/***************************************************************************/ /* */ /* Vorlesung Optimierung I, Gfrerer, WS94/95 */ /* BFGS-Verfahren zur Lösung freier nichtlinearer Optimierungsprobleme */ /* */ /* Programmautor: Joachim Schöberl */ /* Matrikelnummer: 9155284 */ /* */ /***************************************************************************/ #include <mystdlib.h> #include <myadt.hpp> #include <linalg.hpp> #include "opti.hpp" namespace netgen { void Cholesky (const DenseMatrix & a, DenseMatrix & l, Vector & d) { // Factors A = L D L^T double x; int n = a.Height(); // (*testout) << "a = " << a << endl; l = a; for (int i = 1; i <= n; i++) { for (int j = i; j <= n; j++) { x = l.Get(i, j); for (int k = 1; k < i; k++) x -= l.Get(i, k) * l.Get(j, k) * d(k-1); if (i == j) { d(i-1) = x; } else { l.Elem(j, i) = x / d(i-1); } } } for (int i = 1; i <= n; i++) { l.Elem(i, i) = 1; for (int j = i+1; j <= n; j++) l.Elem(i, j) = 0; } /* // Multiply: (*testout) << "multiplied factors: " << endl; for (i = 1; i <= n; i++) for (j = 1; j <= n; j++) { x = 0; for (k = 1; k <= n; k++) x += l.Get(i, k) * l.Get(j, k) * d.Get(k); (*testout) << x << " "; } (*testout) << endl; */ } void MultLDLt (const DenseMatrix & l, const Vector & d, const Vector & g, Vector & p) { /* int i, j, n; double val; n = l.Height(); p = g; for (i = 1; i <= n; i++) { val = 0; for (j = i; j <= n; j++) val += p.Get(j) * l.Get(j, i); p.Set(i, val); } for (i = 1; i <= n; i++) p.Elem(i) *= d.Get(i); for (i = n; i >= 1; i--) { val = 0; for (j = 1; j <= i; j++) val += p.Get(j) * l.Get(i, j); p.Set(i, val); } */ double val; int n = l.Height(); p = g; for (int i = 0; i < n; i++) { val = 0; for (int j = i; j < n; j++) val += p(j) * l(j, i); p(i) = val; } for (int i = 0; i < n; i++) p(i) *= d(i); for (int i = n-1; i >= 0; i--) { val = 0; for (int j = 0; j <= i; j++) val += p(j) * l(i, j); p(i) = val; } } void SolveLDLt (const DenseMatrix & l, const Vector & d, const Vector & g, Vector & p) { double val; int n = l.Height(); p = g; for (int i = 0; i < n; i++) { val = 0; for (int j = 0; j < i; j++) val += p(j) * l(i,j); p(i) -= val; } for (int i = 0; i < n; i++) p(i) /= d(i); for (int i = n-1; i >= 0; i--) { val = 0; for (int j = i+1; j < n; j++) val += p(j) * l(j, i); p(i) -= val; } } int LDLtUpdate (DenseMatrix & l, Vector & d, double a, const Vector & u) { // Bemerkung: Es wird a aus R erlaubt // Rueckgabewert: 0 .. D bleibt positiv definit // 1 .. sonst int n = l.Height(); Vector v(n); double t, told, xi; told = 1; v = u; for (int j = 1; j <= n; j++) { t = told + a * sqr (v(j-1)) / d(j-1); if (t <= 0) { (*testout) << "update err, t = " << t << endl; return 1; } xi = a * v(j-1) / (d(j-1) * t); d(j-1) *= t / told; for (int i = j + 1; i <= n; i++) { v(i-1) -= v(j-1) * l.Elem(i, j); l.Elem(i, j) += xi * v(i-1); } told = t; } return 0; } double BFGS ( Vector & x, // i: Startwert // o: Loesung, falls IFAIL = 0 const MinFunction & fun, const OptiParameters & par, double eps ) { int n = x.Size(); long it; char a1crit, a3acrit; Vector d(n), g(n), p(n), temp(n), bs(n), xneu(n), y(n), s(n), x0(n); DenseMatrix l(n); DenseMatrix hesse(n); double /* normg, */ alphahat, hd, fold; double a1, a2; const double mu1 = 0.1, sigma = 0.1, xi1 = 1, xi2 = 10; const double tau = 0.1, tau1 = 0.1, tau2 = 0.6; Vector typx(x.Size()); // i: typische Groessenordnung der Komponenten double f, f0; double typf; // i: typische