#include #include #include /* Special Point calculation uses the global Flags: relydegtest when to rely on degeneration ? calccp calculate points of intersection ? cpeps1 eps for degenerated poi calcep calculate points of extreme coordinates ? epeps1 eps for degenerated edge epeps2 eps for axis parallel pec epspointdist eps for distance of special points */ // #define DEVELOP namespace netgen { NgArray > boxes; void ProjectToEdge (const Surface * f1, const Surface * f2, Point<3> & hp); enum { check_crosspoint = 5 }; SpecialPoint :: SpecialPoint (const SpecialPoint & sp) { p = sp.p; v = sp.v; s1 = sp.s1; s2 = sp.s2; s1_orig = sp.s1_orig; s2_orig = sp.s2_orig; layer = sp.layer; unconditional = sp.unconditional; } SpecialPoint & SpecialPoint :: operator= (const SpecialPoint & sp) { p = sp.p; v = sp.v; s1 = sp.s1; s2 = sp.s2; s1_orig = sp.s1_orig; s2_orig = sp.s2_orig; layer = sp.layer; unconditional = sp.unconditional; return *this; } void SpecialPoint :: Print (ostream & str) const { str << "p = " << p << " v = " << v << " s1/s2 = " << s1 << "/" << s2; str << " layer = " << layer << " unconditional = " << unconditional << endl; } static NgArray numprim_hist; SpecialPointCalculation :: SpecialPointCalculation () { ideps = 1e-9; } void SpecialPointCalculation :: CalcSpecialPoints (const CSGeometry & ageometry, NgArray & apoints) { static int timer = NgProfiler::CreateTimer ("CSG: find special points"); NgProfiler::RegionTimer reg (timer); geometry = &ageometry; points = &apoints; size = geometry->MaxSize(); (*testout) << "Find Special Points" << endl; (*testout) << "maxsize = " << size << endl; cpeps1 = 1e-6; epeps1 = 1e-3; epeps2 = 1e-6; epspointdist2 = sqr (size * 1e-8); relydegtest = size * 1e-4; BoxSphere<3> box (Point<3> (-size, -size, -size), Point<3> ( size, size, size)); box.CalcDiamCenter(); PrintMessage (3, "main-solids: ", geometry->GetNTopLevelObjects()); numprim_hist.SetSize (geometry->GetNSurf()+1); numprim_hist = 0; for (int i = 0; i < geometry->GetNTopLevelObjects(); i++) { const TopLevelObject * tlo = geometry->GetTopLevelObject(i); (*testout) << "tlo " << i << ":" << endl << *tlo->GetSolid() << endl; if (tlo->GetSolid()) { NgArray > hpts; tlo->GetSolid()->CalcOnePrimitiveSpecialPoints (box, hpts); // if (hpts.Size()) // cout << "oneprimitivespecialpoints = " << hpts << endl; for (int j = 0; j < hpts.Size(); j++) AddPoint (hpts[j], tlo->GetLayer()); } CalcSpecialPointsRec (tlo->GetSolid(), tlo->GetLayer(), box, 1, 1, 1); } geometry->DeleteIdentPoints(); for (int i = 0; i < geometry->GetNIdentifications(); i++) { CloseSurfaceIdentification * ident = dynamic_cast(geometry->identifications[i]); if(!ident || !ident->IsSkewIdentification()) continue; for(int j=0; jSize(); j++) { if(fabs(ident->GetSurface1().CalcFunctionValue((*points)[j])) < 1e-15) { Point<3> auxpoint = (*points)[j]; ident->GetSurface2().SkewProject(auxpoint,ident->GetDirection()); geometry->AddIdentPoint(auxpoint); geometry->AddIdentPoint((*points)[j]); AddPoint (auxpoint,1); #ifdef DEVELOP (*testout) << "added identpoint " << auxpoint << "; proj. of " << (*points)[j] << endl; #endif break; } } } // add user point: for (int i = 0; i < geometry->GetNUserPoints(); i++) AddPoint (geometry->GetUserPoint(i), 1); PrintMessage (3, "Found points ", apoints.Size()); for (int i = 0; i < boxesinlevel.Size(); i++) (*testout) << "level " << i << " has " << boxesinlevel[i] << " boxes" << endl; (*testout) << "numprim_histogramm = " << endl << numprim_hist << endl; } void SpecialPointCalculation :: CalcSpecialPointsRec (const Solid * sol, int layer, const BoxSphere<3> & box, int level, bool calccp, bool calcep) { // boxes.Append (box); #ifdef DEVELOP *testout << "lev " << level << ", box = " << box << endl; *testout << "calccp = " << calccp << ", calcep = " << calcep << endl; *testout << "locsol = " << *sol << endl; #endif if (multithread.terminate) { *testout << "boxes = " << boxes << endl; *testout << "boxesinlevel = " << boxesinlevel << endl; throw NgException ("Meshing stopped"); } if (!sol) return; if (level >= 100) { MyStr err = MyStr("Problems in CalcSpecialPoints\nPoint: ") + MyStr (box.Center()); throw NgException (err.c_str()); } if (level == 40 || level == 41 || level == 45) { *testout << "level = " << level << " cp = " << calccp << " ep = " << calcep << ", box = " << box << ", solid = " << *sol << endl; } bool decision; bool possiblecrossp, possibleexp; // possible cross or extremalpoint bool surecrossp = 0, sureexp = 0; // sure ... // static NgArray locsurf; // attention: array is static NgArrayMem locsurf; // static int cntbox = 0; // cntbox++; if (level <= boxesinlevel.Size()) boxesinlevel.Elem(level)++; else boxesinlevel.Append (1); /* numprim = sol -> NumPrimitives(); sol -> GetSurfaceIndices (locsurf); */ geometry -> GetIndependentSurfaceIndices (sol, box, locsurf); int numprim = locsurf.Size(); #ifdef DEVELOP (*testout) << "numprim = " << numprim << endl; #endif numprim_hist[numprim]++; Point<3> p = box.Center(); // explicit solution for planes only and