#ifndef NOTCL #include #include "incvis.hpp" #include #include #include #include // #include #include namespace netgen { extern AutoPtr mesh; extern VisualSceneMesh vsmesh; VisualSceneSolution :: SolData :: SolData () : name (0), data (0), solclass(0) { ; } VisualSceneSolution :: SolData :: ~SolData () { delete [] name; delete data; delete solclass; } VisualSceneSolution :: VisualSceneSolution () : VisualScene() { surfellist = 0; linelist = 0; clipplanelist = 0; isolinelist = 0; clipplane_isolinelist = 0; surface_vector_list = 0; cone_list = 0; isosurface_list = 0; fieldlineslist = 0; pointcurvelist = 0; num_fieldlineslists = 0; surfeltimestamp = GetTimeStamp(); surfellinetimestamp = GetTimeStamp(); clipplanetimestamp = GetTimeStamp(); solutiontimestamp = GetTimeStamp(); fieldlinestimestamp = GetTimeStamp(); pointcurve_timestamp = GetTimeStamp(); surface_vector_timestamp = GetTimeStamp(); isosurface_timestamp = GetTimeStamp(); timetimestamp = GetTimeStamp(); AddVisualizationScene ("solution", &vssolution); } VisualSceneSolution :: ~VisualSceneSolution () { ClearSolutionData(); } void VisualSceneSolution :: AddSolutionData (SolData * sd) { NgLock meshlock1 (mesh->MajorMutex(), 1); int funcnr = -1; for (int i = 0; i < soldata.Size(); i++) { if (strcmp (soldata[i]->name, sd->name) == 0) { delete soldata[i]; soldata[i] = sd; funcnr = i; break; } } if (funcnr == -1) { soldata.Append (sd); funcnr = soldata.Size()-1; } SolData * nsd = soldata[funcnr]; nsd->size = 0; if (mesh) { switch (nsd->soltype) { case SOL_NODAL: nsd->size = mesh->GetNV(); break; case SOL_ELEMENT: nsd->size = mesh->GetNE(); break; case SOL_SURFACE_ELEMENT: nsd->size = mesh->GetNSE(); break; case SOL_NONCONTINUOUS: { switch (nsd->order) { case 0: nsd->size = mesh->GetNE(); break; case 1: nsd->size = 6 * mesh->GetNE(); break; case 2: nsd->size = 18 * mesh->GetNE(); break; } break; } case SOL_SURFACE_NONCONTINUOUS: { switch (nsd->order) { case 0: nsd->size = mesh->GetNSE(); break; case 1: nsd->size = 4 * mesh->GetNSE(); break; case 2: nsd->size = 9 * mesh->GetNSE(); break; } break; } } solutiontimestamp = NextTimeStamp(); } } void VisualSceneSolution :: ClearSolutionData () { for (int i = 0; i < soldata.Size(); i++) delete soldata[i]; soldata.SetSize (0); } void VisualSceneSolution :: UpdateSolutionTimeStamp () { solutiontimestamp = NextTimeStamp(); } VisualSceneSolution::SolData * VisualSceneSolution :: GetSolData (int i) { if (i >= 0 && i < soldata.Size()) return soldata[i]; else return NULL; } void VisualSceneSolution :: SaveSolutionData (const char * filename) { PrintMessage (1, "Write solution data to file ", filename); if (strcmp (&filename[strlen(filename)-3], "sol") == 0) { ofstream ost(filename); for (int i = 0; i < soldata.Size(); i++) { const SolData & sol = *soldata[i]; ost << "solution " << sol.name << " -size=" << sol.size << " -components=" << sol.components << " -order=" << sol.order; if (sol.iscomplex) ost << " -complex"; switch (sol.soltype) { case SOL_NODAL: ost << " -type=nodal"; break; case SOL_ELEMENT: ost << " -type=element"; break; case SOL_SURFACE_ELEMENT: ost << " -type=surfaceelement"; break; case SOL_NONCONTINUOUS: ost << " -type=noncontinuous"; break; case SOL_SURFACE_NONCONTINUOUS: ost << " -type=surfacenoncontinuous"; break; } ost << endl; for (int j = 0; j < sol.size; j++) { for (int k = 0; k < sol.components; k++) ost << sol.data[j*sol.dist+k] << " "; ost << "\n"; } } } if (strcmp (&filename[strlen(filename)-3], "vtk") == 0) { string surf_fn = filename; surf_fn.erase (strlen(filename)-4); surf_fn += "_surf.vtk"; cout << "surface mesh = " << surf_fn << endl; ofstream surf_ost(surf_fn.c_str()); surf_ost << "# vtk DataFile Version 1.0\n" << "NGSolve surface mesh\n" << "ASCII\n" << "DATASET UNSTRUCTURED_GRID\n\n"; surf_ost << "POINTS " << mesh->GetNP() << " float\n"; for (PointIndex pi = PointIndex::BASE; pi < mesh->GetNP()+PointIndex::BASE; pi++) { const MeshPoint & mp = (*mesh)[pi]; surf_ost << mp(0) << " " << mp(1) << " " << mp(2) << "\n"; } int cntverts = 0; for (SurfaceElementIndex sei = 0; sei < mesh->GetNSE(); sei++) cntverts += 1 + (*mesh)[sei].GetNP(); surf_ost << "\nCELLS " << mesh->GetNSE() << " " << cntverts << "\n"; for (SurfaceElementIndex sei = 0; sei < mesh->GetNSE(); sei++) { const Element2d & el = (*mesh)[sei]; surf_ost << el.GetNP(); for (int j = 0; j < el.GetNP(); j++) surf_ost << " " << el[j] - PointIndex::BASE; surf_ost << "\n"; } surf_ost << "\nCELL_TYPES " << mesh->GetNSE() << "\n"; for (SurfaceElementIndex sei = 0; sei < mesh->GetNSE(); sei++) { const Element2d & el = (*mesh)[sei]; switch (el.GetType()) { case QUAD: surf_ost << 9; break; case TRIG: surf_ost << 5; break; } surf_ost << "\n"; } ofstream ost(filename); ost << "# vtk DataFile Version 1.0\n" << "NGSolve solution\n" << "ASCII\n" << "DATASET UNSTRUCTURED_GRID\n\n"; ost << "POINTS " << mesh->GetNP() << " float\n"; for (PointIndex pi = PointIndex::BASE; pi < mesh->GetNP()+PointIndex::BASE; pi++) { const MeshPoint & mp = (*mesh)[pi]; ost << mp(0) << " " << mp(1) << " " << mp(2) << "\n"; } cntverts = 0; for (ElementIndex ei = 0; ei < mesh->GetNE(); ei++) cntverts += 1 + (*mesh)[ei].GetNP(); ost << "\nCELLS " << mesh->GetNE() << " " << cntverts << "\n"; for (ElementIndex ei = 0; ei < mesh->GetNE(); ei++) { const Element & el = (*mesh)[ei]; ost << el.GetNP(); for (int j = 0; j < el.GetNP(); j++) ost << " " << el[j] - PointIndex::BASE; ost << "\n"; } ost << "\nCELL_TYPES " << mesh->GetNE() << "\n"; for (ElementIndex ei = 0; ei < mesh->GetNE(); ei++) { const Element & el = (*mesh)[ei]; switch (el.GetType()) { case TET: ost << 10; break; } ost << "\n"; } ost << "CELL_DATA " << mesh->GetNE() << "\n"; for (int i = 0; i < soldata.Size(); i++) { ost << "VECTORS bfield float\n"; SolutionData & sol = *(soldata[i] -> solclass); double values[3]; for (int elnr = 0; elnr < mesh->GetNE(); elnr++) { sol.GetValue (elnr, 0.25, 0.25, 0.25, values); ost << values[0] << " " << values[1] << " " << values[2] << "\n"; } } /* ost << "POINT_DATA " << mesh->GetNP() << "\n"; for (int i = 0; i < soldata.Size(); i++) { ost << "VECTORS bfield float\n"; SolutionData & sol = *(soldata[i] -> solclass); for (PointIndex pi = PointIndex::BASE; pi < mesh->GetNP()+PointIndex::BASE; pi++) { double values[3], sumvalues[3] = { 0, 0, 0 }; FlatArray els = mesh->GetTopology().GetVertexElements(pi); for (int j = 0; j < els.Size(); j++) { sol.GetValue (els[j]-1, 0.25, 0.25, 0.25, values); for (int k = 0; k < 3; k++) sumvalues[k] += values[k]; } for (int k = 0; k < 3; k++) sumvalues[k] /= els.Size(); ost << sumvalues[0] << " " << sumvalues[1] << " " << sumvalues[2] << "\n"; } } */ } } void VisualSceneSolution :: DrawScene () { clock_t starttime, endtime; starttime = clock(); if (!mesh) { VisualScene::DrawScene(); return; } static NgLock mem_lock(mem_mutex); mem_lock.Lock(); NgLock meshlock1 (mesh->MajorMutex(), true); NgLock meshlock (mesh->Mutex(), true); BuildScene(); CreateTexture (numtexturecols, lineartexture, GL_MODULATE); glClearColor(backcolor, backcolor, backcolor, 1); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); SetLight(); glPushMatrix(); glMultMatrixf (transformationmat); glMatrixMode (GL_MODELVIEW); glPolygonMode (GL_FRONT_AND_BACK, GL_FILL); glPolygonOffset (1, 1); glEnable (GL_POLYGON_OFFSET_FILL); glEnable (GL_COLOR_MATERIAL); if (usetexture) { if (usetexture == 1) { glEnable (GL_TEXTURE_1D); glDisable (GL_TEXTURE_2D); } else { glEnable (GL_TEXTURE_2D); glDisable (GL_TEXTURE_1D); } glMatrixMode (GL_TEXTURE); glLoadIdentity(); if (usetexture == 1) { double hmax = maxval; double hmin = minval; if (invcolor) Swap (hmax, hmin); if (fabs (hmax - hmin) > 1e-30) glScaled (1.0 / (hmin - hmax), 0, 0); else glScaled (1e30, 0, 0); glTranslatef (-hmax, 0, 0); } else { glTranslatef (0.5, 0, 0); glRotatef(360 * vssolution.time, 0, 0, -1); if (fabs (maxval) > 1e-10) glScalef(0.5/maxval, 0.5/maxval, 0.5/maxval); else glScalef (1e10, 1e10, 1e10); } glMatrixMode (GL_MODELVIEW); } if (vispar.drawfilledtrigs || vispar.drawtetsdomain > 0 || vispar.drawdomainsurf > 0) { SetClippingPlane (); glCallList (surfellist); glCallList (surface_vector_list); glDisable(GL_CLIP_PLANE0); } if (showclipsolution) glCallList (clipplanelist); if (draw_fieldlines) { SetClippingPlane(); if (num_fieldlineslists <= 1) glCallList (fieldlineslist); else { // animated int start = int (time / 10 * num_fieldlineslists); for (int ln = 0; ln < 10; ln++) { int nr = fieldlineslist + (start + ln) % num_fieldlineslists; glCallList (nr); } } glDisable(GL_CLIP_PLANE0); } if(drawpointcurves) { glCallList(pointcurvelist); } glMatrixMode (GL_TEXTURE); glLoadIdentity(); glMatrixMode (GL_MODELVIEW); if (usetexture) { glDisable (GL_TEXTURE_1D); glDisable (GL_TEXTURE_2D); } glDisable (GL_POLYGON_OFFSET_FILL); glDisable (GL_COLOR_MATERIAL); if (draw_isosurface) glCallList (isosurface_list); GLfloat matcol0[] = { 0, 0, 0, 1 }; glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, matcol0); glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, matcol0); glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, matcol0); glPolygonMode (GL_FRONT_AND_BACK, GL_LINE); glLineWidth (1.0f); glColor3f (0.0f, 0.0f, 0.0f); glDisable (GL_LINE_SMOOTH); if (vispar.drawoutline && !numisolines) { SetClippingPlane (); glCallList (linelist); glDisable(GL_CLIP_PLANE0); } if (numisolines) { SetClippingPlane (); glCallList (isolinelist); glDisable(GL_CLIP_PLANE0); glCallList (clipplane_isolinelist); } glPopMatrix(); glDisable(GL_CLIP_PLANE0); DrawColorBar (minval, maxval, logscale, lineartexture); if (vispar.drawcoordinatecross) DrawCoordinateCross (); DrawNetgenLogo (); glFinish(); // delete lock; mem_lock.UnLock(); endtime = clock(); // cout << 1.0 / (double(endtime - starttime)/CLOCKS_PER_SEC) << " frames/sec" << endl; } void VisualSceneSolution :: RealVec3d (const double * values, Vec3d & v, bool iscomplex, bool imag) { if (!iscomplex) { v.X() = values[0]; v.Y() = values[1]; v.Z() = values[2]; } else { if (!imag) { v.X() = values[0]; v.Y() = values[2]; v.Z() = values[4]; } else { v.X() = values[1]; v.Y() = values[3]; v.Z() = values[5]; } } } void VisualSceneSolution :: RealVec3d (const double * values, Vec3d & v, bool iscomplex, double phaser, double phasei) { if (!iscomplex) { v.X() = values[0]; v.Y() = values[1]; v.Z() = values[2]; } else { for (int i = 0; i < 3; i++) v.X(i+1) = phaser * values[2*i] + phasei * values[2*i+1]; } } void VisualSceneSolution :: BuildScene (int zoomall) { if (!mesh) { VisualScene::BuildScene (zoomall); return; } if (!cone_list) { cone_list = glGenLists (1); glNewList (cone_list, GL_COMPILE); DrawCone (Point<3> (0,0,0), Point<3> (0,0,1), 0.4); glEndList(); } vispar.colormeshsize = 1; // recalc clipping plane SetClippingPlane (); glDisable(GL_CLIP_PLANE0); SolData * sol = NULL; SolData * vsol = NULL; if (scalfunction != -1) sol = soldata[scalfunction]; if (vecfunction != -1) vsol = soldata[vecfunction]; if (mesh->GetTimeStamp () > solutiontimestamp) { sol = NULL; vsol = NULL; } if (sol && sol->solclass) sol->solclass->SetMultiDimComponent (multidimcomponent); if (vsol && vsol->solclass) vsol->solclass->SetMultiDimComponent (multidimcomponent); if (!autoscale || !sol) { minval = mminval; maxval = mmaxval; } else { if (mesh->GetTimeStamp () > surfeltimestamp || vispar.clipplanetimestamp > clipplanetimestamp || solutiontimestamp > surfeltimestamp) { GetMinMax (scalfunction, scalcomp, minval, maxval); } } if (mesh->GetTimeStamp() > surfeltimestamp || solutiontimestamp > surfeltimestamp || zoomall) { if (mesh->GetTimeStamp() > surfeltimestamp || zoomall) { // mesh has changed Point3d pmin, pmax; static double oldrad = 0; mesh->GetBox (pmin, pmax, -1); center = Center (pmin, pmax); rad = 0.5 * Dist (pmin, pmax); glEnable (GL_NORMALIZE); if (rad > 1.5 * oldrad || mesh->GetMajorTimeStamp() > surfeltimestamp || zoomall) { CalcTransformationMatrices(); oldrad = rad; } } DrawSurfaceElements(); surfeltimestamp = max2 (solutiontimestamp, mesh->GetTimeStamp()); } if (mesh->GetTimeStamp() > surfellinetimestamp || subdivision_timestamp > surfellinetimestamp || (deform && solutiontimestamp > surfellinetimestamp) || zoomall) { if (linelist) glDeleteLists (linelist, 1); linelist = glGenLists (1); glNewList (linelist, GL_COMPILE); DrawSurfaceElementLines(); glEndList (); surfellinetimestamp = max2 (solutiontimestamp, mesh->GetTimeStamp()); } if (mesh->GetTimeStamp() > surface_vector_timestamp || solutiontimestamp > surface_vector_timestamp || zoomall) { if (surface_vector_list) glDeleteLists (surface_vector_list, 1); surface_vector_list = glGenLists (1); glNewList (surface_vector_list, GL_COMPILE); glEnable (GL_NORMALIZE); DrawSurfaceVectors(); glEndList (); surface_vector_timestamp = max2 (mesh->GetTimeStamp(), solutiontimestamp); } if (clipplanetimestamp < vispar.clipplanetimestamp || clipplanetimestamp < solutiontimestamp) { // cout << "clipsolution = " << clipsolution << endl; if (vispar.clipenable && clipsolution == 2) { // lock->UnLock(); NgLock mlock (mesh->Mutex(), 0); mlock.UnLock(); mesh->BuildElementSearchTree(); mlock.Lock(); // lock->Lock(); } if (clipplanelist) glDeleteLists (clipplanelist, 1); clipplanelist = glGenLists (1); glNewList (clipplanelist, GL_COMPILE); if (vispar.clipenable && clipsolution == 1 && sol) { glDisable(GL_CLIP_PLANE0); Array cpt; Array pts; GetClippingPlaneTrigs (cpt, pts); glNormal3d (-clipplane[0], -clipplane[1], -clipplane[2]); glColor3d (1.0, 1.0, 1.0); glDisable (GL_TEXTURE_1D); glDisable (GL_TEXTURE_2D); if (usetexture == 1) glEnable (GL_TEXTURE_1D); if (usetexture == 2) glEnable (GL_TEXTURE_2D); glBegin (GL_TRIANGLES); // for (int i = 0; i < cpt.Size(); i++) // DrawClipPlaneTrig (sol, scalcomp, cpt[i], 0); DrawClipPlaneTrigs (sol, scalcomp, cpt, pts); glEnd(); glEnable(GL_CLIP_PLANE0); } if (vispar.clipenable && clipsolution == 2 && vsol) { if (autoscale) GetMinMax (vecfunction, 0, minval, maxval); bool drawelem; Array cpp; GetClippingPlaneGrid (cpp); for (int i = 0; i < cpp.Size(); i++) { const ClipPlanePoint & p = cpp[i]; double values[6]; Vec3d v; drawelem = GetValues (vsol, p.elnr, p.lami(0), p.lami(1), p.lami(2), values); RealVec3d (values, v, vsol->iscomplex, imag_part); double val = v.Length(); // "drawelem": added 07.04.2004 (FB) if (drawelem && val > 1e-10 * maxval) { v *= (rad / val / gridsize * 0.5); SetOpenGlColor (val, minval, maxval, logscale); DrawCone (p.p, p.p+v, rad / gridsize * 0.2); } } } glEndList (); } if (mesh->GetTimeStamp() > isosurface_timestamp || solutiontimestamp > isosurface_timestamp || zoomall) { if (isosurface_list) glDeleteLists (isosurface_list, 1); isosurface_list = glGenLists (1); glNewList (isosurface_list, GL_COMPILE); glEnable (GL_NORMALIZE); DrawIsoSurface(sol, vsol, scalcomp); glEndList (); isosurface_timestamp = max2 (mesh->GetTimeStamp(), solutiontimestamp); } if(mesh->GetTimeStamp() > pointcurve_timestamp || solutiontimestamp > pointcurve_timestamp) { if(pointcurvelist) glDeleteLists(pointcurvelist,1); if(mesh->GetNumPointCurves() > 0) { pointcurvelist = glGenLists(1); glNewList(pointcurvelist,GL_COMPILE); //glColor3f (1.0f, 0.f, 0.f); for(int i=0; iGetNumPointCurves(); i++) { Box3d box; box.SetPoint(mesh->GetPointCurvePoint(i,0)); for(int j=1; jGetNumPointsOfPointCurve(i); j++) box.AddPoint(mesh->GetPointCurvePoint(i,j)); double diam = box.CalcDiam(); double thick = min2(0.1*diam, 0.001*rad); double red,green,blue; mesh->GetPointCurveColor(i,red,green,blue); glColor3f (red, green, blue); for(int j=0; jGetNumPointsOfPointCurve(i)-1; j++) { DrawCylinder(mesh->GetPointCurvePoint(i,j), mesh->GetPointCurvePoint(i,j+1), thick); } } glEndList(); } } if ( numisolines && (clipplanetimestamp < vispar.clipplanetimestamp || clipplanetimestamp < solutiontimestamp) ) { if (isolinelist) glDeleteLists (isolinelist, 1); isolinelist = glGenLists (1); glNewList (isolinelist, GL_COMPILE); Point<3> points[1100]; double values[1100]; int nse = mesh->GetNSE(); CurvedElements & curv = mesh->GetCurvedElements(); if (sol) { glBegin (GL_LINES); for (SurfaceElementIndex sei = 0; sei < nse; sei++) { const Element2d & el = (*mesh)[sei]; #ifdef PARALLEL // parallel visualization --> dont draw ghost elements if ( el . IsGhost() ) continue; #endif bool curved = curv.IsHighOrder(); // && curv.IsSurfaceElementCurved(sei); if (el.GetType() == TRIG || el.GetType() == TRIG6) { Point<3> lp1, lp2, lp3; if (!curved) { GetPointDeformation (el[0]-1, lp1); GetPointDeformation (el[1]-1, lp2); GetPointDeformation (el[2]-1, lp3); } int n = 1 << subdivisions; int ii = 0; int ix, iy; for (iy = 0; iy <= n; iy++) for (ix = 0; ix <= n-iy; ix++) { double x = double(ix) / n; double y = double(iy) / n; // TODO: consider return value (bool: draw/don't draw element) GetSurfValue (sol, sei, x, y, scalcomp, values[ii]); Point<2> xref(x,y); if (curved) mesh->GetCurvedElements(). CalcSurfaceTransformation (xref, sei, points[ii]); else points[ii] = lp3 + x * (lp1-lp3) + y * (lp2-lp3); if (deform) { points[ii] += GetSurfDeformation (sei, x, y); } ii++; } ii = 0; for (iy = 0; iy < n; iy++, ii++) for (ix = 0; ix < n-iy; ix++, ii++) { int index[] = { ii, ii+1, ii+n-iy+1, ii+1, ii+n-iy+2, ii+n-iy+1 }; DrawIsoLines (points[index[0]], points[index[1]], points[index[2]], values[index[0]], values[index[1]], values[index[2]]); // minval, maxval, numisolines); if (ix < n-iy-1) DrawIsoLines (points[index[3]], points[index[4]], points[index[5]], values[index[3]], values[index[4]], values[index[5]]); // minval, maxval, numisolines); } } if (el.GetType() == QUAD || el.GetType() == QUAD6 || el.GetType() == QUAD8 ) { Point<3> lpi[4]; Vec<3> vx, vy, vtwist, def; if (!curved) { for (int j = 0; j < 4; j++) GetPointDeformation (el[j]-1, lpi[j]); vx = lpi[1]-lpi[0]; vy = lpi[3]-lpi[0]; vtwist = (lpi[0]-lpi[1]) + (lpi[2]-lpi[3]); } int n = 1 << subdivisions; int ix, iy, ii = 0; for (iy = 0; iy <= n; iy++) for (ix = 0; ix <= n; ix++, ii++) { double x = double(ix) / n; double y = double(iy) / n; // TODO: consider return value (bool: draw/don't draw element) GetSurfValue (sol, sei, x, y, scalcomp, values[ii]); Point<2> xref(x,y); if (curved) mesh->GetCurvedElements(). CalcSurfaceTransformation (xref, sei, points[ii]); else points[ii] = lpi[0] + x * vx + y * vy + x*y * vtwist; if (deform) points[ii] += GetSurfDeformation (sei, x, y); } ii = 0; for (iy = 0; iy < n; iy++, ii++) for (ix = 0; ix < n; ix++, ii++) { DrawIsoLines (points[ii], points[ii+1], points[ii+n+1], values[ii], values[ii+1], values[ii+n+1]); // minval, maxval, numisolines); DrawIsoLines (points[ii+1], points[ii+n+2], points[ii+n+1], values[ii+1], values[ii+n+2], values[ii+n+1]); // minval, maxval, numisolines); } } } glEnd(); } glEndList (); if (clipplane_isolinelist) glDeleteLists (clipplane_isolinelist, 1); if (vispar.clipenable && clipsolution == 1 && sol) { clipplane_isolinelist = glGenLists (1); glNewList (clipplane_isolinelist, GL_COMPILE); Array cpt; Array pts; GetClippingPlaneTrigs (cpt, pts); bool drawelem; glNormal3d (-clipplane[0], -clipplane[1], -clipplane[2]); if (numisolines) for (int i = 0; i < cpt.Size(); i++) { const ClipPlaneTrig & trig = cpt[i]; double vali[3]; for (int j = 0; j < 3; j++) { Point<3> lami = pts[trig.points[j].pnr].lami; drawelem = GetValue (sol, trig.elnr, lami(0), lami(1), lami(2), scalcomp, vali[j]); } if ( drawelem ) DrawIsoLines (pts[trig.points[0].pnr].p, pts[trig.points[1].pnr].p, pts[trig.points[2].pnr].p, // trig.points[1].p, // trig.points[2].p, vali[0], vali[1], vali[2]); // , minval, maxval, numisolines); } glEndList (); } glEnd(); } clipplanetimestamp = max2 (vispar.clipplanetimestamp, solutiontimestamp); } void VisualSceneSolution :: DrawSurfaceElements () { static int timer = NgProfiler::CreateTimer ("Solution::DrawSurfaceElements"); NgProfiler::RegionTimer reg (timer); #ifdef PARALLELGL if (id == 0 && ntasks > 1) { InitParallelGL(); par_surfellists.SetSize (ntasks); for ( int dest = 1; dest < ntasks; dest++ ) { MyMPI_Send ("redraw", dest); MyMPI_Send ("solsurfellist", dest); } for ( int dest = 1; dest < ntasks; dest++ ) MyMPI_Recv (par_surfellists[dest], dest); if (surfellist) glDeleteLists (surfellist, 1); surfellist = glGenLists (1); glNewList (surfellist, GL_COMPILE); for ( int dest = 1; dest < ntasks; dest++ ) glCallList (par_surfellists[dest]); glEndList(); return; } #endif if (surfellist) glDeleteLists (surfellist, 1); surfellist = glGenLists (1); glNewList (surfellist, GL_COMPILE); const SolData * sol = NULL; const SolData * vsol = NULL; bool drawelem = 0; if (scalfunction != -1) sol = soldata[scalfunction]; if (vecfunction != -1) vsol = soldata[vecfunction]; if (mesh->GetTimeStamp () > solutiontimestamp) { sol = NULL; vsol = NULL; } glLineWidth (1.0f); Array > pref; Array > points; Array > dxdxis; /* Point<2> pref[1100]; Point<3> points[1100]; Mat<3,2> dxdxis[1100]; */ Vec<3> nvs[1100]; double values[1100]; double valuesc[1100][2]; int nse = mesh->GetNSE(); if ( usetexture ) glColor3d (1.0, 1.0, 1.0); else glColor3d (0.6, 0.6, 0.6); CurvedElements & curv = mesh->GetCurvedElements(); int n = 1 << subdivisions; int npt = sqr(n+1); pref.SetSize (npt); points.SetSize (npt); dxdxis.SetSize (npt); glBegin (GL_QUADS); for (SurfaceElementIndex sei = 0; sei < nse; sei++) { const Element2d & el = (*mesh)[sei]; #ifdef PARALLEL // parallel visualization --> dont draw ghost elements if ( el . IsGhost() ) continue; #endif if(vispar.drawdomainsurf > 0 && ((mesh->GetDimension() == 3 && vispar.drawdomainsurf != mesh->GetFaceDescriptor(el.GetIndex()).DomainIn() && vispar.drawdomainsurf != mesh->GetFaceDescriptor(el.GetIndex()).DomainOut()) || (mesh->GetDimension() == 2 && el.GetIndex() != vispar.drawdomainsurf))) continue; if ( el.GetType() == QUAD || el.GetType() == QUAD6 ) { bool curved = curv.IsHighOrder(); // && curv.IsSurfaceElementCurved(sei); Point<3> lpi[4]; Vec<3> vx, vy, vtwist; if (! curved) { for (int k = 0; k < 4; k++) GetPointDeformation (el[k]-1, lpi[k]); vx = lpi[1]-lpi[0]; vy = lpi[3]-lpi[0]; vtwist = (lpi[0]-lpi[1]) + (lpi[2]-lpi[3]); } // Vec<3> nv = Cross (lpi[1]-lpi[0], Center (lpi[2],lpi[3]) - lpi[0]); // nv.Normalize(); // glNormal3dv (nv); /* for (int iy = 0, ii = 0; iy <= n; iy++) for (int ix = 0; ix <= n; ix++, ii++) { double x = double(ix) / n; double y = double(iy) / n; if (sol && sol->draw_surface) { if (usetexture == 2) drawelem = GetSurfValueComplex (sol, sei, x, y, scalcomp, valuesc[ii][0], valuesc[ii][1]); else drawelem = GetSurfValue (sol, sei, x, y, scalcomp, values[ii]); } if (curved) { Point<2> xref(x,y); Mat<3,2> dxdxi; mesh->GetCurvedElements(). CalcSurfaceTransformation (xref, sei, points[ii], dxdxi); nvs[ii] = Cross (dxdxi.Col(0), dxdxi.Col(1)); nvs[ii].Normalize(); } else { points[ii] = lpi[0] + x * vx + y * vy + x*y * vtwist; nvs[ii] = Cross (vx, vy); nvs[ii].Normalize(); } if (deform) { points[ii] += GetSurfDeformation (sei, x, y); } ii++; } */ for (int iy = 0, ii = 0; iy <= n; iy++) for (int ix = 0; ix <= n; ix++, ii++) pref[ii] = Point<2> (double(ix)/n, double(iy/n)); int npt = (n+1)*(n+1); if (curved) for (int ii = 0; ii < npt; ii++) { Point<2> xref = pref[ii]; Mat<3,2> dxdxi; mesh->GetCurvedElements(). CalcSurfaceTransformation (xref, sei, points[ii], dxdxi); nvs[ii] = Cross (dxdxi.Col(0), dxdxi.Col(1)); nvs[ii].Normalize(); } else { for (int ii = 0; ii < npt; ii++) { double x = pref[ii](0); double y = pref[ii](1); points[ii] = lpi[0] + x * vx + y * vy + x*y * vtwist; } Vec<3> nv = Cross (vx, vy); nv.Normalize(); for (int ii = 0; ii < npt; ii++) nvs[ii] = nv; } if (sol && sol->draw_surface) { if (usetexture == 2) for (int ii = 0; ii < npt; ii++) drawelem = GetSurfValueComplex (sol, sei, pref[ii](0), pref[ii](1), scalcomp, valuesc[ii][0], valuesc[ii][1]); else for (int ii = 0; ii < npt; ii++) drawelem = GetSurfValue (sol, sei, pref[ii](0), pref[ii](1), scalcomp, values[ii]); } if (deform) for (int ii = 0; ii < npt; ii++) points[ii] += GetSurfDeformation (sei, pref[ii](0), pref[ii](1)); int ii = 0; for (int iy = 0; iy < n; iy++, ii++) for (int ix = 0; ix < n; ix++, ii++) { double x = double(ix) / n; double y = double(iy) / n; int index[] = { ii, ii+1, ii+n+2, ii+n+1 }; for (int j = 0; j < 4; j++) { if (sol && sol->draw_surface) { if (usetexture == 2) { if(drawelem) glTexCoord2f ( valuesc[index[j]][0], valuesc[index[j]][1] ); else glTexCoord2f ( minval,minval); } else { if(drawelem) SetOpenGlColor (values[index[j]]); else glColor3d(0.6,0.6,0.6); } } glNormal3dv (nvs[index[j]]); glVertex3dv (points[index[j]]); } } } } glEnd(); n = 1 << subdivisions; double invn = 1.0 / n; npt = (n+1)*(n+2)/2; pref.SetSize ( npt ); points.SetSize ( npt ); dxdxis.SetSize ( npt ); for(SurfaceElementIndex sei = 0; sei < nse; sei++) { const Element2d & el = (*mesh)[sei]; #ifdef PARALLEL // parallel visualization --> dont draw ghost elements if ( el . IsGhost() ) continue; #endif // if ( mesh->GetFaceDescriptor(el.GetIndex()).BCProperty() != 1) continue; if(vispar.drawdomainsurf > 0 && ((mesh->GetDimension() == 3 && vispar.drawdomainsurf != mesh->GetFaceDescriptor(el.GetIndex()).DomainIn() && vispar.drawdomainsurf != mesh->GetFaceDescriptor(el.GetIndex()).DomainOut()) || (mesh->GetDimension() == 2 && el.GetIndex() != vispar.drawdomainsurf))) continue; if ( el.GetType() == TRIG || el.GetType() == TRIG6 ) { bool curved = curv.IsHighOrder(); // && curv.IsSurfaceElementCurved(sei); // if (el.GetType() == TRIG6) curved = true; Point<3> p1, p2, p3; Mat<3,2> dxdxi; if (! curved) { GetPointDeformation (el[0]-1, p1, sei); GetPointDeformation (el[1]-1, p2, sei); GetPointDeformation (el[2]-1, p3, sei); for (int i = 0; i < 3; i++) { dxdxi(i, 0) = p1(i)-p3(i); dxdxi(i, 1) = p2(i)-p3(i); } } /* for (int iy = 0, ii = 0; iy <= n; iy++) for (int ix = 0; ix <= n-iy; ix++, ii++) { Point<2> pref(ix*invn,iy*invn); if (curved) { mesh->GetCurvedElements(). CalcSurfaceTransformation (pref, sei, points[ii], dxdxi); } else { points[ii] = p3 + (invn*ix) * (p1-p3) + (invn*iy) * (p2-p3); } nvs[ii] = Cross (dxdxi.Col(0), dxdxi.Col(1)); nvs[ii].Normalize(); if (sol && sol->draw_surface) { if (usetexture == 2) drawelem = GetSurfValueComplex (sol, sei, ix*invn, iy*invn, scalcomp, valuesc[ii][0], valuesc[ii][1]); else drawelem = GetSurfValue (sol, sei, pref, points[ii], &dxdxi(0,0), scalcomp, values[ii]); } if (deform) points[ii] += GetSurfDeformation (sei, invn*ix, invn*iy); } */ for (int iy = 0, ii = 0; iy <= n; iy++) for (int ix = 0; ix <= n-iy; ix++, ii++) pref[ii] = Point<2> (ix*invn, iy*invn); npt = (n+1)*(n+2)/2; if (curved) { mesh->GetCurvedElements(). CalcMultiPointSurfaceTransformation (&pref, sei, &points, &dxdxis); for (int ii = 0; ii < npt; ii++) nvs[ii] = Cross (dxdxis[ii].Col(0), dxdxis[ii].Col(1)).Normalize(); } else { Vec<3> vx = (p1-p3); Vec<3> vy = (p2-p3); for (int ii = 0; ii < npt; ii++) { double x = pref[ii](0); double y = pref[ii](1); points[ii] = p3 + x * vx + y * vy; for (int j = 0; j < 3; j++) { dxdxis[ii](j,0) = vx(j); dxdxis[ii](j,1) = vy(j); } } Vec<3> nv = Cross (vx, vy).Normalize(); for (int ii = 0; ii < npt; ii++) nvs[ii] = nv; } if (sol && sol->draw_surface) { if (usetexture == 2) for (int ii = 0; ii < npt; ii++) drawelem = GetSurfValueComplex (sol, sei, pref[ii](0), pref[ii](1), scalcomp, valuesc[ii][0], valuesc[ii][1]); else for (int ii = 0; ii < npt; ii++) { drawelem = GetSurfValue (sol, sei, &pref[ii](0), &points[ii](0), &dxdxis[ii](0), scalcomp, values[ii]); // drawelem = GetSurfValue (sol, sei, pref[ii](0), pref[ii](1), scalcomp, values[ii]); } } if (deform) for (int ii = 0; ii < npt; ii++) points[ii] += GetSurfDeformation (sei, pref[ii](0), pref[ii](1)); for (int iy = 0, ii = 0; iy < n; iy++) { glBegin (GL_TRIANGLE_STRIP); for (int ix = 0; ix <= n-iy; ix++, ii++) for (int k = 0; k < 2; k++) { if (ix+iy+k > n) continue; int hi = (k == 0) ? ii : ii+n-iy+1; if (sol && sol->draw_surface) { switch (usetexture) { case 0: if(drawelem) SetOpenGlColor (values[hi]); else glColor3d(0.6,0.6,0.6); //SetOpenGlColor (minval); break; case 1: if(drawelem) glTexCoord1f ( values[hi] ); else glTexCoord1f (minval); break; case 2: if(drawelem) glTexCoord2f ( valuesc[hi][0], valuesc[hi][1] ); else glTexCoord2f ( minval,minval); break; } } glNormal3dv (nvs[hi]); glVertex3dv (points[hi]); } glEnd(); } } } glEndList (); #ifdef PARALLELGL glFinish(); if (id > 0) MyMPI_Send (surfellist, 0); #endif } // Bernstein Pol B_{n,i}(x) = n! / i! / (n-i)! (1-x)^{n-i} x^i static inline double Bernstein (int n, int i, double x) { double val = 1; for (int j = 1; j <= i; j++) val *= x; for (int j = 1; j <= n-i; j++) val *= (1-x) * (j+i) / j; return val; } void VisualSceneSolution :: DrawSurfaceElementLines () { glLineWidth (1.0f); glNormal3d (1, 0, 0); int nse = mesh->GetNSE(); CurvedElements & curv = mesh->GetCurvedElements(); bool curved = curv.IsHighOrder(); // && curv.IsSurfaceElementCurved(sei); for (SurfaceElementIndex sei = 0; sei < nse; sei++) { Element2d & el = (*mesh)[sei]; #ifdef PARALLEL // parallel visualization --> dont draw ghost elements if ( el . IsGhost() ) continue; #endif int nv; if (el.GetType() == TRIG || el.GetType() == TRIG6) nv = 3; else nv = 4; Point<3> p1, p2, p3, p4; if (!curved) { p1 = (*mesh)[el[0]]; p2 = (*mesh)[el[1]]; p3 = (*mesh)[el[2]]; if (nv == 4) p4 = (*mesh)[el[3]]; } int n = 1 << subdivisions; Point<3> pnt; for (int k = 0; k < nv; k++) { Point<2> p0; Vec<2> vtau; if (nv == 3) switch (k) { case 0: p0 = Point<2> (0,0); vtau = Vec<2> (1,0); break; case 1: p0 = Point<2> (1,0); vtau = Vec<2> (-1,1); break; case 2: p0 = Point<2> (0,1); vtau = Vec<2> (0,-1); break; } else switch (k) { case 0: p0 = Point<2> (0,0); vtau = Vec<2> (1,0); break; case 1: p0 = Point<2> (1,0); vtau = Vec<2> (0,1); break; case 2: p0 = Point<2> (1,1); vtau = Vec<2> (-1,0); break; case 3: p0 = Point<2> (0,1); vtau = Vec<2> (0,-1); break; } glBegin (GL_LINE_STRIP); if (curved) { ArrayMem, 65> ptsloc(n+1); ArrayMem, 65> ptsglob(n+1); for (int ix = 0; ix <= n; ix++) ptsloc[ix] = p0 + (double(ix) / n) * vtau; mesh->GetCurvedElements(). CalcMultiPointSurfaceTransformation (&ptsloc, sei, &ptsglob, 0); for (int ix = 0; ix <= n; ix++) { if (deform) ptsglob[ix] += GetSurfDeformation (sei, ptsloc[ix](0), ptsloc[ix](1)); glVertex3dv (ptsglob[ix]); } } else { for (int ix = 0; ix <= n; ix++) { Point<2> p = p0 + (double(ix) / n) * vtau; if (nv == 3) pnt = p3 + p(0) * (p1-p3) + p(1) * (p2-p3); else pnt = p1 + p(0) * (p2-p1) + p(1) * (p4-p1) + p(0)*p(1) * ( (p1-p2)+(p3-p4) ); if (deform) pnt += GetSurfDeformation (sei, p(0), p(1) ); glVertex3dv (pnt); } } glEnd (); } } } void VisualSceneSolution :: DrawIsoSurface(const SolData * sol, const SolData * vsol, int comp) { if (!draw_isosurface) return; if (!sol) return; glColor3d (1.0, 0, 0); glDisable (GL_TEXTURE_1D); glDisable (GL_TEXTURE_2D); glEnable (GL_COLOR_MATERIAL); /* GLfloat matcol0[] = { 0.5, 0, 0, 1 }; glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE); glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, matcol0); glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, matcol0); glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, matcol0); */ glBegin (GL_TRIANGLES); int np = mesh->GetNP(); int ne = mesh->GetNE(); const int edgei[6][2] = { { 0, 1 }, { 0, 2 }, { 0, 3 }, { 1, 2 }, { 1, 3 }, { 2, 3 } }; double edgelam[6]; Point<3> edgep[6]; Vec<3> normp[6]; double nodevali[4]; int cntce; int cpe1 = 0, cpe2 = 0, cpe3 = 0; int n = 1 << subdivisions; int n3 = (n+1)*(n+1)*(n+1); Array > grid(n3); Array > locgrid(n3); Array > trans(n3); Array val(n3); Array > grads(n3); Array compress(n3); MatrixFixWidth<3> pointmat(8); grads = Vec<3> (0.0); for (ElementIndex ei = 0; ei < ne; ei++) { // if(vispar.clipdomain > 0 && vispar.clipdomain != (*mesh)[ei].GetIndex()) continue; // if(vispar.donotclipdomain > 0 && vispar.donotclipdomain == (*mesh)[ei].GetIndex()) continue; #ifdef PARALLEL // parallel visualization --> dont draw ghost elements if ( (*mesh)[ei] . IsGhost() ) continue; #endif ELEMENT_TYPE type = (*mesh)[ei].GetType(); if (type == HEX || type == PRISM || type == TET || type == PYRAMID) { const Element & el = (*mesh)[ei]; int ii = 0; int cnt_valid = 0; for (int ix = 0; ix <= n; ix++) for (int iy = 0; iy <= n; iy++) for (int iz = 0; iz <= n; iz++, ii++) { Point<3> ploc; compress[ii] = ii; switch (type) { case PRISM: if (ix+iy <= n) { ploc = Point<3> (double(ix) / n, double(iy) / n, double(iz) / n); compress[ii] = cnt_valid; cnt_valid++; } else compress[ii] = -1; break; case TET: if (ix+iy+iz <= n) { ploc = Point<3> (double(ix) / n, double(iy) / n, double(iz) / n); compress[ii] = cnt_valid; cnt_valid++; } else compress[ii] = -1; break; case HEX: ploc = Point<3> (double(ix) / n, double(iy) / n, double(iz) / n); break; case PYRAMID: ploc = Point<3> (double(ix) / n * (1-double(iz)/n), double(iy) / n * (1-double(iz)/n), double(iz)/n); break; } if (compress[ii] != -1) locgrid[compress[ii]] = ploc; } if (type != TET && type != PRISM) cnt_valid = n3; if (mesh->GetCurvedElements().IsHighOrder() || 1) { mesh->GetCurvedElements(). CalcMultiPointElementTransformation (&locgrid, ei, &grid, &trans); } else { Vector shape(el.GetNP()); for (int k = 0; k < el.GetNP(); k++) for (int j = 0; j < 3; j++) pointmat(k,j) = (*mesh)[el[k]](j); for (int i = 0; i < cnt_valid; i++) { el.GetShapeNew (locgrid[i], shape); Point<3> pglob; for (int j = 0; j < 3; j++) { pglob(j) = 0; for (int k = 0; k < el.GetNP(); k++) pglob(j) += shape(k) * pointmat(k,j); } grid[i] = pglob; } } bool has_pos = 0, has_neg = 0; for (int i = 0; i < cnt_valid; i++) { GetValue (sol, ei, &locgrid[i](0), &grid[i](0), &trans[i](0), comp, val[i]); val[i] -= minval; if (vsol) GetValues (vsol, ei, &locgrid[i](0), &grid[i](0), &trans[i](0), &grads[i](0)); grads[i] *= -1; if (val[i] > 0) has_pos = 1; else has_neg = 1; } if (!has_pos || !has_neg) continue; for (int ix = 0; ix < n; ix++) for (int iy = 0; iy < n; iy++) for (int iz = 0; iz < n; iz++) { int base = iz + (n+1)*iy + (n+1)*(n+1)*ix; int pi[8] = { base, base+(n+1)*(n+1), base+(n+1)*(n+1)+(n+1), base+(n+1), base+1, base+(n+1)*(n+1)+1, base+(n+1)*(n+1)+(n+1)+1, base+(n+1)+1 }; for (int j = 0; j < 8; j++) pi[j] = compress[pi[j]]; int tets[6][4] = { { 1, 2, 4, 5 }, { 4, 5, 2, 8 }, { 2, 8, 5, 6 }, { 2, 3, 4, 8 }, { 2, 3, 8, 6 }, { 3, 8, 6, 7 } }; for (int ii = 0; ii < 6; ii++) { int teti[4]; for (int k = 0; k < 4; k++) teti[k] = pi[tets[ii][k]-1]; bool is_valid = 1; for (int j = 0; j < 4; j++) if (teti[j] == -1) is_valid = 0; if (!is_valid) continue; for (int j = 0; j < 4; j++) nodevali[j] = val[teti[j]]; cntce = 0; for (int j = 0; j < 6; j++) { int lpi1 = edgei[j][0]; int lpi2 = edgei[j][1]; if ( (nodevali[lpi1] > 0) != (nodevali[lpi2] > 0) ) { Point<3> p1 = grid[teti[lpi1]]; Point<3> p2 = grid[teti[lpi2]]; edgelam[j] = nodevali[lpi2] / (nodevali[lpi2] - nodevali[lpi1]); edgep[j] = grid[teti[lpi1]] + (1-edgelam[j]) * (grid[teti[lpi2]]-grid[teti[lpi1]]); normp[j] = grads[teti[lpi1]] + (1-edgelam[j]) * (grads[teti[lpi2]]-grads[teti[lpi1]]); cntce++; cpe3 = cpe2; cpe2 = cpe1; cpe1 = j; if (cntce >= 3) { if (!vsol) { Point<3> points[3]; points[0] = edgep[cpe1]; points[1] = edgep[cpe2]; points[2] = edgep[cpe3]; Vec<3> normal = Cross (points[2]-points[0], points[1]-points[0]); if ( (normal * (p2-p1)) > 0 == nodevali[lpi1] < 0) normal *= -1; glNormal3dv (normal); glVertex3dv (points[0]); glVertex3dv (points[1]); glVertex3dv (points[2]); } else { // glNormal3dv (grads[teti[0]]); glNormal3dv (normp[cpe1]); glVertex3dv (edgep[cpe1]); glNormal3dv (normp[cpe2]); glVertex3dv (edgep[cpe2]); glNormal3dv (normp[cpe3]); glVertex3dv (edgep[cpe3]); } } } } } } } } glEnd(); } void VisualSceneSolution :: DrawTrigSurfaceVectors(const Array< Point<3> > & lp, const Point<3> & pmin, const Point<3> & pmax, const int sei, const SolData * vsol) { int dir,dir1,dir2; double s,t; bool drawelem; Vec<3> n = Cross (lp[1]-lp[0], lp[2]-lp[0]); Vec<3> na (fabs (n(0)), fabs(n(1)), fabs(n(2))); if (na(0) > na(1) && na(0) > na(2)) dir = 1; else if (na(1) > na(2)) dir = 2; else dir = 3; dir1 = (dir % 3) + 1; dir2 = (dir1 % 3) + 1; Point<2> p2d[3]; int k; for (k = 0; k < 3; k++) { p2d[k] = Point<2> ((lp[k](dir1-1) - pmin(dir1-1)) / (2*rad), (lp[k](dir2-1) - pmin(dir2-1)) / (2*rad)); } double minx2d, maxx2d, miny2d, maxy2d; minx2d = maxx2d = p2d[0](0); miny2d = maxy2d = p2d[0](1); for (k = 1; k < 3; k++) { minx2d = min2 (minx2d, p2d[k](0)); maxx2d = max2 (maxx2d, p2d[k](0)); miny2d = min2 (miny2d, p2d[k](1)); maxy2d = max2 (maxy2d, p2d[k](1)); } double mat11 = p2d[1](0) - p2d[0](0); double mat21 = p2d[1](1) - p2d[0](1); double mat12 = p2d[2](0) - p2d[0](0); double mat22 = p2d[2](1) - p2d[0](1); double det = mat11*mat22-mat21*mat12; double inv11 = mat22/det; double inv21 = -mat21/det; double inv12 = -mat12/det; double inv22 = mat11/det; // cout << "drawsurfacevectors. xoffset = " << xoffset << ", yoffset = "; // cout << yoffset << endl; for (s = xoffset/gridsize; s <= 1+xoffset/gridsize; s += 1.0 / gridsize) if (s >= minx2d && s <= maxx2d) for (t = yoffset/gridsize; t <= 1+yoffset/gridsize; t += 1.0 / gridsize) if (t >= miny2d && t <= maxy2d) { double lam1 = inv11 * (s - p2d[0](0)) + inv12 * (t-p2d[0](1)); double lam2 = inv21 * (s - p2d[0](0)) + inv22 * (t-p2d[0](1)); if (lam1 >= 0 && lam2 >= 0 && lam1+lam2 <= 1) { Point<3> cp; for (k = 0; k < 3; k++) cp(k) = lp[0](k) + lam1 * (lp[1](k)-lp[0](k)) + lam2 * (lp[2](k)-lp[0](k)); Vec<3> v; double values[6]; drawelem = GetSurfValues (vsol, sei, lam1, lam2, values); if (!vsol->iscomplex) for (k = 0; k < 3; k++) v(k) = values[k]; else { if (!imag_part) for (k = 0; k < 3; k++) v(k) = values[2*k]; else for (k = 0; k < 3; k++) v(k) = values[2*k+1]; } if (mesh->GetDimension() == 2) if ( (!vsol->iscomplex && vsol->components != 3) || (vsol->iscomplex && vsol->components != 6) ) v(2) = 0; double val = v.Length(); SetOpenGlColor (val, minval, maxval, logscale); // change JS if (val > 1e-10 * maxval) v *= (rad / val / gridsize * 0.5); else drawelem = 0; if ( drawelem ) DrawCone (cp, cp+4*v, 0.8*rad / gridsize); /* v /= val; glPushMatrix(); glTranslated (cp(0), cp(1), cp(2)); double l = 2*rad/gridsize; double r = 0.8*rad/gridsize; glScaled (l, l, l); double phi = acos (v(2)); glRotated (-180/M_PI*phi, v(1), -v(0), 0); glCallList (cone_list); glPopMatrix(); */ } } } void VisualSceneSolution :: DrawSurfaceVectors () { //int j, k; //int dir, dir1, dir2; SurfaceElementIndex sei; const SolData * vsol = NULL; // bool drawelem; if (vecfunction != -1) vsol = soldata[vecfunction]; if (mesh->GetTimeStamp () > solutiontimestamp) vsol = NULL; if (!vsol) return; Point<3> pmin = center - Vec3d (rad, rad, rad); Point<3> pmax = center - Vec3d (rad, rad, rad); //double s, t; // draw surface cones // if (0) /* if (vsol->soltype==SOL_SURFACE_ELEMENT || vsol->soltype==SOL_SURFACE_NONCONTINUOUS || vsol->soltype==SOL_VIRTUALFUNCTION) */ // if (autoscale) // GetMinMax (vecfunction, 0, minval, maxval); glColor3d (1.0, 1.0, 1.0); // glPolygonMode (GL_FRONT_AND_BACK, GL_FILL); if (vsol->draw_surface && showsurfacesolution) { int nse = mesh->GetNSE(); for (sei = 0; sei < nse; sei++) { const Element2d & el = (*mesh)[sei]; #ifdef PARALLEL // parallel visualization --> dont draw ghost elements if ( el . IsGhost() ) continue; #endif if (el.GetType() == TRIG || el.GetType() == TRIG6) { Array< Point<3> > lp(3); //Point<2> p2d[3]; /* for (k = 0; k < 3; k++) lp[k] = mesh->Point (el[k]); */ lp[0] = mesh->Point(el[2]); lp[1] = mesh->Point(el[0]); lp[2] = mesh->Point(el[1]); DrawTrigSurfaceVectors(lp,pmin,pmax,sei,vsol); /* Vec<3> n = Cross (lp[1]-lp[0], lp[2]-lp[0]); Vec<3> na (fabs (n(0)), fabs(n(1)), fabs(n(2))); if (na(0) > na(1) && na(0) > na(2)) dir = 1; else if (na(1) > na(2)) dir = 2; else dir = 3; dir1 = (dir % 3) + 1; dir2 = (dir1 % 3) + 1; for (k = 0; k < 3; k++) { p2d[k] = Point<2> ((lp[k](dir1-1) - pmin(dir1-1)) / (2*rad), (lp[k](dir2-1) - pmin(dir2-1)) / (2*rad)); } double minx2d, maxx2d, miny2d, maxy2d; minx2d = maxx2d = p2d[0](0); miny2d = maxy2d = p2d[0](1); for (k = 1; k < 3; k++) { minx2d = min2 (minx2d, p2d[k](0)); maxx2d = max2 (maxx2d, p2d[k](0)); miny2d = min2 (miny2d, p2d[k](1)); maxy2d = max2 (maxy2d, p2d[k](1)); } double mat11 = p2d[1](0) - p2d[0](0); double mat21 = p2d[1](1) - p2d[0](1); double mat12 = p2d[2](0) - p2d[0](0); double mat22 = p2d[2](1) - p2d[0](1); double det = mat11*mat22-mat21*mat12; double inv11 = mat22/det; double inv21 = -mat21/det; double inv12 = -mat12/det; double inv22 = mat11/det; // cout << "drawsurfacevectors. xoffset = " << xoffset << ", yoffset = "; // cout << yoffset << endl; for (s = xoffset/gridsize; s <= 1+xoffset/gridsize; s += 1.0 / gridsize) if (s >= minx2d && s <= maxx2d) for (t = yoffset/gridsize; t <= 1+yoffset/gridsize; t += 1.0 / gridsize) if (t >= miny2d && t <= maxy2d) { double lam1 = inv11 * (s - p2d[0](0)) + inv12 * (t-p2d[0](1)); double lam2 = inv21 * (s - p2d[0](0)) + inv22 * (t-p2d[0](1)); if (lam1 >= 0 && lam2 >= 0 && lam1+lam2 <= 1) { Point<3> cp; for (k = 0; k < 3; k++) cp(k) = lp[0](k) + lam1 * (lp[1](k)-lp[0](k)) + lam2 * (lp[2](k)-lp[0](k)); Vec<3> v; double values[6]; drawelem = GetSurfValues (vsol, sei, lam1, lam2, values); if (!vsol->iscomplex) for (k = 0; k < 3; k++) v(k) = values[k]; else { if (!imag_part) for (k = 0; k < 3; k++) v(k) = values[2*k]; else for (k = 0; k < 3; k++) v(k) = values[2*k+1]; } if (mesh->GetDimension() == 2) if ( (!vsol->iscomplex && vsol->components != 3) || (vsol->iscomplex && vsol->components != 6) ) v(2) = 0; double val = v.Length(); SetOpenGlColor (val, minval, maxval, logscale); if (val > 1e-10 * maxval) v *= (rad / val / gridsize * 0.5); else drawelem = 0; // "drawelem": added 07.04.2004 (FB) if ( drawelem ) DrawCone (cp, cp+4*v, 0.8*rad / gridsize); } } */ } else if (el.GetType() == QUAD) { Array < Point<3> > lp(3); lp[0] = mesh->Point(el[0]); lp[1] = mesh->Point(el[1]); lp[2] = mesh->Point(el[2]); DrawTrigSurfaceVectors(lp,pmin,pmax,sei,vsol); lp[0] = mesh->Point(el[0]); lp[1] = mesh->Point(el[2]); lp[2] = mesh->Point(el[3]); DrawTrigSurfaceVectors(lp,pmin,pmax,sei,vsol); /* Point<3> lp[4]; Point<2> p2d[4]; for (k = 0; k < 4; k++) lp[k] = mesh->Point (el[k]); Vec<3> n = Cross (lp[1]-lp[0], lp[2]-lp[0]); Vec<3> na (fabs (n(0)), fabs(n(1)), fabs(n(2))); if (na(0) > na(1) && na(0) > na(2)) dir = 1; else if (na(1) > na(2)) dir = 2; else dir = 3; dir1 = (dir % 3) + 1; dir2 = (dir1 % 3) + 1; for (k = 0; k < 4; k++) { p2d[k] = Point<2> ((lp[k](dir1-1) - pmin(dir1-1)) / (2*rad), (lp[k](dir2-1) - pmin(dir2-1)) / (2*rad)); } double minx2d, maxx2d, miny2d, maxy2d; minx2d = maxx2d = p2d[0](0); miny2d = maxy2d = p2d[0](1); for (k = 1; k < 4; k++) { minx2d = min2 (minx2d, p2d[k](0)); maxx2d = max2 (maxx2d, p2d[k](0)); miny2d = min2 (miny2d, p2d[k](1)); maxy2d = max2 (maxy2d, p2d[k](1)); } for (s = xoffset/gridsize; s <= 1+xoffset/gridsize; s += 1.0 / gridsize) if (s >= minx2d && s <= maxx2d) for (t = yoffset/gridsize; t <= 1+yoffset/gridsize; t += 1.0 / gridsize) if (t >= miny2d && t <= maxy2d) { double lami[3]; Point3d p3d(2*rad*s+pmin(0), 2*rad*t+pmin(1),0); if (mesh->PointContainedIn2DElement (p3d, lami, sei+1)) { Point<3> cp = p3d; double lam1 = lami[0]; double lam2 = lami[1]; //for (k = 0; k < 3; k++) //cp(k) = lp[0](k) + //lam1 * (lp[1](k)-lp[0](k)) + //lam2 * (lp[2](k)-lp[0](k)); Vec<3> v; double values[6]; drawelem = GetSurfValues (vsol, sei, lam1, lam2, values); (*testout) << "sei " << sei << " lam1 " << lam1 << " lam2 " << lam2 << " drawelem " << drawelem << endl; if (!vsol->iscomplex) for (k = 0; k < 3; k++) v(k) = values[k]; else { if (!imag_part) for (k = 0; k < 3; k++) v(k) = values[2*k]; else for (k = 0; k < 3; k++) v(k) = values[2*k+1]; } if (mesh->GetDimension() == 2) if ( (!vsol->iscomplex && vsol->components != 3) || (vsol->iscomplex && vsol->components != 6) ) v(2) = 0; double val = v.Length(); SetOpenGlColor (val, minval, maxval, logscale); (*testout) << "v " << v << endl; if (val > 1e-10 * maxval) v *= (rad / val / gridsize * 0.5); (*testout) << "v " << v << endl; if ( drawelem ) { DrawCone (cp, cp+4*v, 0.8*rad / gridsize); (*testout) << "cp " << cp << " rad " << rad << " gridsize " << gridsize << endl; } } } */ } } } } void VisualSceneSolution :: DrawIsoLines (const Point<3> & p1, const Point<3> & p2, const Point<3> & p3, double val1, double val2, double val3) { DrawIsoLines2 (p1, p2, p1, p3, val1, val2, val1, val3); // , minval, maxval, n); DrawIsoLines2 (p2, p1, p2, p3, val2, val1, val2, val3); // , minval, maxval, n); DrawIsoLines2 (p3, p1, p3, p2, val3, val1, val3, val2); // , minval, maxval, n); } void VisualSceneSolution :: DrawIsoLines2 (const Point<3> & hp1, const Point<3> & hp2, const Point<3> & hp3, const Point<3> & hp4, double val1, double val2, double val3, double val4) { int n = numisolines; Point<3> p1, p2, p3, p4; if (val1 < val2) { p1 = hp1; p2 = hp2; } else { p1 = hp2; p2 = hp1; swap (val1, val2); } if (val3 < val4) { p3 = hp3; p4 = hp4; } else { p3 = hp4; p4 = hp3; swap (val3, val4); } val2 += 