#include #include #include "meshing.hpp" #include namespace netgen { struct PointTree { BoxTree<3> tree; PointTree( Box<3> bb ) : tree(bb) {} void Insert(Point<3> p, PointIndex n) { tree.Insert(p, p, n); } PointIndex Find(Point<3> p) const { ArrayMem points; tree.GetIntersecting(p, p, points); if(points.Size()==0) throw Exception("cannot find mapped point"); return points[0]; } double GetTolerance() { return tree.GetTolerance(); } }; DLL_HEADER GeometryRegisterArray geometryregister; //DLL_HEADER NgArray geometryregister; GeometryRegister :: ~GeometryRegister() { ; } bool GeometryShape :: IsMappedShape( const GeometryShape & other_, const Transformation<3> & trafo, double tol ) const { throw Exception("GeometryShape::IsMappedShape not implemented for class " + Demangle(typeid(this).name())); } bool GeometryVertex :: IsMappedShape( const GeometryShape & other_, const Transformation<3> & trafo, double tol ) const { const auto other_ptr = dynamic_cast(&other_); if(!other_ptr) return false; return Dist(trafo(GetPoint()), other_ptr->GetPoint()) < tol; } bool GeometryEdge :: IsMappedShape( const GeometryShape & other_, const Transformation<3> & trafo, double tol ) const { const auto other_ptr = dynamic_cast(&other_); if(!other_ptr) return false; auto & e = *other_ptr; if(tol < Dist(GetCenter(), e.GetCenter())) return false; auto v0 = GetStartVertex().GetPoint(); auto v1 = GetEndVertex().GetPoint(); auto w0 = e.GetStartVertex().GetPoint(); auto w1 = e.GetEndVertex().GetPoint(); // have two closed edges, use midpoints to compare if(Dist(v0,v1) < tol && Dist(w0,w1) < tol) { v1 = GetPoint(0.5); w1 = other_ptr->GetPoint(0.5); } return( (Dist(v0, w0) < tol && Dist(v1, w1) < tol) || (Dist(v0, w1) < tol && Dist(v1, w0) < tol) ); } void GeometryFace :: RestrictHTrig(Mesh& mesh, const PointGeomInfo& gi0, const PointGeomInfo& gi1, const PointGeomInfo& gi2, const MeshingParameters& mparam, int depth, double h) const { auto p0 = GetPoint(gi0); auto p1 = GetPoint(gi1); auto p2 = GetPoint(gi2); auto longest = (p0-p1).Length(); int cutedge = 2; if(auto len = (p0-p2).Length(); len > longest) { longest = len; cutedge = 1; } if(auto len = (p1-p2).Length(); len > longest) { longest = len; cutedge = 0; } PointGeomInfo gi_mid; gi_mid.u = (gi0.u + gi1.u + gi2.u)/3; gi_mid.v = (gi0.v + gi1.v + gi2.v)/3; if(depth % 3 == 0) { double curvature = 0.; curvature = max({curvature, GetCurvature(gi_mid), GetCurvature(gi0), GetCurvature(gi1), GetCurvature(gi2)}); if(curvature < 1e-3) return; double kappa = curvature * mparam.curvaturesafety; h = mparam.maxh * kappa < 1 ? mparam.maxh : 1./kappa; if(h < 1e-4 * longest) return; } if(h < longest && depth < 10) { if(cutedge == 0) { PointGeomInfo gi_m; gi_m.u = 0.5 * (gi1.u + gi2.u); gi_m.v = 0.5 * (gi1.v + gi2.v); RestrictHTrig(mesh, gi_m, gi2, gi0, mparam, depth+1, h); RestrictHTrig(mesh, gi_m, gi0, gi1, mparam, depth+1, h); } else if(cutedge == 1) { PointGeomInfo gi_m; gi_m.u = 0.5 * (gi0.u + gi2.u); gi_m.v = 0.5 * (gi0.v + gi2.v); RestrictHTrig(mesh, gi_m, gi1, gi2, mparam, depth+1, h); RestrictHTrig(mesh, gi_m, gi0, gi1, mparam, depth+1, h); } else if(cutedge == 2) { PointGeomInfo gi_m; gi_m.u = 0.5 * (gi0.u + gi1.u); gi_m.v = 0.5 * (gi0.v + gi1.v); RestrictHTrig(mesh, gi_m, gi1, gi2, mparam, depth+1, h); RestrictHTrig(mesh, gi_m, gi2, gi0, mparam, depth+1, h); } } else { auto pmid = GetPoint(gi_mid); for(const auto& p : {p0, p1, p2, pmid}) mesh.RestrictLocalH(p, h); } } struct Line { Point<3> p0, p1; inline double Length() const { return (p1-p0).Length(); } inline double Dist(const Line& other) const { Vec<3> n = p1-p0; Vec<3> q = other.p1-other.p0; double nq = n*q; Point<3> p = p0 + 0.5*n; double lambda = (p-other.p0)*n / (nq + 1e-10); if (lambda >= 0 && lambda <= 1) return (p-other.p0-lambda*q).Length(); return 1e99; } }; void NetgenGeometry :: ProcessIdentifications() { auto mirror_identifications = [&] ( auto & shapes ) { for(auto i : Range(shapes)) { auto &s = shapes[i]; s->nr = i; for(auto & ident : s->identifications) if(s.get() == ident.from) ident.to->identifications.Append(ident); } }; mirror_identifications(vertices); mirror_identifications(edges); mirror_identifications(faces); // todo: propagate identifications faces -> edges -> vertices auto find_primary = [&] (auto & shapes) { for(auto &s : shapes) { s->primary = s.get(); s->primary_to_me = Transformation<3>{ Vec<3> {0,0,0} }; // init with identity } bool changed = true; while(changed) { changed = false; for(auto &s : shapes) { auto current = s->primary; for(auto & ident : current->identifications) { bool need_inverse = ident.from == s.get(); auto other = need_inverse ? ident.to : ident.from; if(other->nr < s->primary->nr) { auto trafo = ident.trafo; if(need_inverse) trafo = trafo.CalcInverse(); s->primary = other; s->primary_to_me.Combine(trafo, s->primary_to_me); changed = true; } if(other->primary->nr < s->primary->nr) { auto trafo = ident.trafo; if(need_inverse) trafo = trafo.CalcInverse(); s->primary = other->primary; s->primary_to_me.Combine(trafo, other->primary_to_me); changed = true; } } } } }; find_primary(vertices); find_primary(edges); find_primary(faces); } void NetgenGeometry :: Analyse(Mesh& mesh, const MeshingParameters& mparam) const { static Timer t1("SetLocalMeshsize"); RegionTimer regt(t1); mesh.SetGlobalH(mparam.maxh); mesh.SetMinimalH(mparam.minh); mesh.SetLocalH(bounding_box.PMin(), bounding_box.PMax(), mparam.grading); // only set meshsize for edges longer than this double mincurvelength = 1e-3 * bounding_box.Diam(); if(mparam.uselocalh) { double eps = 1e-10 * bounding_box.Diam(); const char* savetask = multithread.task; multithread.task = "Analyse Edges"; // restrict meshsize on edges for(auto i : Range(edges)) { multithread.percent = 100. * i/edges.Size(); const auto & edge = edges[i]; auto length = edge->GetLength(); // skip very short edges if(length < mincurvelength) continue; static constexpr int npts = 20; // restrict mesh size based on edge length for(auto i : Range(npts+1)) mesh.RestrictLocalH(edge->GetPoint(double(i)/npts), length/mparam.segmentsperedge); // restrict mesh size based on edge curvature double t = 0.; auto p_old = edge->GetPoint(t); while(t < 1.-eps) { t += edge->CalcStep(t, 1./mparam.curvaturesafety); if(t < 1.) { auto p = edge->GetPoint(t); auto dist = (p-p_old).Length(); mesh.RestrictLocalH(p, dist); p_old = p; } } } multithread.task = "Analyse Faces"; // restrict meshsize on faces for(auto i : Range(faces)) { multithread.percent = 100. * i/faces.Size(); const auto& face = faces[i]; face->RestrictH(mesh, mparam); } if(mparam.closeedgefac.has_value()) { multithread.task = "Analyse close edges"; constexpr int sections = 100; Array lines; lines.SetAllocSize(sections*edges.Size()); BoxTree<3> searchtree(bounding_box.PMin(), bounding_box.PMax()); for(const