at most one quadratic if (numprim <= check_crosspoint) { int nplane = 0, nquad = 0, quadi = -1, nsphere = 0; const QuadraticSurface *qsurf = 0, *qsurfi; for (int i = 0; i < numprim; i++) { qsurfi = dynamic_cast (geometry->GetSurface(locsurf[i])); if (qsurfi) nquad++; if (dynamic_cast (qsurfi)) nplane++; else { quadi = i; qsurf = qsurfi; } if (dynamic_cast (qsurfi)) nsphere++; } /* if (nquad == numprim && nplane == numprim-2) return; */ #ifdef DEVELOP (*testout) << "nquad " << nquad << " nplane " << nplane << endl; #endif if (nquad == numprim && nplane >= numprim-1) { NgArray > pts; NgArray surfids; for (int k1 = 0; k1 < numprim - 2; k1++) for (int k2 = k1 + 1; k2 < numprim - 1; k2++) for (int k3 = k2 + 1; k3 < numprim; k3++) if (k1 != quadi && k2 != quadi && k3 != quadi) { ComputeCrossPoints (dynamic_cast (geometry->GetSurface(locsurf[k1])), dynamic_cast (geometry->GetSurface(locsurf[k2])), dynamic_cast (geometry->GetSurface(locsurf[k3])), pts); for (int j = 0; j < pts.Size(); j++) if (Dist (pts[j], box.Center()) < box.Diam()/2) { Solid * tansol; sol -> TangentialSolid (pts[j], tansol, surfids, 1e-9*size); if(!tansol) continue; bool ok1 = false, ok2 = false, ok3 = false; int rep1 = geometry->GetSurfaceClassRepresentant(locsurf[k1]); int rep2 = geometry->GetSurfaceClassRepresentant(locsurf[k2]); int rep3 = geometry->GetSurfaceClassRepresentant(locsurf[k3]); for(int jj=0; jjGetSurfaceClassRepresentant(surfids[jj]); if(actrep == rep1) ok1 = true; if(actrep == rep2) ok2 = true; if(actrep == rep3) ok3 = true; } if (tansol && ok1 && ok2 && ok3) // if (sol -> IsIn (pts[j], 1e-6*size) && !sol->IsStrictIn (pts[j], 1e-6*size)) { if (AddPoint (pts[j], layer)) (*testout) << "cross point found, 1: " << pts[j] << endl; } delete tansol; } } if (qsurf) { for (int k1 = 0; k1 < numprim - 1; k1++) for (int k2 = k1 + 1; k2 < numprim; k2++) if (k1 != quadi && k2 != quadi) { ComputeCrossPoints (dynamic_cast (geometry->GetSurface(locsurf[k1])), dynamic_cast (geometry->GetSurface(locsurf[k2])), qsurf, pts); //(*testout) << "checking pot. crosspoints: " << pts << endl; for (int j = 0; j < pts.Size(); j++) if (Dist (pts[j], box.Center()) < box.Diam()/2) { Solid * tansol; sol -> TangentialSolid (pts[j], tansol, surfids, 1e-9*size); if(!tansol) continue; bool ok1 = false, ok2 = false, ok3 = true;//false; int rep1 = geometry->GetSurfaceClassRepresentant(locsurf[k1]); int rep2 = geometry->GetSurfaceClassRepresentant(locsurf[k2]); //int rep3 = geometry->GetSurfaceClassRepresentant(quadi); for(int jj=0; jjGetSurfaceClassRepresentant(surfids[jj]); if(actrep == rep1) ok1 = true; if(actrep == rep2) ok2 = true; //if(actrep == rep3) ok3 = true; } if (tansol && ok1 && ok2 && ok3) //if (sol -> IsIn (pts[j], 1e-6*size) && !sol->IsStrictIn (pts[j], 1e-6*size) ) { if (AddPoint (pts[j], layer)) (*testout) << "cross point found, 2: " << pts[j] << endl; } delete tansol; } } for (int k1 = 0; k1 < numprim; k1++) if (k1 != quadi) { ComputeExtremalPoints (dynamic_cast (geometry->GetSurface(locsurf[k1])), qsurf, pts); for (int j = 0; j < pts.Size(); j++) if (Dist (pts[j], box.Center()) < box.Diam()/2) { Solid * tansol; sol -> TangentialSolid (pts[j], tansol, surfids, 1e-9*size); if (tansol) // sol -> IsIn (pts[j], 1e-6*size) && !sol->IsStrictIn (pts[j], 1e-6*size) ) { if (AddPoint (pts[j], layer)) (*testout) << "extremal point found, 1: " << pts[j] << endl; } delete tansol; } } } return; } if (nsphere == numprim) // && calccp == false) { NgArray > pts; NgArray surfids; for (int k1 = 0; k1 < numprim; k1++) for (int k2 = 0; k2 < k1; k2++) for (int k3 = 0; k3 < k2; k3++) { ComputeCrossPoints (dynamic_cast (geometry->GetSurface(locsurf[k1])), dynamic_cast (geometry->GetSurface(locsurf[k2])), dynamic_cast (geometry->GetSurface(locsurf[k3])), pts); for (int j = 0; j < pts.Size(); j++) if (Dist (pts[j], box.Center()) < box.Diam()/2) { Solid * tansol; sol -> TangentialSolid (pts[j], tansol, surfids, 1e-9*size); if(!tansol) continue; bool ok1 = false, ok2 = false, ok3 = false; int rep1 = geometry->GetSurfaceClassRepresentant(locsurf[k1]); int rep2 = geometry->GetSurfaceClassRepresentant(locsurf[k2]); int rep3 = geometry->GetSurfaceClassRepresentant(locsurf[k3]); for(int jj=0; jjGetSurfaceClassRepresentant(surfids[jj]); if(actrep == rep1) ok1 = true; if(actrep == rep2) ok2 = true; if(actrep == rep3) ok3 = true; } if (tansol && ok1 && ok2 && ok3) // if (sol -> IsIn (pts[j], 1e-6*size) && !sol->IsStrictIn (pts[j], 1e-6*size)) { if (AddPoint (pts[j], layer)) (*testout) << "cross point found, 1: " << pts[j] << endl; } delete tansol; } } for (int k1 = 0; k1 < numprim; k1++) for (int k2 = 0; k2 < k1; k2++) { ComputeExtremalPoints (dynamic_cast (geometry->GetSurface(locsurf[k1])), dynamic_cast (geometry->GetSurface(locsurf[k2])), pts); for (int j = 0; j < pts.Size(); j++) if (Dist (pts[j], box.Center()) < box.Diam()/2) { Solid * tansol; sol -> TangentialSolid (pts[j], tansol, surfids, 1e-9*size); if (tansol) // sol -> IsIn (pts[j], 1e-6*size) && !sol->IsStrictIn (pts[j], 1e-6*size) ) { if (AddPoint (pts[j], layer)) (*testout) << "extremal point found, spheres: " << pts[j] << endl; } delete tansol; } } return; } } possiblecrossp = (numprim >= 3) && calccp; surecrossp = 0; if (possiblecrossp && (locsurf.Size() <= check_crosspoint || level > 50)) { decision = 1; surecrossp = 0; for (int k1 = 1; k1 <= locsurf.Size() - 2; k1++) for (int k2 = k1 + 1; k2 <= locsurf.Size() - 1; k2++) for (int k3 = k2 + 1; k3 <= locsurf.Size(); k3++) { int nc, deg; nc = CrossPointNewtonConvergence (geometry->GetSurface(locsurf.Get(k1)), geometry->GetSurface(locsurf.Get(k2)), geometry->GetSurface(locsurf.Get(k3)), box ); deg = CrossPointDegenerated (geometry->GetSurface(locsurf.Get(k1)), geometry->GetSurface(locsurf.Get(k2)), geometry->GetSurface(locsurf.Get(k3)), box ); #ifdef DEVELOP (*testout) << "k1,2,3 = " << k1 << "," << k2 << "," << k3 << ", nc = " << nc << ", deg = " << deg << endl; #endif if (!nc && !deg) decision = 0; if (nc) surecrossp = 1; } #ifdef DEVELOP (*testout) << "dec = " << decision << ", surcp = " << surecrossp << endl; #endif if (decision && surecrossp) { for (int k1 = 1; k1 <= locsurf.Size() - 2; k1++) for (int k2 = k1 + 1; k2 <= locsurf.Size() - 1; k2++) for (int k3 = k2 + 1; k3 <= locsurf.Size(); k3++) { if (CrossPointNewtonConvergence (geometry->GetSurface(locsurf.Get(k1)), geometry->GetSurface(locsurf.Get(k2)), geometry->GetSurface(locsurf.Get(k3)), box ) ) { Point<3> pp = p; CrossPointNewton (geometry->GetSurface(locsurf.Get(k1)), geometry->GetSurface(locsurf.Get(k2)), geometry->GetSurface(locsurf.Get(k3)), pp); BoxSphere<3> hbox (pp, pp); hbox.Increase (1e-8*size); if (pp(0) > box.PMin()(0) - 1e-5*size && pp(0) < box.PMax()(0) + 1e-5*size && pp(1) > box.PMin()(1) - 1e-5*size && pp(1) < box.PMax()(1) + 1e-5*size && pp(2) > box.PMin()(2) - 1e-5*size && pp(2) < box.PMax()(2) + 1e-5*size && sol -> IsIn (pp, 1e-6*size) && !sol->IsStrictIn (pp, 1e-6*size) && !CrossPointDegenerated (geometry->GetSurface(locsurf.Get(k1)), geometry->GetSurface(locsurf.Get(k2)), geometry->GetSurface(locsurf.Get(k3)), hbox )) { // AddCrossPoint (locsurf, sol, p); BoxSphere<3> boxp (pp, pp); boxp.Increase (1e-3*size); boxp.CalcDiamCenter(); NgArray locsurf2; geometry -> GetIndependentSurfaceIndices (sol, boxp, locsurf2); bool found1 = false, found2 = false, found3 = false; for (int i = 0; i < locsurf2.Size(); i++) { if (locsurf2[i] == locsurf.Get(k1)) found1 = true; if (locsurf2[i] == locsurf.Get(k2)) found2 = true; if (locsurf2[i] == locsurf.Get(k3)) found3 = true; } if (found1 && found2 && found3) if (AddPoint (pp, layer)) { (*testout) << "Crosspoint found: " << pp << " diam = " << box.Diam() << ", surfs: " << locsurf.Get(k1) << "," << locsurf.Get(k2) << "," << locsurf.Get(k3) << endl; } } } } } if (decision) possiblecrossp = 0; } possibleexp = (numprim >= 2) && calcep; // (*testout) << "l = " << level << "locsize = " << locsurf.Size() << " possexp = " << possibleexp << "\n"; if (possibleexp && (numprim <= check_crosspoint || level >= 50)) { decision = 1; sureexp = 0; /* (*testout) << "extremal surfs = "; for (int k5 = 0; k5 < locsurf.Size(); k5++) (*testout) << typeid(*geometry->GetSurface(locsurf[k5])).name() << " "; (*testout) << "\n"; */ for (int k1 = 0; k1 < locsurf.Size() - 1; k1++) for (int k2 = k1+1; k2 < locsurf.Size(); k2++) { const Surface * surf1 = geometry->GetSurface(locsurf[k1]); const Surface * surf2 = geometry->GetSurface(locsurf[k2]); /* (*testout) << "edgecheck, types = " << typeid(*surf1).name() << ", " << typeid(*surf2).name() << "edge-newton-conv = " << EdgeNewtonConvergence (surf1, surf2, p) << "edge-deg = " << EdgeDegenerated (surf1, surf2, box) << "\n"; */ if (EdgeNewtonConvergence (surf1, surf2, p) ) sureexp = 1; else { if (!EdgeDegenerated (surf1, surf2, box)) decision = 0; } } // (*testout) << "l = " << level << " dec/sureexp = " << decision << sureexp << endl; if (decision && sureexp) { for (int k1 = 0; k1 < locsurf.Size() - 1; k1++) for (int k2 = k1+1; k2 < locsurf.Size(); k2++) { const Surface * surf1 = geometry->GetSurface(locsurf[k1]); const Surface * surf2 = geometry->GetSurface(locsurf[k2]); if (EdgeNewtonConvergence (surf1, surf2, p)) { EdgeNewton (surf1, surf2, p); Point<3> pp; if (IsEdgeExtremalPoint (surf1, surf2, p, pp, box.Diam()/2)) { (*testout) << "extremalpoint (nearly) found:" << pp << "box.diam = " << box.Diam() << ", dist = " << Dist(pp,box.Center()) << endl; if (Dist (pp, box.Center()) < box.Diam()/2 && sol -> IsIn (pp, 1e-6*size) && !sol->IsStrictIn (pp, 1e-6*size) ) { if (AddPoint (pp, layer)) (*testout) << "Extremal point found: " << pp << endl;//"(eps="<<1e-9*size<<")"<< endl; } } } } } if (decision) possibleexp = 0; } // (*testout) << "l = " << level << " poss cp/ep sure exp = " << possiblecrossp << " " << possibleexp << " " << sureexp << "\n"; if (possiblecrossp || possibleexp) { BoxSphere<3> sbox; for (int i = 0; i < 8; i++) { box.GetSubBox (i, sbox); sbox.Increase (1e-4 * sbox.Diam()); sbox.CalcDiamCenter(); Solid * redsol = sol -> GetReducedSolid (sbox); if (redsol) { CalcSpecialPointsRec (redsol, layer, sbox, level+1, calccp, calcep); delete redsol; } } } } /******* Tests for Point of intersection **********************/ bool SpecialPointCalculation :: CrossPointNewtonConvergence (const Surface * f1, const Surface * f2, const Surface * f3, const BoxSphere<3> & box) { Vec<3> grad, rs, x; Mat<3> jacobi, inv; Point<3> p = box.Center(); f1->CalcGradient (p, grad); jacobi(0,0) = grad(0); jacobi(0,1) = grad(1); jacobi(0,2) = grad(2); f2->CalcGradient (p, grad); jacobi(1,0) = grad(0); jacobi(1,1) = grad(1); jacobi(1,2) = grad(2); f3->CalcGradient (p, grad); jacobi(2,0) = grad(0); jacobi(2,1) = grad(1); jacobi(2,2) = grad(2); if (fabs (Det (jacobi)) > 1e-8) { double gamma = f1 -> HesseNorm() + f2 -> HesseNorm() + f3 -> HesseNorm(); if (gamma == 0.0) return 1; CalcInverse (jacobi, inv); rs(0) = f1->CalcFunctionValue (p); rs(1) = f2->CalcFunctionValue (p); rs(2) = f3->CalcFunctionValue (p); x = inv * rs; double beta = 0; for (int i = 0; i < 3; i++) { double sum = 0; for (int j = 0; j < 3; j++) sum += fabs (inv(i,j)); if (sum > beta) beta = sum; } double eta = Abs (x); #ifdef DEVELOP *testout << "check Newton: " << "beta = " << beta << ", gamma = " << gamma << ", eta = " << eta << endl; double rad = 1.0 / (beta * gamma); *testout << "rad = " << rad << endl; *testout << "rs = " << rs << endl; #endif return (beta * gamma * eta < 0.1) && (2 > box.Diam()*beta*gamma); } return 0; } bool SpecialPointCalculation :: CrossPointDegenerated (const Surface * f1, const Surface * f2, const Surface * f3, const BoxSphere<3> & box) const { Mat<3> mat; Vec<3> g1, g2, g3; double normprod; if (box.Diam() > relydegtest) return 0; f1->CalcGradient (box.Center(), g1); normprod = Abs2 (g1); f2->CalcGradient (box.Center(), g2); normprod *= Abs2 (g2); f3->CalcGradient (box.Center(), g3); normprod *= Abs2 (g3); for (int i = 0; i < 3; i++) { mat(i,0) = g1(i); mat(i,1) = g2(i); mat(i,2) = g3(i); } return sqr (Det (mat)) < sqr(cpeps1) * normprod; } void SpecialPointCalculation :: CrossPointNewton (const Surface * f1, const Surface * f2, const Surface * f3, Point<3> & p) { Vec<3> g1, g2, g3; Vec<3> rs, sol; Mat<3> mat; int i = 10; while (i > 0) { i--; rs(0) = f1->CalcFunctionValue (p); rs(1) = f2->CalcFunctionValue (p); rs(2) = f3->CalcFunctionValue (p); f1->CalcGradient (p, g1); f2->CalcGradient (p, g2); f3->CalcGradient (p, g3); for (int j = 0; j < 3; j++) { mat(0, j) = g1(j); mat(1, j) = g2(j); mat(2, j) = g3(j); } mat.Solve (rs, sol); if (sol.Length2() < 1e-24 && i > 1) i = 1; #ifdef DEVELOP *testout << "CrossPointNewton, err = " << sol.Length2() << endl; #endif p -= sol; } } /******* Tests for Point on edges **********************/ bool SpecialPointCalculation :: EdgeNewtonConvergence (const Surface * f1, const Surface * f2, const Point<3> & p) { Vec<3> g1, g2, sol; Vec<2> vrs; Mat<2,3> mat; Mat<3,2> inv; f1->CalcGradient (p, g1); f2->CalcGradient (p, g2); if ( sqr(g1 * g2) < (1 - 1e-8) * Abs2 (g1) * Abs2 (g2)) { double gamma = f1 -> HesseNorm() + f2 -> HesseNorm(); if (gamma < 1e-32) return 1; gamma = sqr (gamma); for (int i = 0; i < 3; i++) { mat(0,i) = g1(i); mat(1,i) = g2(i); } CalcInverse (mat, inv); vrs(0) = f1->CalcFunctionValue (p); vrs(1) = f2->CalcFunctionValue (p); sol = inv * vrs; double beta = 0; for (int i = 0; i < 3; i++) for (int j = 0; j < 2; j++) beta += inv(i,j) * inv(i,j); // beta = sqrt (beta); double eta = Abs2 (sol); // alpha = beta * gamma * eta; return (beta * gamma * eta < 0.01); } return 0; } bool SpecialPointCalculation :: EdgeDegenerated (const Surface * f1, const Surface * f2, const BoxSphere<3> & box) const { // perform newton steps. normals parallel ? // if not decidable: return 0 Point<3> p = box.Center(); Vec<3> g1, g2, sol; Vec<2> vrs; Mat<2,3> mat; int i = 20; while (i > 0) { if (Dist2 (p, box.Center()) > sqr(box.Diam())) return 0; i--; vrs(0) = f1->CalcFunctionValue (p); vrs(1) = f2->CalcFunctionValue (p); f1->CalcGradient (p, g1); f2->CalcGradient (p, g2); if ( sqr (g1 * g2) > (1 - 1e-10) * Abs2 (g1) * Abs2 (g2)) return 1; for (int j = 0; j < 3; j++) { mat(0,j) = g1(j); mat(1,j) = g2(j); } mat.Solve (vrs, sol); if (Abs2 (sol) < 1e-24 && i > 1) i = 1; p -= sol; } return 0; } void SpecialPointCalculation :: EdgeNewton (const Surface * f1, const Surface * f2, Point<3> & p) { Vec<3> g1, g2, sol; Vec<2> vrs; Mat<2,3> mat; int i = 10; while (i > 0) { i--; vrs(0) = f1->CalcFunctionValue (p); vrs(1) = f2->CalcFunctionValue (p); f1->CalcGradient (p, g1); f2->CalcGradient (p, g2); //(*testout) << "p " << p << " f1 " << vrs(0) << " f2 " << vrs(1) << " g1 " << g1 << " g2 " << g2 << endl; for (int j = 0; j < 3; j++) { mat(0,j) = g1(j); mat(1,j) = g2(j); } mat.Solve (vrs, sol); if (Abs2 (sol) < 1e-24 && i > 1) i = 1; p -= sol; } } bool SpecialPointCalculation :: IsEdgeExtremalPoint (const Surface * f1, const Surface * f2, const Point<3> & p, Point<3> & pp, double rad) { Vec<3> g1, g2, t, t1, t2; f1->CalcGradient (p, g1); f2->CalcGradient (p, g2); t = Cross (g1, g2); t.Normalize(); Point<3> p1 = p + rad * t; Point<3> p2 = p - rad * t; EdgeNewton (f1, f2, p1); EdgeNewton (f1, f2, p2); f1->CalcGradient (p1, g1); f2->CalcGradient (p1, g2); t1 = Cross (g1, g2); t1.Normalize(); f1->CalcGradient (p2, g1); f2->CalcGradient (p2, g2); t2 = Cross (g1, g2); t2.Normalize(); double val = 1e-8 * rad * rad; for (int j = 0; j < 3; j++) if ( (t1(j) * t2(j) < -val) ) { pp = p; ExtremalPointNewton (f1, f2, j+1, pp); return 1; } return 0; } /********** Tests of Points of extremal coordinates ****************/ void SpecialPointCalculation :: ExtremalPointNewton (const Surface * f1, const Surface * f2, int dir, Point<3> & p) { Vec<3> g1, g2, v, curv; Vec<3> rs, x, y1, y2, y; Mat<3> h1, h2; Mat<3> jacobi; int i = 50; while (i > 0) { i--; rs(0) = f1->CalcFunctionValue (p); rs(1) = f2->CalcFunctionValue (p); f1 -> CalcGradient (p, g1); f2 -> CalcGradient (p, g2); f1 -> CalcHesse (p, h1); f2 -> CalcHesse (p, h2); v = Cross (g1, g2); rs(2) = v(dir-1); jacobi(0,0) = g1(0); jacobi(0,1) = g1(1); jacobi(0,2) = g1(2); jacobi(1,0) = g2(0); jacobi(1,1) = g2(1); jacobi(1,2) = g2(2); switch (dir) { case 1: { y1(0) = 0; y1(1) = g2(2); y1(2) = -g2(1); y2(0) = 0; y2(1) = -g1(2); y2(2) = g1(1); break; } case 2: { y1(0) = -g2(2); y1(1) = 0; y1(2) = g2(0); y2(0) = g1(2); y2(1) = 0; y2(2) = -g1(0); break; } case 3: { y1(0) = g2(1); y1(1) = -g2(0); y1(2) = 0; y2(0) = -g1(1); y2(1) = g1(0); y2(2) = 0; break; } } y = h1 * y1 + h2 * y2; jacobi(2,0) = y(0); jacobi(2,1) = y(1); jacobi(2,2) = y(2); /* (*testout) << "p " << p << " f1 " << rs(0) << " f2 " << rs(1) << endl << " jacobi " << jacobi << endl << " rhs " << rs << endl; */ jacobi.Solve (rs, x); if (Abs2 (x) < 1e-24 && i > 1) { i = 1; } double minval(Abs2(rs)),minfac(1); double startval(minval); for(double fac = 1; fac > 1e-7; fac *= 0.6) { Point<3> testpoint = p-fac*x; rs(0) = f1->CalcFunctionValue (testpoint); rs(1) = f2->CalcFunctionValue (testpoint); f1 -> CalcGradient (testpoint, g1); f2 -> CalcGradient (testpoint, g2); v = Cross (g1, g2); rs(2) = v(dir-1); double val = Abs2(rs); if(val < minval) { minfac = fac; if(val < 0.5 * startval) break; minval = val; } } p -= minfac*x; //p -= x; } if (Abs2 (x) > 1e-20) { (*testout) << "Error: extremum Newton not convergent" << endl; (*testout) << "dir = " << dir << endl; (*testout) << "p = " << p << endl; (*testout) << "x = " << x << endl; } } void SpecialPointCalculation :: ComputeCrossPoints (const Plane * plane1, const Plane * plane2, const Plane * plane3, NgArray > & pts) { Mat<3> mat; Vec<3> rhs, sol; Point<3> p0(0,0,0); pts.SetSize (0); for (int i = 0; i < 3; i++) { const Plane * pi(NULL); switch (i) { case 0: pi = plane1; break; case 1: pi = plane2; break; case 2: pi = plane3; break; } double val; Vec<3> hvec; val = pi -> CalcFunctionValue(p0); pi -> CalcGradient (p0, hvec); for (int j = 0; j < 3; j++) mat(i,j) = hvec(j); rhs(i) = -val; } if (fabs (Det (mat)) > 1e-8) { mat.Solve (rhs, sol); pts.Append (Point<3> (sol)); } } void SpecialPointCalculation :: ComputeCrossPoints (const Plane * plane1, const Plane * plane2, const QuadraticSurface * quadric, NgArray > & pts) { Mat<2,3> mat; Mat<3,2> inv; Vec<2> rhs; Vec<3> sol, t; Point<3> p0(0,0,0); pts.SetSize (0); for (int i = 0; i < 2; i++) { const Plane * pi(NULL); switch (i) { case 0: pi = plane1; break; case 1: pi = plane2; break; } double val; Vec<3> hvec; val = pi -> CalcFunctionValue(p0); pi -> CalcGradient (p0, hvec); for (int j = 0; j < 3; j++) mat(i,j) = hvec(j); rhs(i) = -val; } CalcInverse (mat, inv); sol = inv * rhs; t = Cross (mat.Row(0), mat.Row(1)); if (t.Length() > 1e-8) { Point<3> p (sol); // quadratic on p + s t = 0 double quad_a; Vec<3> quad_b; Mat<3> quad_c; quad_a = quadric -> CalcFunctionValue(p); quadric -> CalcGradient (p, quad_b); quadric -> CalcHesse (p, quad_c); double a, b, c; a = quad_a; b = quad_b * t; c = 0.5 * t * (quad_c * t); // a + s b + s^2 c = 0; double disc = b*b-4*a*c; if (disc > 1e-10 * fabs (b)) { disc = sqrt (disc); double s1 = (-b-disc) / (2*c); double s2 = (-b+disc) / (2*c); pts.Append (p + s1 * t); pts.Append (p + s2 * t); } } } void SpecialPointCalculation :: ComputeCrossPoints (const Sphere * sphere1, const Sphere * sphere2, const Sphere * sphere3, NgArray > & pts) { Mat<2,3> mat; Mat<3,2> inv; Vec<2> rhs; Vec<3> sol, t; Point<3> p0(0,0,0); pts.SetSize (0); Point<3> c1 = sphere1 -> Center(); Point<3> c2 = sphere2 -> Center(); Point<3> c3 = sphere3 -> Center(); double r1 = sphere1 -> Radius(); double r2 = sphere2 -> Radius(); double r3 = sphere3 -> Radius(); Vec<3> a1 = c2-c1; double b1 = 0.5 * (sqr(r1) - sqr(r2) - Abs2(Vec<3> (c1)) + Abs2(Vec<3> (c2)) ); Vec<3> a2 = c3-c1; double b2 = 0.5 * (sqr(r1) - sqr(r3) - Abs2(Vec<3> (c1)) + Abs2(Vec<3> (c3)) ); for (int j = 0; j < 3; j++) { mat(0,j) = a1(j); mat(1,j) = a2(j); } rhs(0) = b1; rhs(1) = b2; CalcInverse (mat, inv); sol = inv * rhs; t = Cross (mat.Row(0), mat.Row(1)); if (t.Length() > 1e-8) { Point<3> p (sol); // quadratic on p + s t = 0 double quad_a; Vec<3> quad_b; Mat<3> quad_c; quad_a = sphere1 -> CalcFunctionValue(p); sphere1 -> CalcGradient (p, quad_b); sphere1 -> CalcHesse (p, quad_c); double a, b, c; a = quad_a; b = quad_b * t; c = 0.5 * t * (quad_c * t); // a + s b + s^2 c = 0; double disc = b*b-4*a*c; if (disc > 1e-10 * fabs (b)) { disc = sqrt (disc); double s1 = (-b-disc) / (2*c); double s2 = (-b+disc) / (2*c); pts.Append (p + s1 * t); pts.Append (p + s2 * t); } } } void SpecialPointCalculation :: ComputeExtremalPoints (const Plane * plane, const QuadraticSurface * quadric, NgArray > & pts) { // 3 equations: // surf1 = 0 <===> plane_a + plane_b x = 0; // surf2 = 0 <===> quad_a + quad_b x + x^T quad_c x = 0 // (grad 1 x grad 2)(i) = 0 <====> (grad 1 x e_i) . grad_2 = 0 pts.SetSize (0); Point<3> p0(0,0,0); double plane_a, quad_a; Vec<3> plane_b, quad_b, ei; Mat<3> quad_c; plane_a = plane -> CalcFunctionValue(p0); plane -> CalcGradient (p0, plane_b); quad_a = quadric -> CalcFunctionValue(p0); quadric -> CalcGradient (p0, quad_b); quadric -> CalcHesse (p0, quad_c); for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) quad_c(i,j) *= 0.5; for (int dir = 0; dir <= 2; dir++) { ei = 0.0; ei(dir) = 1; Vec<3> v1 = Cross (plane_b, ei); // grad_2 . v1 ... linear: double g2v1_c = v1 * quad_b; Vec<3> g2v1_l = 2.0 * (quad_c * v1); // find line of two linear equations: Vec<2> rhs; Vec<3> sol; Mat<2,3> mat; for (int j = 0; j < 3; j++) { mat(0,j) = plane_b(j); mat(1,j) = g2v1_l(j); } rhs(0) = -plane_a; rhs(1) = -g2v1_c; Vec<3> t = Cross (plane_b, g2v1_l); if (Abs2(t) > 0) { mat.Solve (rhs, sol); // solve quadratic equation along line sol + alpha t .... double a = quad_a + quad_b * sol + sol * (quad_c * sol); double b = quad_b * t + 2 * (sol * (quad_c * t)); double c = t * (quad_c * t); // solve a + b alpha + c alpha^2: if (fabs (c) > 1e-32) { double disc = sqr (0.5*b/c) - a/c; if (disc > 0) { disc = sqrt (disc); double alpha1 = -0.5*b/c + disc; double alpha2 = -0.5*b/c - disc; pts.Append (Point<3> (sol+alpha1*t)); pts.Append (Point<3> (sol+alpha2*t)); /* cout << "sol1 = " << sol + alpha1 * t << ", sol2 = " << sol + alpha2 * t << endl; */ } } } } } void SpecialPointCalculation :: ComputeExtremalPoints (const Sphere * sphere1, const Sphere * sphere2, NgArray > & pts) { // 3 equations: // surf1 = 0 <===> |x-c1|^2 - r1^2 = 0; // surf2 = 0 <===> |x-c2|^2 - r2^2 = 0; // (grad 1 x grad 2)(i) = 0 <====> (x-p1) x (p1-p2) . e_i = 0; pts.SetSize (0); Point<3> c1 = sphere1 -> Center(); Point<3> c2 = sphere2 -> Center(); double r1 = sphere1 -> Radius(); double r2 = sphere2 -> Radius(); /* *testout << "\n\ncompute extremalpoint, sphere-sphere" << endl; *testout << "c1 = " << c1 << ", r1 = " << r1 << endl; *testout << "c2 = " << c2 << ", r2 = " << r2 << endl; *testout << "dist = " << Abs (c2-c1) << ", r1+r2 = " << r1+r2 << endl; */ Vec<3> v12 = c2 - c1; Vec<3> a1, a2; double b1, b2; // eqn: ai . x = bi a1 = v12; b1 = 0.5 * (sqr(r1) - sqr(r2) - Abs2(Vec<3> (c1)) + Abs2(Vec<3> (c2)) ); int dir = 0; for (int j = 1; j < 3; j++) if (fabs (v12(j)) < fabs(v12(dir))) dir = j; Vec<3> ei = 0.0; ei(dir) = 1; a2 = Cross (v12, ei); b2 = Vec<3>(c1) * a2; Point<3> p0 (0,0,0); double quad_a; Vec<3> quad_b; Mat<3> quad_c; quad_a = sphere1 -> CalcFunctionValue(p0); sphere1 -> CalcGradient (p0, quad_b); sphere1 -> CalcHesse (p0, quad_c); for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) quad_c(i,j) *= 0.5; // find line of two linear equations: Vec<2> rhs; Vec<3> sol; Mat<2,3> mat; for (int j = 0; j < 3; j++) { mat(0,j) = a1(j); mat(1,j) = a2(j); } rhs(0) = b1; rhs(1) = b2; // *testout << "mat = " << endl << mat << endl; // *testout << "rhs = " << endl << rhs << endl; Vec<3> t = Cross (a1, a2); if (Abs2(t) > 0) { mat.Solve (rhs, sol); /* *testout << "sol = " << endl << sol << endl; *testout << "a * sol = " << mat * sol << endl; *testout << "c1-sol = " << Abs (Vec<3>(c1)-sol) << endl; *testout << "c2-sol = " << Abs (Vec<3>(c2)-sol) << endl; */ // solve quadratic equation along line sol + alpha t .... double a = quad_a + quad_b * sol + sol * (quad_c * sol); double b = quad_b * t + 2 * (sol * (quad_c * t)); double c = t * (quad_c * t); // solve a + b alpha + c alpha^2: if (fabs (c) > 1e-32) { double disc = sqr (0.5*b/c) - a/c; if (disc > 0) { disc = sqrt (disc); double alpha1 = -0.5*b/c + disc; double alpha2 = -0.5*b/c - disc; pts.Append (Point<3> (sol+alpha1*t)); pts.Append (Point<3> (sol+alpha2*t)); // *testout << "pts = " << endl << pts << endl; /* cout << "sol1 = " << sol + alpha1 * t << ", sol2 = " << sol + alpha2 * t << endl; */ } } } } /* bool SpecialPointCalculation :: ExtremalPointPossible (const Surface * f1, const Surface * f2, int dir, const BoxSphere<3> & box) { double hn1, hn2, gn1, gn2; Point<3> p; Vec<3> g1, g2, v; double f3; double r = box.Diam()/2; p = box.Center(); f1 -> CalcGradient (p, g1); f2 -> CalcGradient (p, g2); gn1 = g1.Length(); gn2 = g2.Length(); hn1 = f1 -> HesseNorm (); hn2 = f2 -> HesseNorm (); v = Cross (g1, g2); f3 = fabs (v(dir-1)); // (*testout) << "f3 = " << f3 << " r = " << r // << "normbound = " // << (hn1 * (gn2 + r * hn2) + hn2 * (gn1 + r * hn1)) << endl; return (f3 <= 3 * r * (hn1 * (gn2 + r * hn2) + hn2 * (gn1 + r * hn1))); } bool SpecialPointCalculation :: ExtremalPointNewtonConvergence (const Surface * f1, const Surface * f2, int dir, const BoxSphere<3> & box) { return box.Diam() < 1e-8; } bool SpecialPointCalculation :: ExtremalPointDegenerated (const Surface * f1, const Surface * f2, int dir, const BoxSphere<3> & box) { double gn1, gn2; Point<3> p; Vec<3> g1, g2, v; double maxderiv; double minv; Vec<3> curv, t; Vec<2> rs, x; Mat<3> h1, h2; Mat<2> a, inv; double leftside; if (box.Diam() > relydegtest) return 0; p = box.Center(); f1 -> CalcGradient (p, g1); f2 -> CalcGradient (p, g2); gn1 = g1.Length(); gn2 = g2.Length(); v = Cross (g1, g2); if (Abs (v) < epeps1 * gn1 * gn2) return 1; // irregular edge f1 -> CalcHesse (p, h1); f2 -> CalcHesse (p, h2); // hn1 = f1 -> HesseNorm (); // hn2 = f2 -> HesseNorm (); t = v; a(0, 0) = g1 * g1; a(0, 1) = a(1, 0) = g1 * g2; a(1, 1) = g2 * g2; rs(0) = g1(dir-1); rs(1) = g2(dir-1); a.Solve (rs, x); // (*testout) << "g1 = " << g1 << " g2 = " << g2 << endl; // (*testout) << "lam = " << x << endl; // (*testout) << "h2 = " << h2 << endl; leftside = fabs (x(0) * ( t * (h1 * t)) + x(1) * ( t * (h2 * t))); // (*testout) << "leftside = " << leftside << endl; if (leftside < epeps2 * Abs2 (v)) return 1; return 0; } */ bool SpecialPointCalculation :: AddPoint (const Point<3> & p, int layer) { for (int i = 0; i < points->Size(); i++) if (Dist2 ( (*points)[i], p) < epspointdist2 && (*points)[i].GetLayer() == layer) return false; points->Append (MeshPoint(p, layer)); PrintMessageCR (3, "Found points ", points->Size()); return true; } void SpecialPointCalculation :: AnalyzeSpecialPoints (const CSGeometry & ageometry, NgArray & apoints, NgArray & specpoints) { static int timer = NgProfiler::CreateTimer ("CSG: analyze special points"); NgProfiler::RegionTimer reg (timer); NgArray surfind, rep_surfind, surfind2, rep_surfind2, surfind3; NgArray > normalvecs; Vec<3> nsurf = 0.0; NgArray specpoint2point; specpoints.SetSize (0); geometry = &ageometry; double geomsize = ageometry.MaxSize(); (*testout) << "AnalyzeSpecialPoints\n"; if (!apoints.Size()) return; { /* sort points in the (arbitrary) direction dir important for periodic boundaries: corner points on the left and the right boundary come in the same ordering */ Vec<3> dir(1.2, 1.7, 0.9); NgArray coord(apoints.Size()); for (int i = 0; i < apoints.Size(); i++) coord[i] = dir * Vec<3> (apoints[i]); QuickSort (coord, apoints); } Box<3> bbox (apoints[0], apoints[0]); for (int i = 1; i < apoints.Size(); i++) bbox.Add (apoints[i]); bbox.Increase (0.1 * bbox.Diam()); (*testout) << "points = " << apoints << endl; Point3dTree searchtree (bbox.PMin(), bbox.PMax()); NgArray locsearch; for (int si = 0; si < ageometry.GetNTopLevelObjects(); si++) { const TopLevelObject * tlo = ageometry.GetTopLevelObject(si); const Solid * sol = tlo->GetSolid(); const Surface * surf = tlo->GetSurface(); for (int i = 0; i < apoints.Size(); i++) { Point<3> p = apoints[i]; #ifdef DEVELOP *testout << " test point " << p << endl; #endif if (tlo->GetLayer() != apoints[i].GetLayer()) continue; Solid * locsol; sol -> TangentialSolid (p, locsol, surfind, ideps*geomsize); rep_surfind.SetSize (surfind.Size()); int num_indep_surfs = 0; for (int j = 0; j < surfind.Size(); j++) { rep_surfind[j] = ageometry.GetSurfaceClassRepresentant (surfind[j]); bool found = false; for (int k = 0; !found && k < j; k++) found = (rep_surfind[k] == rep_surfind[j]); if(!found) num_indep_surfs++; } #ifdef DEVELOP *testout << "surfs = " << surfind << endl; *testout << "rep_surfs = " << rep_surfind << endl; #endif if (!locsol) continue; // get all surface indices, if (surf) { // locsol -> GetSurfaceIndices (surfind); bool hassurf = 0; for (int m = 0; m < surfind.Size(); m++) if (ageometry.GetSurface(surfind[m]) == surf) hassurf = 1; if (!hassurf) continue; nsurf = surf->GetNormalVector (p); } /* // get independent surfaces of tangential solid BoxSphere<3> box(p,p); box.Increase (1e-6*geomsize); box.CalcDiamCenter(); ageometry.GetIndependentSurfaceIndices (locsol, box, surfind); */ // ageometry.GetIndependentSurfaceIndices (surfind); normalvecs.SetSize(surfind.Size()); for (int j = 0; j < surfind.Size(); j++) normalvecs[j] = ageometry.GetSurface(surfind[j]) -> GetNormalVector(apoints[i]); for (int j = 0; j < normalvecs.Size(); j++) for (int k = 0; k < normalvecs.Size(); k++) { if (rep_surfind[j] == rep_surfind[k]) continue; //if (j == k) continue; Vec<3> t; if (dynamic_cast (ageometry.surf2prim[surfind[j]]) && ageometry.surf2prim[surfind[j]] == ageometry.surf2prim[surfind[k]]) { t = ageometry.surf2prim[surfind[j]] -> SpecialPointTangentialVector (p, surfind[j], surfind[k]); } else { t = Cross (normalvecs[j], normalvecs[k]); } if (Abs2 (t) < 1e-8) continue; #ifdef DEVELOP *testout << " tangential vector " << t << endl; #endif t.Normalize(); // try tangential direction t if (surf && fabs (nsurf * t) > 1e-6) continue; #ifdef DEVELOP *testout << " j " << j << " k " << k << endl; #endif if (!surf) { // compute second order approximation // c(s) = p + s t + s*s/2 t2 Vec<3> gradj, gradk; Mat<3> hessej, hessek; ageometry.GetSurface (surfind[j]) -> CalcGradient (p, gradj); ageometry.GetSurface (surfind[k]) -> CalcGradient (p, gradk); ageometry.GetSurface (surfind[j]) -> CalcHesse (p, hessej); ageometry.GetSurface (surfind[k]) -> CalcHesse (p, hessek); Vec<2> rhs; Vec<3> t2; Mat<2,3> mat; Mat<3,2> inv; for (int l = 0; l < 3; l++) { mat(0,l) = gradj(l); mat(1,l) = gradk(l); } rhs(0) = -t * (hessej * t); rhs(1) = -t * (hessek * t); CalcInverse (mat, inv); t2 = inv * rhs; /* ageometry.GetIndependentSurfaceIndices (locsol, p, t, surfind2); */ Solid * locsol2; locsol -> TangentialSolid3 (p, t, t2, locsol2, surfind2, ideps*geomsize); if (!locsol2) continue; // locsol2 -> GetTangentialSurfaceIndices3 (p, t, t2, surfind2, 1e-9*geomsize); rep_surfind2.SetSize (surfind2.Size()); for (int j2 = 0; j2 < surfind2.Size(); j2++) rep_surfind2[j2] = ageometry.GetSurfaceClassRepresentant (surfind2[j2]); #ifdef DEVELOP (*testout) << "surfind2 = " << endl << surfind2 << endl; #endif NgArray surfind2_aux(surfind2); ageometry.GetIndependentSurfaceIndices (surfind2_aux); #ifdef DEVELOP (*testout) << "surfind2,rep = " << endl << surfind2_aux << endl; #endif bool ok = true; // intersecting surfaces must be in second order tangential solid /* if (!surfind2.Contains(surfind[j]) || !surfind2.Contains(surfind[k])) ok = false; */ if (!surfind2_aux.Contains(rep_surfind[j]) || !surfind2_aux.Contains(rep_surfind[k])) ok = false; #ifdef DEVELOP (*testout) << "ok,1 = " << ok << endl; #endif // there must be 2 different tangential faces to the edge int cnt_tang_faces = 0; for (int l = 0; l < surfind2.Size(); l++) { Vec<3> nv = ageometry.GetSurface(surfind2[l]) -> GetNormalVector(p); Vec<3> m1 = Cross (t, nv); Vec<3> m2 = -m1; bool isface1 = 0, isface2 = 0; Solid * locsol3; // locsol2 -> TangentialSolid2 (p, m1, locsol3, surfind3, 1e-9*geomsize); locsol -> TangentialEdgeSolid (p, t, t2, m1, locsol3, surfind3, ideps*geomsize); //ageometry.GetIndependentSurfaceIndices (surfind3); if (surfind3.Contains(surfind2[l])) isface1 = 1; delete locsol3; // locsol2 -> TangentialSolid2 (p, m2, locsol3, surfind3, 1e-9*geomsize); locsol -> TangentialEdgeSolid (p, t, t2, m2, locsol3, surfind3, ideps*geomsize); // ageometry.GetIndependentSurfaceIndices (surfind3); if (surfind3.Contains(surfind2[l])) isface2 = 1; delete locsol3; if (isface1 != isface2) cnt_tang_faces++; } #ifdef DEVELOP (*testout) << "cnt_tang = " << cnt_tang_faces << endl; #endif if (cnt_tang_faces < 1) ok = false; delete locsol2; if (!ok) continue; } // edge must be on tangential surface bool isedge = locsol->VectorIn (p, t) && !locsol->VectorStrictIn (p, t); #ifdef DEVELOP (*testout) << "isedge,1 = " << isedge << "\n"; #endif // there must exist at least two different faces on edge if (isedge) { // *testout << "succ 1" << endl; int cnts = 0; for (int m = 0; m < surfind.Size(); m++) { if (fabs (normalvecs[m] * t) > 1e-6) continue; Vec<3> s = Cross (normalvecs[m], t); Vec<3> t2a = t + 0.01 *s; Vec<3> t2b = t - 0.01 *s; bool isface = (locsol->VectorIn (p, t2a, 1e-6*geomsize) && !locsol->VectorStrictIn (p, t2a, 1e-6*geomsize)) || (locsol->VectorIn (p, t2b, 1e-6*geomsize) && !locsol->VectorStrictIn (p, t2b, 1e-6*geomsize)); /* bool isface = (locsol->VectorIn (p, t2a) && !locsol->VectorStrictIn (p, t2a)) || (locsol->VectorIn (p, t2b) && !locsol->VectorStrictIn (p, t2b)); */ if (isface) { cnts++; } } if (cnts < 2) isedge = 0; } if (isedge) { #ifdef DEVELOP *testout << "success" << endl; #endif int spi = -1; const double searchradius = 1e-4*geomsize;//1e-5*geomsize; searchtree.GetIntersecting (apoints[i]-Vec3d(searchradius,searchradius,searchradius), apoints[i]+Vec3d(searchradius,searchradius,searchradius), locsearch); for (int m = 0; m < locsearch.Size(); m++) { if (Dist2 (specpoints[locsearch[m]].p, apoints[i]) < 1e-10*geomsize && Abs2(specpoints[locsearch[m]].v - t) < 1e-8) { spi = locsearch[m]; break; } } if (spi == -1) { specpoints.Append (SpecialPoint()); spi = specpoints.Size()-1; specpoint2point.Append (i); specpoints.Last().unconditional = 0; searchtree.Insert (apoints[i], spi); } if(!specpoints[spi].unconditional) { specpoints[spi].p = apoints[i]; specpoints[spi].v = t; //if (surfind.Size() >= 3) if (num_indep_surfs >= 3) specpoints[spi].unconditional = 1; specpoints[spi].s1 = rep_surfind[j]; specpoints[spi].s2 = rep_surfind[k]; specpoints[spi].s1_orig = surfind[j]; specpoints[spi].s2_orig = surfind[k]; specpoints[spi].layer = apoints[i].GetLayer(); for (int up = 0; up < geometry->GetNUserPoints(); up++) if (Dist (geometry->GetUserPoint(up), apoints[i]) < 1e-8*geomsize) specpoints[spi].unconditional = 1; for (int ip = 0; ip < geometry->GetNIdentPoints(); ip++) if (Dist (geometry->GetIdentPoint(ip), apoints[i]) < 1e-8*geomsize) specpoints[spi].unconditional = 1; } } } delete locsol; } } /* BitArray testuncond (specpoints.Size()); testuncond.Clear(); for(int i = 0; i same; same.Append(i); for(int j = i+1; j