1e-10; val4 += 1e-10; double fac = (maxval-minval) / n; double idelta1 = 1.0 / (val2 - val1); double idelta2 = 1.0 / (val4 - val3); int mini = int ((max2 (val1, val3) - minval) / fac); int maxi = int ((min2 (val2, val4) - minval) / fac); if (mini < 0) mini = 0; if (maxi > n-1) maxi = n-1; for (int i = mini; i <= maxi; i++) { double val = minval + i * fac; double lam1 = (val - val1) * idelta1; double lam2 = (val - val3) * idelta2; if (lam1 >= 0 && lam1 <= 1 && lam2 >= 0 && lam2 <= 1) { Point<3> lp1 = p1 + lam1 * (p2-p1); Point<3> lp2 = p3 + lam2 * (p4-p3); glVertex3dv (lp1 ); glVertex3dv (lp2 ); // glVertex3dv (lp2 ); // better ? // glVertex3dv (lp1 ); } } } void VisualSceneSolution :: GetMinMax (int funcnr, int comp, double & minv, double & maxv) const { const SolData * sol; double val; bool considerElem; bool hasit = false; minv = 0; maxv = 1; if (funcnr != -1) { sol = soldata[funcnr]; if (sol->draw_volume) { int ne = mesh->GetNE(); for (int i = 0; i < ne; i++) { // "considerElem": added 07.04.2004 (FB) considerElem = GetValue (sol, i, 0.333, 0.333, 0.333, comp, val); if (considerElem) { if (val > maxv || !hasit) maxv = val; if (val < minv || !hasit) minv = val; hasit = true; } } } if (sol->draw_surface) { int nse = mesh->GetNSE(); for (int i = 0; i < nse; i++) { // "considerElem": added 07.04.2004 (FB) ELEMENT_TYPE type = mesh->SurfaceElement(i+1).GetType(); if (type == QUAD) considerElem = GetSurfValue (sol, i, 0.5, 0.5, comp, val); else considerElem = GetSurfValue (sol, i, 0.3333333, 0.3333333, comp, val); if (considerElem) { if (val > maxv || !hasit) maxv = val; if (val < minv || !hasit) minv = val; hasit = true; } } } } if (minv == maxv) maxv = minv+1e-6; } bool VisualSceneSolution :: GetValues (const SolData * data, ElementIndex elnr, double lam1, double lam2, double lam3, double * values) const { bool ok; switch (data->soltype) { case SOL_VIRTUALFUNCTION: { ok = data->solclass->GetValue (elnr, lam1, lam2, lam3, values); break; } default: { for (int i = 0; i < data->components; i++) ok = GetValue (data, elnr, lam1, lam2, lam3, i+1, values[i]); } } return ok; } bool VisualSceneSolution :: GetValues (const SolData * data, ElementIndex elnr, const double xref[], const double x[], const double dxdxref[], double * values) const { bool ok; switch (data->soltype) { case SOL_VIRTUALFUNCTION: { ok = data->solclass->GetValue (elnr, xref, x, dxdxref, values); break; } default: { for (int i = 0; i < data->components; i++) ok = GetValue (data, elnr, xref[0], xref[1], xref[2], i+1, values[i]); } } return ok; } bool VisualSceneSolution :: GetValue (const SolData * data, ElementIndex elnr, const double xref[], const double x[], const double dxdxref[], int comp, double & val) const { double lam1 = xref[0]; double lam2 = xref[1]; double lam3 = xref[2]; val = 0; bool ok = 0; if (comp == 0) { ArrayMem values(data->components); ok = GetValues (data, elnr, xref, x, dxdxref, &values[0]); switch (evalfunc) { case FUNC_ABS: { for (int ci = 0; ci < data->components; ci++) val += sqr (values[ci]); val = sqrt (val); break; } case FUNC_ABS_TENSOR: { int d; switch (data->components) { case 1: d = 1; break; case 3: d = 2; break; case 6: d = 3; break; } int ci; for (ci = 0; ci < d; ci++) val += sqr (values[ci]); for (ci = d; ci < data->components; ci++) val += 2*sqr (values[ci]); val = sqrt (val); break; } case FUNC_MISES: { int d; switch(data->components) { case 1: d = 1; break; case 3: d = 2; break; case 6: d = 3; break; } int ci; double trace = 0.; for (ci = 0; ci < d; ci++) trace += 1./3.*(values[ci]); for (ci = 0; ci < d; ci++) val += sqr (values[ci]-trace); for (ci = d; ci < data->components; ci++) val += 2.*sqr (values[ci]); val = sqrt (val); break; } case FUNC_MAIN: { int d; switch(data->components) { case 1: d = 1; break; case 3: d = 2; break; case 6: d = 3; break; } Mat<3,3> m ; Vec<3> ev; int ci; for (ci = 0; ci < d; ci++) m(ci,ci) = (values[ci]); m(0,1) = m(1,0) = values[3]; m(0,2) = m(2,0) = values[4]; m(1,2) = m(2,1) = values[5]; EigenValues (m, ev); double help; for (int i=0; i abs(ev(j-1)) ) { help = ev(j); ev(j) = ev(j-1); ev(j-1) = help; } } } val = (ev(0)); break; } } return ok; } switch (data->soltype) { case SOL_VIRTUALFUNCTION: { double values[20]; ok = data->solclass->GetValue (elnr, xref, x, dxdxref, values); val = values[comp-1]; return ok; } case SOL_NODAL: { const Element & el = (*mesh)[elnr]; double lami[8]; int np, i; switch (el.GetType()) { case TET: case TET10: { lami[1] = lam1; lami[2] = lam2; lami[3] = lam3; lami[0] = 1-lam1-lam2-lam3; np = 4; break; } case PRISM: case PRISM12: { lami[0] = (1-lam3) * (1-lam1-lam2); lami[1] = (1-lam3) * lam1; lami[2] = (1-lam3) * lam2; lami[3] = (lam3) * (1-lam1-lam2); lami[4] = (lam3) * lam1; lami[5] = (lam3) * lam2; np = 6; break; } } for (i = 0; i < np; i++) val += lami[i] * data->data[(el[i]-1) * data->dist + comp-1]; return 1; } case SOL_ELEMENT: { val = data->data[elnr * data->dist + comp-1]; return 1; } case SOL_SURFACE_ELEMENT: return 0; case SOL_NONCONTINUOUS: { const Element & el = (*mesh)[elnr]; double lami[8]; int np, i; switch (el.GetType()) { case TET: case TET10: { lami[1] = lam1; lami[2] = lam2; lami[3] = lam3; lami[0] = 1-lam1-lam2-lam3; np = 4; break; } case PRISM: case PRISM12: { lami[0] = (1-lam3) * (1-lam1-lam2); lami[1] = (1-lam3) * lam1; lami[2] = (1-lam3) * lam2; lami[3] = (lam3) * (1-lam1-lam2); lami[4] = (lam3) * lam1; lami[5] = (lam3) * lam2; np = 6; break; } case PYRAMID: { if (lam3 > 1-1e-5) { lami[0] = lami[1] = lami[2] = lami[3] = 0; lami[4] = 1; } else { double x0 = lam1 / (1-lam3); double y0 = lam2 / (1-lam3); lami[0] = (1-x0) * (1-y0) * (1-lam3); lami[1] = ( x0) * (1-y0) * (1-lam3); lami[2] = ( x0) * ( y0) * (1-lam3); lami[3] = (1-x0) * ( y0) * (1-lam3); lami[4] = lam3; np = 5; } break; } default: np = 0; } int base; if (data->order == 1) base = 6 * elnr; else base = 10 * elnr; for (i = 0; i < np; i++) val += lami[i] * data->data[(base+i) * data->dist + comp-1]; return 1; } case SOL_MARKED_ELEMENTS: { val = (*mesh)[elnr].TestRefinementFlag(); return 1; } case SOL_ELEMENT_ORDER: { val = (*mesh)[elnr].GetOrder(); return 1; } } return 0; } bool VisualSceneSolution :: GetValue (const SolData * data, ElementIndex elnr, double lam1, double lam2, double lam3, int comp, double & val) const { val = 0; bool ok = 0; if (comp == 0) { ArrayMem values(data->components); ok = GetValues (data, elnr, lam1, lam2, lam3, &values[0]); switch (evalfunc) { case FUNC_ABS: { for (int ci = 0; ci < data->components; ci++) val += sqr (values[ci]); val = sqrt (val); break; } case FUNC_ABS_TENSOR: { int d; switch (data->components) { case 1: d = 1; break; case 3: d = 2; break; case 6: d = 3; break; } int ci; for (ci = 0; ci < d; ci++) val += sqr (values[ci]); for (ci = d; ci < data->components; ci++) val += 2*sqr (values[ci]); val = sqrt (val); break; } case FUNC_MISES: { int d; switch(data->components) { case 1: d = 1; break; case 3: d = 2; break; case 6: d = 3; break; } int ci; double trace = 0.; for (ci = 0; ci < d; ci++) trace += 1./3.*(values[ci]); for (ci = 0; ci < d; ci++) val += sqr (values[ci]-trace); for (ci = d; ci < data->components; ci++) val += 2.*sqr (values[ci]); val = sqrt (val); break; } case FUNC_MAIN: { int d; switch(data->components) { case 1: d = 1; break; case 3: d = 2; break; case 6: d = 3; break; } Mat<3,3> m ; Vec<3> ev; int ci; for (ci = 0; ci < d; ci++) m(ci,ci) = (values[ci]); m(0,1) = m(1,0) = values[3]; m(0,2) = m(2,0) = values[4]; m(1,2) = m(2,1) = values[5]; EigenValues (m, ev); double help; for (int i=0; i abs(ev(j-1)) ) { help = ev(j); ev(j) = ev(j-1); ev(j-1) = help; } } } val = (ev(0)); break; } } return ok; } switch (data->soltype) { case SOL_VIRTUALFUNCTION: { double values[20]; ok = data->solclass->GetValue (elnr, lam1, lam2, lam3, values); val = values[comp-1]; return ok; } case SOL_NODAL: { const Element & el = (*mesh)[elnr]; double lami[8]; int np, i; switch (el.GetType()) { case TET: case TET10: { lami[1] = lam1; lami[2] = lam2; lami[3] = lam3; lami[0] = 1-lam1-lam2-lam3; np = 4; break; } case PRISM: case PRISM12: { lami[0] = (1-lam3) * (1-lam1-lam2); lami[1] = (1-lam3) * lam1; lami[2] = (1-lam3) * lam2; lami[3] = (lam3) * (1-lam1-lam2); lami[4] = (lam3) * lam1; lami[5] = (lam3) * lam2; np = 6; break; } } for (i = 0; i < np; i++) val += lami[i] * data->data[(el[i]-1) * data->dist + comp-1]; return 1; } case SOL_ELEMENT: { val = data->data[elnr * data->dist + comp-1]; return 1; } case SOL_SURFACE_ELEMENT: return 0; case SOL_NONCONTINUOUS: { const Element & el = (*mesh)[elnr]; double lami[8]; int np, i; switch (el.GetType()) { case TET: case TET10: { lami[1] = lam1; lami[2] = lam2; lami[3] = lam3; lami[0] = 1-lam1-lam2-lam3; np = 4; break; } case PRISM: case PRISM12: { lami[0] = (1-lam3) * (1-lam1-lam2); lami[1] = (1-lam3) * lam1; lami[2] = (1-lam3) * lam2; lami[3] = (lam3) * (1-lam1-lam2); lami[4] = (lam3) * lam1; lami[5] = (lam3) * lam2; np = 6; break; } case PYRAMID: { if (lam3 > 1-1e-5) { lami[0] = lami[1] = lami[2] = lami[3] = 0; lami[4] = 1; } else { double x0 = lam1 / (1-lam3); double y0 = lam2 / (1-lam3); lami[0] = (1-x0) * (1-y0) * (1-lam3); lami[1] = ( x0) * (1-y0) * (1-lam3); lami[2] = ( x0) * ( y0) * (1-lam3); lami[3] = (1-x0) * ( y0) * (1-lam3); lami[4] = lam3; np = 5; } break; } default: np = 0; } int base; if (data->order == 1) base = 6 * elnr; else base = 10 * elnr; for (i = 0; i < np; i++) val += lami[i] * data->data[(base+i) * data->dist + comp-1]; return 1; } case SOL_MARKED_ELEMENTS: { val = (*mesh)[elnr].TestRefinementFlag(); return 1; } case SOL_ELEMENT_ORDER: { val = (*mesh)[elnr].GetOrder(); return 1; } } return 0; } bool VisualSceneSolution :: GetValueComplex (const SolData * data, ElementIndex elnr, double lam1, double lam2, double lam3, int comp, double & valr, double & vali) const { valr = 0; vali = 0; bool ok = 0; switch (data->soltype) { case SOL_VIRTUALFUNCTION: { double values[20]; ok = data->solclass->GetValue (elnr, lam1, lam2, lam3, values); valr = values[comp-1]; vali = values[comp]; return ok; } } return 0; } bool VisualSceneSolution :: GetSurfValues (const SolData * data, SurfaceElementIndex selnr, double lam1, double lam2, double * values) const { bool ok; switch (data->soltype) { case SOL_VIRTUALFUNCTION: { ok = data->solclass->GetSurfValue (selnr, lam1, lam2, values); // ok = 1; // values[0] = 1.0; break; } default: { for (int i = 0; i < data->components; i++) ok = GetSurfValue (data, selnr, lam1, lam2, i+1, values[i]); } } return ok; } bool VisualSceneSolution :: GetSurfValues (const SolData * data, SurfaceElementIndex selnr, const double xref[], const double x[], const double dxdxref[], double * values) const { bool ok; switch (data->soltype) { case SOL_VIRTUALFUNCTION: { ok = data->solclass->GetSurfValue (selnr, xref, x, dxdxref, values); break; } default: { for (int i = 0; i < data->components; i++) ok = GetSurfValue (data, selnr, xref[0], xref[1], i+1, values[i]); } } return ok; } bool VisualSceneSolution :: GetSurfValueComplex (const SolData * data, SurfaceElementIndex selnr, double lam1, double lam2, int comp, double & valr, double & vali) const { switch (data->soltype) { case SOL_VIRTUALFUNCTION: { ArrayMem values(data->components); bool ok; ok = data->solclass->GetSurfValue (selnr, lam1, lam2, &values[0]); if (ok) { if (!data->iscomplex) { valr = values[comp-1]; vali = 0; } else { valr = values[comp-1]; vali = values[comp]; } } return ok; } } return 0; } bool VisualSceneSolution :: GetSurfValue (const SolData * data, SurfaceElementIndex selnr, double lam1, double lam2, int comp, double & val) const { bool ok; if (comp == 0) { val = 0; ArrayMem values(data->components); ok = GetSurfValues (data, selnr, lam1, lam2, &values[0]); // ok = 1; // values[0] = 1.0; switch (evalfunc) { case FUNC_ABS: { for (int ci = 0; ci < data->components; ci++) val += sqr (values[ci]); val = sqrt (val); break; } case FUNC_ABS_TENSOR: { int d; switch (data->components) { case 1: d = 1; break; case 3: d = 2; break; case 6: d = 3; break; } int ci; for (ci = 0; ci < d; ci++) val += sqr (values[ci]); for (ci = d; ci < data->components; ci++) val += 2*sqr (values[ci]); val = sqrt (val); break; } case FUNC_MISES: { int d; switch(data->components) { case 1: d = 1; break; case 3: d = 2; break; case 6: d = 3; break; } int ci; double trace = 0.; for (ci = 0; ci < d; ci++) trace += 1./3.