(p1), v2(p2), v3(p3); double b1 = (1.-t)*(1.-t); double b2 = sqrt(2.)*t*(1.-t); double b3 = t*t; double w = b1+b2+b3; b1 *= 1./w; b2 *= 1./w; b3 *= 1./w; double b1p = 2.*(t-1.); double b2p = sqrt(2.)*(1.-2.*t); double b3p = 2.*t; const double wp = b1p+b2p+b3p; const double fac1 = wp/w; b1p *= 1./w; b2p *= 1./w; b3p *= 1./w; const double b1pp = 2.; const double b2pp = -2.*sqrt(2.); const double b3pp = 2.; const double wpp = b1pp+b2pp+b3pp; const double fac2 = (wpp*w-2.*wp*wp)/(w*w); for(int i=0; i; template class SplineSeg3<3>; void CalcPartition (double l, double h, double h1, double h2, double hcurve, double elto0, Array & points) { int i, j, n, nel; double sum, t, dt, fun, fperel, oldf, f; n = 1000; points.SetSize (0); sum = 0; dt = l / n; t = 0.5 * dt; for (i = 1; i <= n; i++) { fun = min3 (hcurve, t/elto0 + h1, (l-t)/elto0 + h2); sum += dt / fun; t += dt; } nel = int (sum+1); fperel = sum / nel; points.Append (0); i = 1; oldf = 0; t = 0.5 * dt; for (j = 1; j <= n && i < nel; j++) { fun = min3 (hcurve, t/elto0 + h1, (l-t)/elto0 + h2); f = oldf + dt / fun; while (f > i * fperel && i < nel) { points.Append ( (l/n) * (j-1 + (i * fperel - oldf) / (f - oldf)) ); i++; } oldf = f; t += dt; } points.Append (l); } template<> double SplineSeg3<2> :: MaxCurvature(void) const { Vec<2> v1 = p1-p2; Vec<2> v2 = p3-p2; double l1 = v1.Length(); double l2 = v2.Length(); double cosalpha = (v1*v2)/(l1*l2); return sqrt(cosalpha + 1.)/(min2(l1,l2)*(1.-cosalpha)); } template<> double SplineSeg3<3> :: MaxCurvature(void) const { Vec<3> v1 = p1-p2; Vec<3> v2 = p3-p2; double l1 = v1.Length(); double l2 = v2.Length(); double cosalpha = v1*v2/(l1*l2); return sqrt(cosalpha + 1.)/(min2(l1,l2)*(1.-cosalpha)); } }