Groessenordnung der Loesung double fmin = -1e5; // i: untere Schranke fuer Funktionswert // double eps = 1e-8; // i: Abbruchschranke fuer relativen Gradienten double tauf = 0.1; // i: Abbruchschranke fuer die relative Aenderung der // Funktionswerte int ifail; // o: 0 .. Erfolg // -1 .. Unterschreitung von fmin // 1 .. kein Erfolg bei Liniensuche // 2 .. Überschreitung von itmax typx = par.typx; typf = par.typf; l = 0; for (int i = 1; i <= n; i++) l.Elem(i, i) = 1; f = fun.FuncGrad (x, g); f0 = f; x0 = x; it = 0; do { // Restart // cout << "it " << it << "f = " << f << endl; if (it % (5 * n) == 0) { for (int i = 1; i <= n; i++) d(i-1) = typf/ sqr (typx(i-1)); // 1; for (int i = 2; i <= n; i++) for (int j = 1; j < i; j++) l.Elem(i, j) = 0; /* hesse = 0; for (i = 1; i <= n; i++) hesse.Elem(i, i) = typf / sqr (typx.Get(i)); fun.ApproximateHesse (x, hesse); Cholesky (hesse, l, d); */ } it++; if (it > par.maxit_bfgs) { ifail = 2; break; } // Solve with factorized B SolveLDLt (l, d, g, p); // (*testout) << "l " << l << endl // << "d " << d << endl // << "g " << g << endl // << "p " << p << endl; p *= -1; y = g; fold = f; // line search alphahat = 1; lines (x, xneu, p, f, g, fun, par, alphahat, fmin, mu1, sigma, xi1, xi2, tau, tau1, tau2, ifail); if(ifail == 1) (*testout) << "no success with linesearch" << endl; /* // if (it > par.maxit_bfgs/2) { (*testout) << "x = " << x << endl; (*testout) << "xneu = " << xneu << endl; (*testout) << "f = " << f << endl; (*testout) << "g = " << g << endl; } */ // (*testout) << "it = " << it << " f = " << f << endl; // if (ifail != 0) break; s.Set2 (1, xneu, -1, x); y *= -1; y.Add (1,g); // y += g; x = xneu; // BFGS Update MultLDLt (l, d, s, bs); a1 = y * s; a2 = s * bs; if (a1 > 0 && a2 > 0) { if (LDLtUpdate (l, d, 1 / a1, y) != 0) { cerr << "BFGS update error1" << endl; (*testout) << "BFGS update error1" << endl; (*testout) << "l " << endl << l << endl << "d " << d << endl; ifail = 1; break; } if (LDLtUpdate (l, d, -1 / a2, bs) != 0) { cerr << "BFGS update error2" << endl; (*testout) << "BFGS update error2" << endl; (*testout) << "l " << endl << l << endl << "d " << d << endl; ifail = 1; break; } } // Calculate stop conditions hd = eps * max2 (typf, fabs (f)); a1crit = 1; for (int i = 1; i <= n; i++) if ( fabs (g(i-1)) * max2 (typx(i-1), fabs (x(i-1))) > hd) a1crit = 0; a3acrit = (fold - f <= tauf * max2 (typf, fabs (f))); // testout << "g = " << g << endl; // testout << "a1crit, a3crit = " << int(a1crit) << ", " << int(a3acrit) << endl; /* // Output for tests normg = sqrt (g * g); testout << "it =" << setw (5) << it << " f =" << setw (12) << setprecision (5) << f << " |g| =" << setw (12) << setprecision (5) << normg; testout << " x = (" << setw (12) << setprecision (5) << x.Elem(1); for (i = 2; i <= n; i++) testout << "," << setw (12) << setprecision (5) << x.Elem(i); testout << ")" << endl; */ //(*testout) << "it = " << it << " f = " << f << " x = " << x << endl // << " g = " << g << " p = " << p << endl << endl; // (*testout) << "|g| = " << g.L2Norm() << endl; if (g.L2Norm() < fun.GradStopping (x)) break; } while (!a1crit || !a3acrit); /* (*testout) << "it = " << it << " g = " << g << " f = " << f << " fail = " << ifail << endl; */ if (f0 < f || (ifail == 1)) { (*testout) << "fail, f = " << f << " f0 = " << f0 << endl; f = f0; x = x0; } // cout << endl; // (*testout) << "x = " << x << ", x0 = " << x0 << endl; return f; } }