*(values[ci]); for (ci = 0; ci < d; ci++) val += sqr (values[ci]-trace); for (ci = d; ci < data->components; ci++) val += 2.*sqr (values[ci]); val = sqrt (val); break; } case FUNC_MAIN: { int d; switch(data->components) { case 1: d = 1; break; case 3: d = 2; break; case 6: d = 3; break; } Mat<3,3> m ; Vec<3> ev; int ci; for (ci = 0; ci < d; ci++) m(ci,ci) = (values[ci]); m(0,1) = m(1,0) = values[3]; m(0,2) = m(2,0) = values[4]; m(1,2) = m(2,1) = values[5]; EigenValues (m, ev); double help; for (int i=0; i abs(ev(j-1)) ) { help = ev(j); ev(j) = ev(j-1); ev(j-1) = help; } } } val = (ev(0)); break; } } return ok; /* int ci; double val = 0; for (ci = 1; ci <= data->components; ci++) val += sqr (GetSurfValue (data, selnr, lam1, lam2, ci)); return sqrt (val); */ } switch (data->soltype) { case SOL_VIRTUALFUNCTION: { ArrayMem values(data->components); bool ok; ok = data->solclass->GetSurfValue (selnr, lam1, lam2, &values[0]); if (ok) { if (!data->iscomplex) val = values[comp-1]; else { // cout << "time = " << time << ", cos = " << cos(time) << endl; // old version: val = values[comp-1]*cos(3*time) + values[comp]*sin(3*time); // SZ: Sept 06 if(comp%2==0) val = values[comp-1]*cos(3*time) - values[comp-2]*sin(3*time); else val = values[comp-1]*cos(3*time) + values[comp]*sin(3*time); } } return ok; } case SOL_NODAL: { const Element2d & el = (*mesh)[selnr]; double lami[8]; int np, i; val = 0; double lam3 = 1-lam1-lam2; switch (el.GetType()) { case TRIG: /* lami[0] = lam3; lami[1] = lam1; lami[2] = lam2; */ lami[0] = lam1; lami[1] = lam2; lami[2] = lam3; np = 3; break; case TRIG6: /* lami[0] = lam3*(2*lam3-1); lami[1] = lam1*(2*lam1-1); lami[2] = lam2*(2*lam2-1); */ // hierarchical basis: lami[0] = lam3; lami[1] = lam1; lami[2] = lam2; lami[3] = 4*lam1*lam2; lami[4] = 4*lam2*lam3; lami[5] = 4*lam1*lam3; np = 6; break; case QUAD: case QUAD6: lami[0] = (1-lam1)*(1-lam2); lami[1] = lam1 * (1-lam2); lami[2] = lam1 * lam2; lami[3] = (1-lam1) * lam2; np = 4; break; default: np = 0; } for (i = 0; i < np; i++) val += lami[i] * data->data[(el[i]-1) * data->dist + comp-1]; return 1; } case SOL_ELEMENT: { int el1, el2; mesh->GetTopology().GetSurface2VolumeElement (selnr+1, el1, el2); el1--; val = data->data[el1 * data->dist+comp-1]; return 1; } case SOL_NONCONTINUOUS: { val = 0; // ????? return 0; } case SOL_SURFACE_ELEMENT: { val = data->data[selnr * data->dist + comp-1]; return 1; } case SOL_SURFACE_NONCONTINUOUS: { const Element2d & el = (*mesh)[selnr]; double lami[8]; int np, i; val = 0; int order = data->order; switch (order) { case 0: return data->data[selnr * data->dist + comp-1]; case 1: { switch (el.GetType()) { case TRIG: case TRIG6: { lami[1] = lam1; lami[2] = lam2; lami[0] = 1-lam1-lam2; np = 3; break; } } break; } case 2: { switch (el.GetType()) { case TRIG: { lami[1] = lam1; lami[2] = lam2; lami[0] = 1-lam1-lam2; np = 3; break; } case TRIG6: { double lam3 = 1-lam1-lam2; lami[1] = 2*lam1 * (lam1-0.5); lami[2] = 2*lam2 * (lam2-0.5); lami[0] = 2*lam3 * (lam3-0.5); lami[3] = 4*lam1*lam2; lami[4] = 4*lam2*lam3; lami[5] = 4*lam1*lam3; np = 6; break; } } break; } } int base; if (order == 1) base = 4 * selnr; else base = 9 * selnr; for (i = 0; i < np; i++) { val += lami[i] * data->data[(base+i) * data->dist + comp-1]; } return 1; } case SOL_MARKED_ELEMENTS: { val = (*mesh)[selnr].TestRefinementFlag(); return 1; } case SOL_ELEMENT_ORDER: { val = (*mesh)[selnr].GetOrder(); return 1; } } return 0; } bool VisualSceneSolution :: GetSurfValue (const SolData * data, SurfaceElementIndex selnr, const double xref[], const double x[], const double dxdxref[], int comp, double & val) const { double lam1 = xref[0], lam2 = xref[1]; bool ok; if (comp == 0) { val = 0; ArrayMem values(data->components); ok = GetSurfValues (data, selnr, xref, x, dxdxref, &values[0]); switch (evalfunc) { case FUNC_ABS: { for (int ci = 0; ci < data->components; ci++) val += sqr (values[ci]); val = sqrt (val); break; } case FUNC_ABS_TENSOR: { int d; switch (data->components) { case 1: d = 1; break; case 3: d = 2; break; case 6: d = 3; break; } int ci; for (ci = 0; ci < d; ci++) val += sqr (values[ci]); for (ci = d; ci < data->components; ci++) val += 2*sqr (values[ci]); val = sqrt (val); break; } case FUNC_MISES: { int d; switch(data->components) { case 1: d = 1; break; case 3: d = 2; break; case 6: d = 3; break; } int ci; double trace = 0.; for (ci = 0; ci < d; ci++) trace += 1./3.*(values[ci]); for (ci = 0; ci < d; ci++) val += sqr (values[ci]-trace); for (ci = d; ci < data->components; ci++) val += 2.*sqr (values[ci]); val = sqrt (val); break; } case FUNC_MAIN: { int d; switch(data->components) { case 1: d = 1; break; case 3: d = 2; break; case 6: d = 3; break; } Mat<3,3> m ; Vec<3> ev; int ci; for (ci = 0; ci < d; ci++) m(ci,ci) = (values[ci]); m(0,1) = m(1,0) = values[3]; m(0,2) = m(2,0) = values[4]; m(1,2) = m(2,1) = values[5]; EigenValues (m, ev); double help; for (int i=0; i abs(ev(j-1)) ) { help = ev(j); ev(j) = ev(j-1); ev(j-1) = help; } } } val = (ev(0)); break; } } return ok; /* int ci; double val = 0; for (ci = 1; ci <= data->components; ci++) val += sqr (GetSurfValue (data, selnr, lam1, lam2, ci)); return sqrt (val); */ } switch (data->soltype) { case SOL_VIRTUALFUNCTION: { ArrayMem values(data->components); bool ok; // ok = data->solclass->GetSurfValue (selnr, lam1, lam2, &values[0]); // cout << "data->solclass = " << flush << data->solclass << endl; ok = data->solclass->GetSurfValue (selnr, xref, x, dxdxref, &values[0]); // ok = 1; // values[0] = 1.0; if (ok) { if (!data->iscomplex) val = values[comp-1]; else { // cout << "time = " << time << ", cos = " << cos(time) << endl; // old version: val = values[comp-1]*cos(3*time) + values[comp]*sin(3*time); // SZ: Sept 06 if(comp%2==0) val = values[comp-1]*cos(3*time) - values[comp-2]*sin(3*time); else val = values[comp-1]*cos(3*time) + values[comp]*sin(3*time); } } return ok; } case SOL_NODAL: { const Element2d & el = (*mesh)[selnr]; double lami[8]; int np, i; val = 0; double lam3 = 1-lam1-lam2; switch (el.GetType()) { case TRIG: /* lami[0] = lam3; lami[1] = lam1; lami[2] = lam2; */ lami[0] = lam1; lami[1] = lam2; lami[2] = lam3; np = 3; break; case TRIG6: /* lami[0] = lam3*(2*lam3-1); lami[1] = lam1*(2*lam1-1); lami[2] = lam2*(2*lam2-1); */ // hierarchical basis: lami[0] = lam3; lami[1] = lam1; lami[2] = lam2; lami[3] = 4*lam1*lam2; lami[4] = 4*lam2*lam3; lami[5] = 4*lam1*lam3; np = 6; break; case QUAD: case QUAD6: lami[0] = (1-lam1)*(1-lam2); lami[1] = lam1 * (1-lam2); lami[2] = lam1 * lam2; lami[3] = (1-lam1) * lam2; np = 4; break; default: np = 0; } for (i = 0; i < np; i++) val += lami[i] * data->data[(el[i]-1) * data->dist + comp-1]; return 1; } case SOL_ELEMENT: { int el1, el2; mesh->GetTopology().GetSurface2VolumeElement (selnr+1, el1, el2); el1--; val = data->data[el1 * data->dist+comp-1]; return 1; } case SOL_NONCONTINUOUS: { val = 0; // ????? return 0; } case SOL_SURFACE_ELEMENT: { val = data->data[selnr * data->dist + comp-1]; return 1; } case SOL_SURFACE_NONCONTINUOUS: { const Element2d & el = (*mesh)[selnr]; double lami[8]; int np, i; val = 0; int order = data->order; switch (order) { case 0: return data->data[selnr * data->dist + comp-1]; case 1: { switch (el.GetType()) { case TRIG: case TRIG6: { lami[1] = lam1; lami[2] = lam2; lami[0] = 1-lam1-lam2; np = 3; break; } } break; } case 2: { switch (el.GetType()) { case TRIG: { lami[1] = lam1; lami[2] = lam2; lami[0] = 1-lam1-lam2; np = 3; break; } case TRIG6: { double lam3 = 1-lam1-lam2; lami[1] = 2*lam1 * (lam1-0.5); lami[2] = 2*lam2 * (lam2-0.5); lami[0] = 2*lam3 * (lam3-0.5); lami[3] = 4*lam1*lam2; lami[4] = 4*lam2*lam3; lami[5] = 4*lam1*lam3; np = 6; break; } } break; } } int base; if (order == 1) base = 4 * selnr; else base = 9 * selnr; for (i = 0; i < np; i++) { val += lami[i] * data->data[(base+i) * data->dist + comp-1]; } return 1; } case SOL_MARKED_ELEMENTS: { val = (*mesh)[selnr].TestRefinementFlag(); return 1; } case SOL_ELEMENT_ORDER: { val = (*mesh)[selnr].GetOrder(); return 1; } } return 0; } Vec<3> VisualSceneSolution :: GetDeformation (ElementIndex elnr, const Point<3> & p) const { Vec<3> def; if (deform && vecfunction != -1) { GetValues (soldata[vecfunction], elnr, p(0), p(1), p(2), &def(0)); def *= scaledeform; if (soldata[vecfunction]->dist == 2) def(2) = 0; } else def = 0; return def; } Vec<3> VisualSceneSolution :: GetSurfDeformation (SurfaceElementIndex elnr, double lam1, double lam2) const { Vec<3> def; if (deform && vecfunction != -1) { GetSurfValues (soldata[vecfunction], elnr, lam1, lam2, &def(0)); def *= scaledeform; if (soldata[vecfunction]->dist == 2) def(2) = 0; } else if (deform && scalfunction != -1 && mesh->GetDimension()==2) { // he: allow for 3d plots of 2d surfaces: usage: turn deformation on def = 0; GetSurfValue (soldata[scalfunction], elnr, lam1, lam2, scalcomp, def(2)); def *= scaledeform; } else def = 0; return def; } void VisualSceneSolution :: GetPointDeformation (int pnum, Point<3> & p, SurfaceElementIndex elnr) const { p = mesh->Point (pnum+1); if (deform && vecfunction != -1) { const SolData * vsol = soldata[vecfunction]; Vec<3> v(0,0,0); if (vsol->soltype == SOL_NODAL) { v = Vec3d(vsol->data[pnum * vsol->dist], vsol->data[pnum * vsol->dist+1], vsol->data[pnum * vsol->dist+2]); } else if (vsol->soltype == SOL_SURFACE_NONCONTINUOUS) { const Element2d & el = (*mesh)[elnr]; for (int j = 0; j < el.GetNP(); j++) if (el[j] == pnum+1) { int base = (4*elnr+j-1) * vsol->dist; v = Vec3d(vsol->data[base], vsol->data[base+1], vsol->data[base+2]); } } if (vsol->dist == 2) v(2) = 0; v *= scaledeform; p += v; } } void VisualSceneSolution :: GetClippingPlaneTrigs (Array & trigs, Array & pts) { static int timer1 = NgProfiler::CreateTimer ("ClipPlaneTrigs1"); static int timer2 = NgProfiler::CreateTimer ("ClipPlaneTrigs2"); static int timer3 = NgProfiler::CreateTimer ("ClipPlaneTrigs3"); static int timer4 = NgProfiler::CreateTimer ("ClipPlaneTrigs4"); NgProfiler::RegionTimer reg1 (timer1); int np = mesh->GetNP(); int ne = mesh->GetNE(); const int edgei[6][2] = { { 0, 1 }, { 0, 2 }, { 0, 