auto& edge : edges) { if(edge->GetLength() < eps) continue; double t = 0.; auto p_old = edge->GetPoint(t); auto t_old = edge->GetTangent(t); t_old.Normalize(); for(auto i : IntRange(1, sections+1)) { t = double(i)/sections; auto p_new = edge->GetPoint(t); auto t_new = edge->GetTangent(t); t_new.Normalize(); auto cosalpha = fabs(t_old * t_new); if((i == sections) || (cosalpha < cos(10./180 * M_PI))) { auto index = lines.Append({p_old, p_new}); searchtree.Insert(p_old, p_new, index); p_old = p_new; t_old = t_new; } } } Array linenums; for(auto i : Range(lines)) { const auto& line = lines[i]; if(line.Length() < eps) continue; multithread.percent = 100.*i/lines.Size(); Box<3> box; box.Set(line.p0); box.Add(line.p1); // box.Increase(max2(mesh.GetH(line.p0), mesh.GetH(line.p1))); box.Increase(line.Length()); double mindist = 1e99; linenums.SetSize0(); searchtree.GetIntersecting(box.PMin(), box.PMax(), linenums); for(auto num : linenums) { if(i == num) continue; const auto & other = lines[num]; if((line.p0 - other.p0).Length2() < eps || (line.p0 - other.p1).Length2() < eps || (line.p1 - other.p0).Length2() < eps || (line.p1 - other.p1).Length2() < eps) continue; mindist = min2(mindist, line.Dist(other)); } if(mindist == 1e99) continue; mindist /= *mparam.closeedgefac + 1e-10; if(mindist < 1e-3 * bounding_box.Diam()) { (*testout) << "extremely small local h: " << mindist << " --> setting to " << 1e-3 * bounding_box.Diam() << endl; (*testout) << "somewhere near " << line.p0 << " - " << line.p1 << endl ; mindist = 1e-3 * bounding_box.Diam(); } mesh.RestrictLocalHLine(line.p0, line.p1, mindist); } } multithread.task = savetask; } for(const auto& mspnt : mparam.meshsize_points) mesh.RestrictLocalH(mspnt.pnt, mspnt.h); mesh.LoadLocalMeshSize(mparam.meshsizefilename); } void DivideEdge(GeometryEdge * edge, const MeshingParameters & mparam, const Mesh & mesh, Array> & points, Array & params) { static Timer tdivedgesections("Divide edge sections"); static Timer tdivide("Divide Edges"); RegionTimer rt(tdivide); // -------------------- DivideEdge ----------------- static constexpr size_t divide_edge_sections = 1000; double hvalue[divide_edge_sections+1]; hvalue[0] = 0; Point<3> old_pt = edge->GetPoint(0.); // calc local h for edge tdivedgesections.Start(); for(auto i : Range(divide_edge_sections)) { auto pt = edge->GetPoint(double(i+1)/divide_edge_sections); hvalue[i+1] = hvalue[i] + 1./mesh.GetH(pt) * (pt-old_pt).Length(); old_pt = pt; } int nsubedges = max2(1, int(floor(hvalue[divide_edge_sections]+0.5))); tdivedgesections.Stop(); points.SetSize(nsubedges-1); params.SetSize(nsubedges+1); int i = 1; int i1 = 0; do { if (hvalue[i1]/hvalue[divide_edge_sections]*nsubedges >= i) { params[i] = (double(i1)/divide_edge_sections); points[i-1] = MeshPoint(edge->GetPoint(params[i])); i++; } i1++; if (i1 > divide_edge_sections) { nsubedges = i; points.SetSize(nsubedges-1); params.SetSize(nsubedges+1); cout << "divide edge: local h too small" << endl; } } while(i < nsubedges); params[0] = 0.; params[nsubedges] = 1.; if(params[nsubedges] <= params[nsubedges-1]) { cout << "CORRECTED" << endl; points.SetSize (nsubedges-2); params.SetSize (nsubedges); params[nsubedges-1] = 1.; } } void NetgenGeometry :: FindEdges(Mesh& mesh, const MeshingParameters& mparam) const { static Timer t1("MeshEdges"); RegionTimer regt(t1); const char* savetask = multithread.task; multithread.task = "Mesh Edges"; PointTree tree( bounding_box ); auto & identifications = mesh.GetIdentifications(); std::map vert2meshpt; for(auto & vert : vertices) { auto pi = mesh.AddPoint(vert->GetPoint()); tree.Insert(mesh[pi], pi); vert2meshpt[vert->GetHash()] = pi; mesh[pi].Singularity(vert->properties.hpref); if(vert->properties.name) { Element0d el(pi, pi); el.name = vert->properties.GetName(); mesh.SetCD3Name(pi, el.name); mesh.pointelements.Append (el); } } for(auto & vert : vertices) for(auto & ident : vert->identifications) identifications.Add(vert2meshpt[ident.from->GetHash()], vert2meshpt[ident.to->GetHash()], ident.name, ident.type); size_t segnr = 0; auto nedges = edges.Size(); Array> all_pnums(nedges); Array> all_params(nedges); for (auto edgenr : Range(edges)) { auto edge = edges[edgenr].get(); PointIndex startp, endp; // throws if points are not found startp = vert2meshpt.at(edge->GetStartVertex().GetHash()); endp = vert2meshpt.at(edge->GetEndVertex().GetHash()); // ignore collapsed edges if(startp == endp && edge->GetLength() < 1e-10 * bounding_box.Diam()) continue; // ----------- Add Points to mesh and create segments ----- auto & pnums = all_pnums[edgenr]; auto & params = all_params[edgenr]; Array> edge_points; Array edge_params; if(edge->primary == edge) { // check if start and end vertex are identified (if so, we only insert one segement and do z-refinement later) bool is_identified_edge = false; auto v0 = vertices[edge->GetStartVertex().nr].get(); auto v1 = vertices[edge->GetEndVertex().nr].get(); for(auto & ident : v0->identifications) { auto other = ident.from == v0 ? ident.to : ident.from; if(other->nr == v1->nr && ident.type == Identifications::CLOSESURFACES) { is_identified_edge = true; break; } } if(is_identified_edge) { params.SetSize(2); params[0] = 0.; params[1] = 1.; } else { DivideEdge(edge, mparam, mesh, edge_points, params); } } else { auto nr_primary = edge->primary->nr; auto & pnums_primary = all_pnums[nr_primary]; auto & params_primary = all_params[nr_primary]; auto trafo = edge->primary_to_me; auto np = pnums_primary.Size(); edge_points.SetSize(np-2); edge_params.SetSize(np-2); for(auto i : Range(np-2)) { edge_points[i] = trafo(mesh[pnums_primary[i+1]]); EdgePointGeomInfo gi; edge->ProjectPoint(edge_points[i], &gi); edge_params[i] = gi.dist; } // reverse entries if we have decreasing parameters if(edge_params.Size()>2 && edge_params[0] > edge_params.Last()) for(auto i : Range((np-2)/2)) { swap(edge_points[i], edge_points[np-3-i]); swap(edge_params[i], edge_params[np-3-i]); } params.SetSize(edge_params.Size()+2); params[0] = 0.; params.Last() = 1.; for(auto i : Range(edge_params)) params[i+1] = edge_params[i]; } pnums.SetSize(edge_points.Size() + 2); pnums[0] = startp; pnums.Last() = endp; for(auto i : Range(edge_points)) { auto pi = mesh.AddPoint(edge_points[i]); tree.Insert(mesh[pi], pi); pnums[i+1] = pi; } for(auto i : Range(pnums.Size()-1)) { segnr++; Segment seg; seg[0] = pnums[i]; seg[1] = pnums[i+1]; seg.edgenr = edgenr+1; seg.si = edgenr+1; seg.epgeominfo[0].dist = params[i]; seg.epgeominfo[1].dist = params[i+1]; seg.epgeominfo[0].edgenr = edgenr; seg.epgeominfo[1].edgenr = edgenr; seg.singedge_left = edge->properties.hpref; seg.singedge_right = edge->properties.hpref; seg.domin = edge->domin+1; seg.domout = edge->domout+1; mesh.AddSegment(seg); } mesh.SetCD2Name(edgenr+1, edge->properties.GetName()); } for (auto & edge : edges) { // identify points on edge for(auto & ident : edge->identifications) if(ident.from == edge.get()) { auto & pnums = all_pnums[edge->nr]; // start and end vertex are already identified for(auto pi : pnums.Range(1, pnums.Size()-1)) { auto pi_other = tree.Find(ident.trafo(mesh[pi])); identifications.Add(pi, pi_other, ident.name, ident.type); } } } mesh.CalcSurfacesOfNode(); multithread.task = savetask; } bool NetgenGeometry :: MeshFace(Mesh& mesh, const MeshingParameters& mparam, int k, FlatArray glob2loc) const { multithread.percent = 100. * k/faces.Size(); const auto& face = *faces[k]; auto bb = face.GetBoundingBox(); bb.Increase(bb.Diam()/10); Meshing2 meshing(*this, mparam, bb); glob2loc = 0; int cntp = 0; auto segments = face.GetBoundary(mesh); for(auto& seg : segments) { for(auto j : Range(2)) { auto pi = seg[j]; if(glob2loc[pi] == 0) { meshing.AddPoint(mesh[pi], pi); cntp++; glob2loc[pi] = cntp; } } } for(auto & seg : segments) { PointGeomInfo gi0, gi1; gi0.trignum = gi1.trignum = k+1; gi0.u = seg.epgeominfo[0].u; gi0.v = seg.epgeominfo[0].v; gi1.u = seg.epgeominfo[1].u; gi1.v = seg.epgeominfo[1].v; meshing.AddBoundaryElement(glob2loc[seg[0]], glob2loc[seg[1]], gi0, gi1); } // TODO Set max area 2* area of face auto noldsurfels = mesh.GetNSE(); static Timer t("GenerateMesh"); RegionTimer reg(t); MESHING2_RESULT res = meshing.GenerateMesh(mesh, mparam, mparam.maxh, k+1); for(auto i : Range(noldsurfels, mesh.GetNSE())) { mesh.SurfaceElements()[i].SetIndex(k+1); } return res != MESHING2_OK; } void NetgenGeometry :: MeshSurface(Mesh& mesh, const MeshingParameters& mparam) const { static Timer t1("Surface Meshing"); RegionTimer regt(t1); const char* savetask = multithread.task; multithread.task = "Mesh Surface"; size_t n_failed_faces = 0; Array glob2loc(mesh.GetNP()); for(auto k : Range(faces)) { auto & face = *faces[k]; FaceDescriptor fd(k+1, face.domin+1, face.domout+1, k+1); mesh.AddFaceDescriptor(fd); mesh.SetBCName(k, face.properties.GetName()); if(face.primary == &face) { // check if this face connects two identified closesurfaces bool is_connecting_closesurfaces = false; auto & idents = mesh.GetIdentifications(); std::set relevant_edges; auto segments = face.GetBoundary(mesh); for(const auto &s : segments) relevant_edges.insert(s.edgenr-1); Array is_point_in_tree(mesh.Points().Size()); is_point_in_tree = false; PointTree tree( bounding_box ); for(const auto &s : segments) for(auto pi : s.PNums()) if(!is_point_in_tree[pi]) { tree.Insert(mesh[pi], pi); is_point_in_tree[pi] = true; } Array mapped_edges(edges.Size()); constexpr int UNINITIALIZED = -2; constexpr int NOT_MAPPED = -1; mapped_edges = UNINITIALIZED; Transformation<3> trafo; for(const auto &s : segments) { auto edgenr = s.edgenr-1; auto & edge = *edges[edgenr]; ShapeIdentification *edge_mapping; // have edgenr first time, search for closesurface identification if(mapped_edges[edgenr] == UNINITIALIZED) { mapped_edges[edgenr] = NOT_MAPPED; for(auto & edge_ident : edge.identifications) { if(edge_ident.type == Identifications::CLOSESURFACES && edge_ident.from->nr == edgenr && relevant_edges.count(edge_ident.to->nr) > 0 ) { trafo = edge_ident.trafo; mapped_edges[edgenr] = edge_ident.to->nr; is_connecting_closesurfaces = true; break; } } } // this edge has a closesurface mapping to another -> make connecting quad if(mapped_edges[edgenr] != NOT_MAPPED) { Element2d sel(4); sel[0] = s[0]; sel[1] = s[1]; sel[2] = tree.Find(trafo(mesh[s[1]])); sel[3] = tree.Find(trafo(mesh[s[0]])); sel.SetIndex(face.nr+1); mesh.AddSurfaceElement(sel); } } if(!is_connecting_closesurfaces) if(MeshFace(mesh, mparam, k, glob2loc)) n_failed_faces++; } } if(n_failed_faces) { cout << "WARNING! NOT ALL FACES HAVE BEEN MESHED" << endl; cout << "SURFACE MESHING ERROR OCCURRED IN " << n_failed_faces << " FACES:" << endl; return; } if (mparam.perfstepsend >= MESHCONST_OPTSURFACE) { mesh.CalcSurfacesOfNode(); OptimizeSurface(mesh, mparam); } bool have_identifications = false; for(auto & face : faces) if(face->primary != face.get()) { have_identifications = true; MapSurfaceMesh(mesh, *face); } // identify points on faces if(have_identifications) { mesh.CalcSurfacesOfNode(); BitArray is_identified_face(faces.Size()); is_identified_face = false; for(auto & face : faces) for(auto & ident : face->identifications) { is_identified_face.SetBit(ident.from->nr); is_identified_face.SetBit(ident.to->nr); } PointTree tree( bounding_box ); Array pi_to_face(mesh.GetNP()); pi_to_face = -1; Array si_of_face; Array> pi_of_face(faces.Size()); for(auto & face : faces) if(is_identified_face[face->nr]) { mesh.GetSurfaceElementsOfFace(face->nr+1, si_of_face); for(auto si : si_of_face) for(auto pi : mesh[si].PNums()) { if(mesh[pi].Type() == SURFACEPOINT && pi_to_face[pi]==-1) { pi_to_face[pi] = face->nr; tree.Insert(mesh[pi], pi); pi_of_face[face->nr].Append(pi); } } } auto & mesh_ident = mesh.GetIdentifications(); for(auto & face : faces) for(auto & ident : face->identifications) { if(ident.from == face.get()) for(auto pi : pi_of_face[face->nr]) { auto pi_other = tree.Find(ident.trafo(mesh[pi])); mesh_ident.Add(pi, pi_other, ident.name, ident.type); } } } mesh.CalcSurfacesOfNode(); multithread.task = savetask; } void NetgenGeometry :: MapSurfaceMesh( Mesh & mesh, const GeometryFace & dst ) const { static Timer timer("MapSurfaceMesh"); RegionTimer rt(timer); const auto & src = dynamic_cast(*dst.primary); auto trafo = dst.primary_to_me; PrintMessage(2, "Map face ", src.nr+1, " -> ", dst.nr+1); // point map from src to dst Array pmap(mesh.Points().Size()); pmap = PointIndex::INVALID; // first map points on edges (mapped points alread in mesh, use search tree) Array is_point_in_tree(mesh.Points().Size()); is_point_in_tree = false; PointTree tree( bounding_box ); for (Segment & seg : src.GetBoundary(mesh)) for(auto i : Range(2)) { auto pi = seg[i]; if(!is_point_in_tree[pi]) { tree.Insert(trafo(mesh[pi]), pi); is_point_in_tree[pi] = true; } } for (Segment & seg : dst.GetBoundary(mesh)) for(auto i : Range(2)) { auto pi = seg[i]; if(pmap[pi].IsValid()) continue; pmap[tree.Find(mesh[pi])] = pi; } xbool do_invert = maybe; // now insert mapped surface elements for(auto sei : mesh.SurfaceElements().Range()) { auto sel = mesh[sei]; if(sel.GetIndex() != src.nr+1) continue; if(do_invert.IsMaybe()) { auto n_src = src.GetNormal(mesh[sel[0]]); auto n_dist = dst.GetNormal(mesh[sel[0]]); Mat<3> normal_matrix; CalcInverse(Trans(trafo.GetMatrix()), normal_matrix); do_invert = n_src * (normal_matrix * n_dist) < 0.0; } auto sel_new = sel; sel_new.SetIndex(dst.nr+1); for(auto i : Range(sel.PNums())) { auto pi = sel[i]; if(!pmap[pi].IsValid()) { pmap[pi] = mesh.AddPoint(trafo(mesh[pi]), 1, SURFACEPOINT); } sel_new[i] = pmap[pi]; } if(do_invert.IsTrue()) sel_new.Invert(); for(auto i : Range(sel.PNums())) dst.CalcPointGeomInfo(mesh[sel_new[i]], sel_new.GeomInfo()[i]); mesh.AddSurfaceElement(sel_new); } } void NetgenGeometry :: OptimizeSurface(Mesh& mesh, const MeshingParameters& mparam) const { const auto savetask = multithread.task; multithread.task = "Optimizing surface"; static Timer timer_opt2d("Optimization 2D"); RegionTimer reg(timer_opt2d); auto meshopt = MeshOptimize2d(mesh); for(auto i : Range(mparam.optsteps2d)) { PrintMessage(3, "Optimization step ", i); int innerstep = 0; for(auto optstep : mparam.optimize2d) { multithread.percent = 100. * (double(innerstep++)/mparam.optimize2d.size() + i)/mparam.optsteps2d; switch(optstep) { case 's': meshopt.EdgeSwapping(0); break; case 'S': meshopt.EdgeSwapping(1); break; case 'm': meshopt.ImproveMesh(mparam); break; case 'c': meshopt.CombineImprove(); break; } } } mesh.CalcSurfacesOfNode(); mesh.Compress(); multithread.task = savetask; } void NetgenGeometry :: FinalizeMesh(Mesh& mesh) const { for (int i = 0; i < mesh.GetNDomains(); i++) if (auto name = solids[i]->properties.name) mesh.SetMaterial (i+1, *name); } shared_ptr GeometryRegisterArray :: LoadFromMeshFile (istream & ist) const { if (!ist.good()) return nullptr; string token; ist >> token; if(token == "TextOutArchive") { NetgenGeometry *geo = nullptr; size_t string_length; ist >> string_length; string buffer(string_length+1, '\0'); ist.read(&buffer[0], string_length); auto ss = make_shared(buffer); TextInArchive in(ss); in & geo; return shared_ptr(geo); } for (int i = 0; i < Size(); i++) { NetgenGeometry * hgeom = (*this)[i]->LoadFromMeshFile (ist, token); if (hgeom) return shared_ptr(hgeom); } return nullptr; } int NetgenGeometry :: GenerateMesh (shared_ptr & mesh, MeshingParameters & mp) { multithread.percent = 0; // copy so that we don't change them outside MeshingParameters mparam = mp; if(restricted_h.Size()) for(const auto& [pnt, maxh] : restricted_h) mparam.meshsize_points.Append({pnt, maxh}); if(mparam.perfstepsstart <= MESHCONST_ANALYSE) { if(!mesh) mesh = make_shared(); mesh->geomtype = GetGeomType(); Analyse(*mesh, mparam); } if(multithread.terminate || mparam.perfstepsend <= MESHCONST_ANALYSE) return 0; if(mparam.perfstepsstart <= MESHCONST_MESHEDGES) FindEdges(*mesh, mparam); if(multithread.terminate || mparam.perfstepsend <= MESHCONST_MESHEDGES) return 0; if (mparam.perfstepsstart <= MESHCONST_MESHSURFACE) { MeshSurface(*mesh, mparam); } if (multithread.terminate || mparam.perfstepsend <= MESHCONST_OPTSURFACE) return 0; if(dimension == 2) { FinalizeMesh(*mesh); mesh->SetDimension(2); return 0; } if(mparam.perfstepsstart <= MESHCONST_MESHVOLUME) { multithread.task = "Volume meshing"; MESHING3_RESULT res = MeshVolume (mparam, *mesh); if (res != MESHING3_OK) return 1; if (multithread.terminate) return 0; RemoveIllegalElements (*mesh); if (multithread.terminate) return 0; MeshQuality3d (*mesh); } if (multithread.terminate || mparam.perfstepsend <= MESHCONST_MESHVOLUME) return 0; if (mparam.perfstepsstart <= MESHCONST_OPTVOLUME) { multithread.task = "Volume optimization"; OptimizeVolume (mparam, *mesh); if (multithread.terminate) return 0; } FinalizeMesh(*mesh); return 0; } void NetgenGeometry :: Save (string filename) const { throw NgException("Cannot save geometry - no geometry available"); } static RegisterClassForArchive regnggeo; }