3 }, { 1, 2 }, { 1, 3 }, { 2, 3 } }; double edgelam[6]; Point<3> edgep[6]; double nodevali[4]; int cntce; int cpe1 = 0, cpe2 = 0, cpe3 = 0; // Array loctets; // Array loctetsloc; // Array > pointsloc; int n = 1 << subdivisions; int n3 = (n+1)*(n+1)*(n+1); Array > grid(n3); Array > locgrid(n3); Array > trans(n3); Array val(n3); Array compress(n3); for (ElementIndex ei = 0; ei < ne; ei++) { int first_point_of_element = pts.Size(); #ifdef PARALLEL // parallel visualization --> dont draw ghost elements if ( (*mesh)[ei] . IsGhost() ) continue; #endif locgrid.SetSize(n3); if(vispar.clipdomain > 0 && vispar.clipdomain != (*mesh)[ei].GetIndex()) continue; if(vispar.donotclipdomain > 0 && vispar.donotclipdomain == (*mesh)[ei].GetIndex()) continue; ELEMENT_TYPE type = (*mesh)[ei].GetType(); if (type == HEX || type == PRISM || type == TET || type == TET10 || type == PYRAMID) { const Element & el = (*mesh)[ei]; int ii = 0; int cnt_valid = 0; NgProfiler::StartTimer (timer2); if (type == TET || type == TET10) { for (int ix = 0; ix <= n; ix++) for (int iy = 0; iy <= n; iy++) for (int iz = 0; iz <= n; iz++, ii++) { if (ix+iy+iz <= n) { compress[ii] = cnt_valid; locgrid[cnt_valid] = Point<3> (double(ix) / n, double(iy) / n, double(iz) / n); cnt_valid++; } else compress[ii] = -1; } } else for (int ix = 0; ix <= n; ix++) for (int iy = 0; iy <= n; iy++) for (int iz = 0; iz <= n; iz++, ii++) { Point<3> ploc; compress[ii] = ii; switch (type) { case PRISM: if (ix+iy <= n) { ploc = Point<3> (double(ix) / n, double(iy) / n, double(iz) / n); compress[ii] = cnt_valid; cnt_valid++; } else compress[ii] = -1; break; /* case TET: case TET10: if (ix+iy+iz <= n) { ploc = Point<3> (double(ix) / n, double(iy) / n, double(iz) / n); compress[ii] = cnt_valid; cnt_valid++; } else compress[ii] = -1; break; */ case HEX: ploc = Point<3> (double(ix) / n, double(iy) / n, double(iz) / n); break; case PYRAMID: ploc = Point<3> (double(ix) / n * (1-double(iz)/n), double(iy) / n * (1-double(iz)/n), double(iz)/n); if (iz == n) ploc = Point<3> (0,0,1-1e-8); break; } if (compress[ii] != -1) locgrid[compress[ii]] = ploc; } if (type != TET && type != TET10 && type != PRISM) cnt_valid = n3; locgrid.SetSize(cnt_valid); NgProfiler::StopTimer (timer2); NgProfiler::RegionTimer reg4(timer4); if (mesh->GetCurvedElements().IsHighOrder()) { mesh->GetCurvedElements(). CalcMultiPointElementTransformation (&locgrid, ei, &grid, 0); } else { Vector shape(el.GetNP()); MatrixFixWidth<3> pointmat(el.GetNP()); for (int k = 0; k < el.GetNP(); k++) for (int j = 0; j < 3; j++) pointmat(k,j) = (*mesh)[el[k]](j); for (int i = 0; i < cnt_valid; i++) { el.GetShapeNew (locgrid[i], shape); Point<3> pglob; for (int j = 0; j < 3; j++) { pglob(j) = 0; for (int k = 0; k < el.GetNP(); k++) pglob(j) += shape(k) * pointmat(k,j); } grid[i] = pglob; } } NgProfiler::RegionTimer reg3(timer3); bool has_pos = 0, has_neg = 0; for (int i = 0; i < cnt_valid; i++) { val[i] = grid[i](0) * clipplane[0] + grid[i](1) * clipplane[1] + grid[i](2) * clipplane[2] + clipplane[3]; if (val[i] > 0) has_pos = 1; else has_neg = 1; } if (!has_pos || !has_neg) continue; for (int ix = 0; ix < n; ix++) for (int iy = 0; iy < n; iy++) for (int iz = 0; iz < n; iz++) { int base = iz + (n+1)*iy + (n+1)*(n+1)*ix; int pi[8] = { base, base+(n+1)*(n+1), base+(n+1)*(n+1)+(n+1), base+(n+1), base+1, base+(n+1)*(n+1)+1, base+(n+1)*(n+1)+(n+1)+1, base+(n+1)+1 }; for (int j = 0; j < 8; j++) pi[j] = compress[pi[j]]; const int tets[6][4] = { { 1, 2, 4, 5 }, { 4, 5, 2, 8 }, { 2, 8, 5, 6 }, { 2, 3, 4, 8 }, { 2, 3, 8, 6 }, { 3, 8, 6, 7 } }; for (int ii = 0; ii < 6; ii++) { int teti[4]; for (int k = 0; k < 4; k++) teti[k] = pi[tets[ii][k]-1]; bool is_valid = 1; for (int j = 0; j < 4; j++) if (teti[j] == -1) is_valid = 0; if (!is_valid) continue; for (int j = 0; j < 4; j++) nodevali[j] = val[teti[j]]; cntce = 0; for (int j = 0; j < 6; j++) { int lpi1 = edgei[j][0]; int lpi2 = edgei[j][1]; if ( (nodevali[lpi1] > 0) != (nodevali[lpi2] > 0) ) { edgelam[j] = nodevali[lpi2] / (nodevali[lpi2] - nodevali[lpi1]); Point<3> p1 = grid[teti[lpi1]]; Point<3> p2 = grid[teti[lpi2]]; edgep[j] = p1 + (1-edgelam[j]) * (p2-p1); cntce++; cpe3 = cpe2; cpe2 = cpe1; cpe1 = j; if (cntce >= 3) { ClipPlaneTrig cpt; cpt.elnr = ei; for (int k = 0; k < 3; k++) { int ednr; switch (k) { case 0: ednr = cpe1; break; case 1: ednr = cpe2; break; case 2: ednr = cpe3; break; } // cpt.points[k].p = edgep[ednr]; int pi1 = edgei[ednr][0]; int pi2 = edgei[ednr][1]; Point<3> p1 = locgrid[teti[pi1]]; Point<3> p2 = locgrid[teti[pi2]]; // cpt.points[k].lami = p2 + edgelam[ednr] * (p1-p2); ClipPlanePoint cppt; cppt.elnr = ei; cppt.p = edgep[ednr]; cppt.lami = p2 + edgelam[ednr] * (p1-p2); int pnr = -1; for (int l = first_point_of_element; l < pts.Size(); l++) if (fabs (cppt.lami(0)-pts[l].lami(0)) < 1e-8 && fabs (cppt.lami(1)-pts[l].lami(1)) < 1e-8 && fabs (cppt.lami(2)-pts[l].lami(2)) < 1e-8) { pnr = l; break; } if (pnr == -1) pnr = pts.Append (cppt)-1; cpt.points[k].pnr = pnr; cpt.points[k].locpnr = pnr-first_point_of_element; } trigs.Append (cpt); } } } } } } else { // other elements not supported (JS, June 2007) return; /* Array nodevals(np); for (int i = 0; i < np; i++) { Point<3> p; GetPointDeformation(i, p); nodevals[i] = p(0) * clipplane[0] + p(1) * clipplane[1] + p(2) * clipplane[2] + clipplane[3]; } // const Element & el = mesh->VolumeElement(i); (*mesh)[ei].GetTets (loctets); (*mesh)[ei].GetTetsLocal (loctetsloc); // (*mesh)[ei].GetNodesLocal (pointsloc); (*mesh)[ei].GetNodesLocalNew (pointsloc); for (int ii = 0; ii < loctets.Size(); ii++) { const Element & el = loctets[ii]; for (int j = 0; j < 4; j++) nodevali[j] = nodevals.Get(el[j]); cntce = 0; for (int j = 0; j < 6; j++) { int lpi1 = edgei[j][0]; int lpi2 = edgei[j][1]; if ( (nodevali[lpi1] > 0) != (nodevali[lpi2] > 0) ) { edgelam[j] = nodevali[lpi2] / (nodevali[lpi2] - nodevali[lpi1]); Point<3> p1, p2; GetPointDeformation (el[lpi1]-1, p1); GetPointDeformation (el[lpi2]-1, p2); edgep[j] = p1 + (1-edgelam[j]) * (p2-p1); cntce++; cpe3 = cpe2; cpe2 = cpe1; cpe1 = j; if (cntce >= 3) { ClipPlaneTrig cpt; cpt.elnr = ei; for (int k = 0; k < 3; k++) { int ednr; switch (k) { case 0: ednr = cpe1; break; case 1: ednr = cpe2; break; case 2: ednr = cpe3; break; } cpt.points[k].p = edgep[ednr]; int pi1 = edgei[ednr][0]; int pi2 = edgei[ednr][1]; Point<3> p1 = pointsloc.Get (loctetsloc[ii][pi1]); Point<3> p2 = pointsloc.Get (loctetsloc[ii][pi2]); for (int l = 0; l < 3; l++) cpt.points[k].lami(l) = edgelam[ednr] * p1(l) + (1-edgelam[ednr]) * p2(l); } trigs.Append (cpt); } } } } */ } } } void VisualSceneSolution :: GetClippingPlaneGrid (Array & pts) { int i, j, k; int np = mesh->GetNV(); int ne = mesh->GetNE(); Vec3d n(clipplane[0], clipplane[1], clipplane[2]); double mu = -clipplane[3] / n.Length2(); Point3d p(mu*n.X(), mu * n.Y(), mu * n.Z()); n /= n.Length(); Vec3d t1, t2; n.GetNormal (t1); t2 = Cross (n, t1); double xi1, xi2; double xi1mid = (center - p) * t1; double xi2mid = (center - p) * t2; pts.SetSize(0); int elnr; double lami[3]; // cout << "getclippingplanegrid. xoffset = " << xoffset << ", yoffset = "; // cout << yoffset << endl; for (xi1 = xi1mid-rad+xoffset/gridsize; xi1 <= xi1mid+rad+xoffset/gridsize; xi1 += rad / gridsize) for (xi2 = xi2mid-rad+yoffset/gridsize; xi2 <= xi2mid+rad+yoffset/gridsize; xi2 += rad / gridsize) // for (xi1 = xi1mid-rad; xi1 <= xi1mid+rad; xi1 += rad / gridsize) // for (xi2 = xi2mid-rad; xi2 <= xi2mid+rad; xi2 += rad / gridsize) { Point3d hp = p + xi1 * t1 + xi2 * t2; int cindex(-1); bool allowindex(true); if(vispar.clipdomain > 0) { cindex = vispar.clipdomain; } else if(vispar.donotclipdomain > 0) { allowindex = false; cindex = vispar.donotclipdomain; } elnr = mesh->GetElementOfPoint (hp, lami,0,cindex,allowindex)-1; if (elnr != -1) { ClipPlanePoint cpp; cpp.p = hp; cpp.elnr = elnr; cpp.lami(0) = lami[0]; cpp.lami(1) = lami[1]; cpp.lami(2) = lami[2]; pts.Append (cpp); } } }; void VisualSceneSolution :: SetOpenGlColor(double val) { if (usetexture == 1 && !logscale) { glColor3d (1, 1, 1); glTexCoord1f ( val ); return; } double valmin = minval; double valmax = maxval; double value; if (!logscale) value = (val - valmin) / (valmax - valmin); else { if (valmax <= 0) valmax = 1; if (valmin <= 0) valmin = 1e-4 * valmax; value = (log(fabs(val)) - log(valmin)) / (log(valmax) - log(valmin)); } if (!invcolor) value = 1 - value; if (usetexture) { glColor3d (1, 1, 1); glTexCoord1f ( 0.999 * value + 0.001); return; }; if (value > 1) value = 1; if (value < 0) value = 0; value *= 4; static const double colp[][3] = { { 1, 0, 0 }, { 1, 1, 0 }, { 0, 1, 0 }, { 0, 1, 1 }, { 0, 0, 1 }, { 1, 0, 1 }, { 1, 0, 0 }, }; int i = int(value); double r = value - i; GLdouble col[3]; for (int j = 0; j < 3; j++) col[j] = (1-r) * colp[i][j] + r * colp[i+1][j]; glColor3d (col[0], col[1], col[2]); } void VisualSceneSolution :: SetOpenGlColor(double h, double valmin, double valmax, int logscale) { if (usetexture == 1 && !logscale) { glColor3d (1, 1, 1); glTexCoord1f ( h ); return; } double value; if (!logscale) value = (h - valmin) / (valmax - valmin); else { if (valmax <= 0) valmax = 1; if (valmin <= 0) valmin = 1e-4 * valmax; value = (log(fabs(h)) - log(valmin)) / (log(valmax) - log(valmin)); } if (!invcolor) value = 1 - value; if (usetexture) { glColor3d (1, 1, 1); glTexCoord1f ( 0.999 * value + 0.001); return; }; if (value > 1) value = 1; if (value < 0) value = 0; value *= 4; static const double colp[][3] = { { 1, 0, 0 }, { 1, 1, 0 }, { 0, 1, 0 }, { 0, 1, 1 }, { 0, 0, 1 }, { 1, 0, 1 }, { 1, 0, 0 }, }; int i = int(value); double r = value - i; GLdouble col[3]; for (int j = 0; j < 3; j++) col[j] = (1-r) * colp[i][j] + r * colp[i+1][j]; glColor3d (col[0], col[1], col[2]); } void VisualSceneSolution :: DrawCone (const Point<3> & p1, const Point<3> & p2, double r) { int n = 10, i; Vec<3> p1p2 = p2 - p1; p1p2.Normalize(); Vec<3> p2p1 = -p1p2; Vec<3> t1 = p1p2.GetNormal(); Vec<3> t2 = Cross (p1p2, t1); Point<3> oldp = p1 + r * t1; Vec<3> oldn = t1; Point<3> p; Vec<3> normal; Mat<2> rotmat; Vec<2> cs, newcs; cs(0) = 1; cs(1) = 0; rotmat(0,0) = rotmat(1,1) = cos(2*M_PI/n); rotmat(1,0) = sin(2*M_PI/n); rotmat(0,1) = -rotmat(1,0); glBegin (GL_TRIANGLES); double phi; for (i = 1; i <= n; i++) { /* phi = 2 * M_PI * i / n; normal = cos(phi) * t1 + sin(phi) * t2; */ newcs = rotmat * cs; cs = newcs; normal = cs(0) * t1 + cs(1) * t2; p = p1 + r * normal; // cone glNormal3dv (normal); glVertex3dv (p); glVertex3dv (p2); glNormal3dv (oldn); glVertex3dv (oldp); // base-circle glNormal3dv (p2p1); glVertex3dv (p); glVertex3dv (p1); glVertex3dv (oldp); oldp = p; oldn = normal; } glEnd (); } void VisualSceneSolution :: DrawCylinder (const Point<3> & p1, const Point<3> & p2, double r) { int n = 10, i; Vec<3> p1p2 = p2 - p1; p1p2.Normalize(); Vec<3> p2p1 = -p1p2; Vec<3> t1 = p1p2.GetNormal(); Vec<3> t2 = Cross (p1p2, t1); Point<3> oldhp1 = p1 + r * t1; Point<3> oldhp2 = p2 + r * t1; Vec<3> oldn = t1; Point<3> hp1, hp2; Vec<3> normal; Mat<2> rotmat; Vec<2> cs, newcs; cs(0) = 1; cs(1) = 0; rotmat(0,0) = rotmat(1,1) = cos(2*M_PI/n); rotmat(1,0) = sin(2*M_PI/n); rotmat(0,1) = -rotmat(1,0); glBegin (GL_QUADS); double phi; for (i = 1; i <= n; i++) { newcs = rotmat * cs; cs = newcs; normal = cs(0) * t1 + cs(1) * t2; hp1 = p1 + r * normal; hp2 = p2 + r * normal; // cylinder glNormal3dv (normal); glVertex3dv (hp1); glVertex3dv (hp2); glVertex3dv (oldhp2); glVertex3dv (oldhp1); oldhp1 = hp1; oldhp2 = hp2; oldn = normal; } glEnd (); } void VisualSceneSolution :: MouseDblClick (int px, int py) { vsmesh.SetClippingPlane(); vsmesh.BuildFilledList(); vsmesh.MouseDblClick(px,py); } void VisualSceneSolution :: DrawClipPlaneTrigs (const SolData * sol, int comp, const Array & trigs, const Array & points) { int maxlpnr = 0; for (int i = 0; i < trigs.Size(); i++) for (int j = 0; j < 3; j++) maxlpnr = max2 (maxlpnr, trigs[i].points[j].locpnr); ArrayMem vals(maxlpnr+1); ArrayMem elnrs(maxlpnr+1); ArrayMem trigok(maxlpnr+1); trigok = false; elnrs = -1; Point<3> p[3]; double val[3],vali[3]; for (int i = 0; i < trigs.Size(); i++) { const ClipPlaneTrig & trig = trigs[i]; bool ok = true; for (int j = 0; ok && j < 3; j++) { p[j] = points[trig.points[j].pnr].p; Point<3> ploc = points[trig.points[j].pnr].lami; if (deform) p[j] += GetDeformation (trig.elnr, ploc); if (usetexture != 2 || !sol->iscomplex) { if (elnrs[trig.points[j].locpnr] != trig.elnr) { elnrs[trig.points[j].locpnr] = trig.elnr; Point<3> pglob; Mat<3> trans; mesh->GetCurvedElements(). CalcElementTransformation (ploc, trig.elnr, pglob, trans); //double val; ok = GetValue (sol, trig.elnr, &ploc(0), &pglob(0), &trans(0,0), scalcomp, val[j]); vals[trig.points[j].locpnr] = val[j]; trigok[trig.points[j].locpnr] = ok; } else { ok = trigok[trig.points[j].locpnr]; //SetOpenGlColor (vals[trig.points[j].locpnr]); } } else { //double valr, vali; ok = GetValueComplex (sol, trig.elnr, ploc(0), ploc(1), ploc(2), scalcomp, val[j], vali[j]); //glTexCoord2f ( valr, vali ); } //glVertex3dv (p); } if(ok) for(int j=0; j<3; j++) { if (usetexture != 2 || !sol->iscomplex) { if (elnrs[trig.points[j].locpnr] != trig.elnr) SetOpenGlColor(val[j]); else SetOpenGlColor (vals[trig.points[j].locpnr]); } else glTexCoord2f ( val[j], vali[j] ); glVertex3dv (p[j]); } } } #ifdef PARALLELGL void VisualSceneSolution :: Broadcast () { MyMPI_Bcast (usetexture); MyMPI_Bcast (clipsolution); MyMPI_Bcast (scalfunction); MyMPI_Bcast (scalcomp); MyMPI_Bcast (vecfunction); MyMPI_Bcast (gridsize); MyMPI_Bcast (autoscale); MyMPI_Bcast (logscale); MyMPI_Bcast (minval); MyMPI_Bcast (maxval); MyMPI_Bcast (numisolines); MyMPI_Bcast (subdivisions); } #endif int Ng_Vis_Set (ClientData clientData, Tcl_Interp * interp, int argc, tcl_const char *argv[]) { int i; if (argc >= 2) { if (strcmp (argv[1], "parameters") == 0) { vssolution.imag_part = atoi (Tcl_GetVar (interp, "::visoptions.imaginary", TCL_GLOBAL_ONLY)); vssolution.usetexture = atoi (Tcl_GetVar (interp, "::visoptions.usetexture", TCL_GLOBAL_ONLY)); if (atoi (Tcl_GetVar (interp, "::visoptions.redrawperiodic", TCL_GLOBAL_ONLY))) vssolution.usetexture = 2; vssolution.invcolor = atoi (Tcl_GetVar (interp, "::visoptions.invcolor", TCL_GLOBAL_ONLY)); vssolution.clipsolution = 0; if (strcmp (Tcl_GetVar (interp, "::visoptions.clipsolution", TCL_GLOBAL_ONLY), "scal") == 0) vssolution.clipsolution = 1; if (strcmp (Tcl_GetVar (interp, "::visoptions.clipsolution", TCL_GLOBAL_ONLY), "vec") == 0) vssolution.clipsolution = 2; tcl_const char * scalname = Tcl_GetVar (interp, "::visoptions.scalfunction", TCL_GLOBAL_ONLY); tcl_const char * vecname = Tcl_GetVar (interp, "::visoptions.vecfunction", TCL_GLOBAL_ONLY); tcl_const char * fieldlines_vecname = Tcl_GetVar (interp, "::visoptions.fieldlinesvecfunction", TCL_GLOBAL_ONLY); vssolution.scalfunction = -1; vssolution.vecfunction = -1; vssolution.fieldlines_vecfunction = -1; int pointpos; // SZ const char * pch = strchr(scalname,'.'); pointpos = int(pch-scalname+1); for (i = 0; i < vssolution.soldata.Size(); i++) { if (strlen (vssolution.soldata[i]->name) == pointpos-1 && strncmp (vssolution.soldata[i]->name, scalname, pointpos-1) == 0) { vssolution.scalfunction = i; vssolution.scalcomp = atoi (scalname + pointpos); if ( vssolution.scalcomp > vssolution.soldata[i]->components ) vssolution.scalcomp = 1; char newscalname[100]; for ( int ii = 0; ii < pointpos; ii++ ) newscalname[ii] = scalname[ii]; newscalname[pointpos] = '.'; sprintf (newscalname+pointpos, "%i", vssolution.scalcomp); if (strcmp (scalname, newscalname) != 0) Tcl_SetVar ( interp, "::visoptions.scalfunction", newscalname, TCL_GLOBAL_ONLY ); } if (strcmp (vssolution.soldata[i]->name, vecname) == 0) { vssolution.vecfunction = i; //cout << "set vecfunction to " << i << endl; } if (strcmp (vssolution.soldata[i]->name, fieldlines_vecname) == 0) { vssolution.fieldlines_vecfunction = i; //cout << "set fieldlines-vecfunction to " << i << endl; } } if(vssolution.fieldlines_vecfunction != -1 && vssolution.vecfunction == -1) { //cout << "WARNING: Setting vector function in Visualization toolbox to value from Fieldlines toolbox!" << endl; vssolution.vecfunction = vssolution.fieldlines_vecfunction; } // reset visoptions.scalfunction and visoptions.vecfunction if not avialable if ( vssolution.scalfunction == -1 && strcmp (scalname, "none") != 0) Tcl_SetVar ( interp, "::visoptions.scalfunction", "none", TCL_GLOBAL_ONLY ); if ( vssolution.vecfunction == -1 && strcmp (vecname, "none") != 0) Tcl_SetVar ( interp, "::visoptions.vecfunction", "none", TCL_GLOBAL_ONLY ); tcl_const char * evalname = Tcl_GetVar (interp, "::visoptions.evaluate", TCL_GLOBAL_ONLY); if (strcmp(evalname, "abs") == 0) vssolution.evalfunc = VisualSceneSolution::FUNC_ABS; if (strcmp(evalname, "abstens") == 0) vssolution.evalfunc = VisualSceneSolution::FUNC_ABS_TENSOR; if (strcmp(evalname, "mises") == 0) vssolution.evalfunc = VisualSceneSolution::FUNC_MISES; if (strcmp(evalname, "main") == 0) vssolution.evalfunc = VisualSceneSolution::FUNC_MAIN; vssolution.gridsize = atoi (Tcl_GetVar (interp, "::visoptions.gridsize", TCL_GLOBAL_ONLY)); vssolution.xoffset = atof (Tcl_GetVar (interp, "::visoptions.xoffset", TCL_GLOBAL_ONLY)); // cout << "x-offset:" << vssolution.xoffset << endl; vssolution.yoffset = atof (Tcl_GetVar (interp, "::visoptions.yoffset", TCL_GLOBAL_ONLY)); vssolution.autoscale = atoi (Tcl_GetVar (interp, "::visoptions.autoscale", TCL_GLOBAL_ONLY)); /* vssolution.linear_colors = atoi (Tcl_GetVar (interp, "::visoptions.lineartexture", TCL_GLOBAL_ONLY)); */ vssolution.logscale = atoi (Tcl_GetVar (interp, "::visoptions.logscale", TCL_GLOBAL_ONLY)); vssolution.mminval = atof (Tcl_GetVar (interp, "::visoptions.mminval", TCL_GLOBAL_ONLY)); vssolution.mmaxval = atof (Tcl_GetVar (interp, "::visoptions.mmaxval", TCL_GLOBAL_ONLY)); vssolution.showclipsolution = atoi (Tcl_GetVar (interp, "::visoptions.showclipsolution", TCL_GLOBAL_ONLY)); vssolution.showsurfacesolution = atoi (Tcl_GetVar (interp, "::visoptions.showsurfacesolution", TCL_GLOBAL_ONLY)); vssolution.lineartexture = atoi (Tcl_GetVar (interp, "::visoptions.lineartexture", TCL_GLOBAL_ONLY)); vssolution.numtexturecols = atoi (Tcl_GetVar (interp, "::visoptions.numtexturecols", TCL_GLOBAL_ONLY)); vssolution.multidimcomponent = atoi (Tcl_GetVar (interp, "::visoptions.multidimcomponent", TCL_GLOBAL_ONLY)); vssolution.drawpointcurves = atoi (Tcl_GetVar (interp, "::visoptions.drawpointcurves", TCL_GLOBAL_ONLY)); vssolution.draw_fieldlines = atoi (Tcl_GetVar (interp, "::visoptions.drawfieldlines", TCL_GLOBAL_ONLY)); vssolution.num_fieldlines = atoi (Tcl_GetVar (interp, "::visoptions.numfieldlines", TCL_GLOBAL_ONLY)); vssolution.fieldlines_randomstart = atoi (Tcl_GetVar (interp, "::visoptions.fieldlinesrandomstart", TCL_GLOBAL_ONLY)); vssolution.fieldlines_reltolerance = atof (Tcl_GetVar (interp, "::visoptions.fieldlinestolerance", TCL_GLOBAL_ONLY)); if (strcmp (Tcl_GetVar (interp, "::visoptions.fieldlinesrktype", TCL_GLOBAL_ONLY), "euler") == 0) vssolution.fieldlines_rktype = 0; else if (strcmp (Tcl_GetVar (interp, "::visoptions.fieldlinesrktype", TCL_GLOBAL_ONLY), "eulercauchy") == 0) vssolution.fieldlines_rktype = 1; else if (strcmp (Tcl_GetVar (interp, "::visoptions.fieldlinesrktype", TCL_GLOBAL_ONLY), "simpson") == 0) vssolution.fieldlines_rktype = 2; else if (strcmp (Tcl_GetVar (interp, "::visoptions.fieldlinesrktype", TCL_GLOBAL_ONLY), "crungekutta") == 0) vssolution.fieldlines_rktype = 3; vssolution.fieldlines_rellength = atof (Tcl_GetVar (interp, "::visoptions.fieldlineslength", TCL_GLOBAL_ONLY)); vssolution.fieldlines_maxpoints = atoi (Tcl_GetVar (interp, "::visoptions.fieldlinesmaxpoints", TCL_GLOBAL_ONLY)); vssolution.fieldlines_relthickness = atof (Tcl_GetVar (interp, "::visoptions.fieldlinesthickness", TCL_GLOBAL_ONLY)); vssolution.fieldlines_fixedphase = (atoi (Tcl_GetVar (interp, "::visoptions.fieldlinesonlyonephase", TCL_GLOBAL_ONLY)) != 0); if(vssolution.fieldlines_fixedphase) vssolution.fieldlines_phase = atof (Tcl_GetVar (interp, "::visoptions.fieldlinesphase", TCL_GLOBAL_ONLY)); if (strcmp (Tcl_GetVar (interp, "::visoptions.fieldlinesstartarea", TCL_GLOBAL_ONLY), "box") == 0) vssolution.fieldlines_startarea = 0; else if (strcmp (Tcl_GetVar (interp, "::visoptions.fieldlinesstartarea", TCL_GLOBAL_ONLY), "file") == 0) vssolution.fieldlines_startarea = 1; else if (strcmp (Tcl_GetVar (interp, "::visoptions.fieldlinesstartarea", TCL_GLOBAL_ONLY), "face") == 0) vssolution.fieldlines_startarea = 2; if (vssolution.fieldlines_startarea == 0) { vssolution.fieldlines_startarea_parameter.SetSize(6); vssolution.fieldlines_startarea_parameter[0] = atof (Tcl_GetVar (interp, "::visoptions.fieldlinesstartareap1x", TCL_GLOBAL_ONLY)); vssolution.fieldlines_startarea_parameter[1] = atof (Tcl_GetVar (interp, "::visoptions.fieldlinesstartareap1y", TCL_GLOBAL_ONLY)); vssolution.fieldlines_startarea_parameter[2] = atof (Tcl_GetVar (interp, "::visoptions.fieldlinesstartareap1z", TCL_GLOBAL_ONLY)); vssolution.fieldlines_startarea_parameter[3] = atof (Tcl_GetVar (interp, "::visoptions.fieldlinesstartareap2x", TCL_GLOBAL_ONLY)); vssolution.fieldlines_startarea_parameter[4] = atof (Tcl_GetVar (interp, "::visoptions.fieldlinesstartareap2y", TCL_GLOBAL_ONLY)); vssolution.fieldlines_startarea_parameter[5] = atof (Tcl_GetVar (interp, "::visoptions.fieldlinesstartareap2z", TCL_GLOBAL_ONLY)); } else if (vssolution.fieldlines_startarea == 1) { vssolution.fieldlines_filename = Tcl_GetVar (interp, "::visoptions.fieldlinesfilename", TCL_GLOBAL_ONLY); } else if (vssolution.fieldlines_startarea == 2) { vssolution.fieldlines_startface = atoi (Tcl_GetVar (interp, "::visoptions.fieldlinesstartface", TCL_GLOBAL_ONLY)); } vssolution.deform = atoi (Tcl_GetVar (interp, "::visoptions.deformation", TCL_GLOBAL_ONLY)); vssolution.scaledeform = atof (Tcl_GetVar (interp, "::visoptions.scaledeform1", TCL_GLOBAL_ONLY)) * atof (Tcl_GetVar (interp, "::visoptions.scaledeform2", TCL_GLOBAL_ONLY)); if (atoi (Tcl_GetVar (interp, "::visoptions.isolines", TCL_GLOBAL_ONLY))) vssolution.numisolines = atoi (Tcl_GetVar (interp, "::visoptions.numiso", TCL_GLOBAL_ONLY)); else vssolution.numisolines = 0; vssolution.draw_isosurface = atoi (Tcl_GetVar (interp, "::visoptions.isosurf", TCL_GLOBAL_ONLY)); vssolution.SetSubdivision(atoi (Tcl_GetVar (interp, "::visoptions.subdivisions", TCL_GLOBAL_ONLY))); vssolution.UpdateSolutionTimeStamp(); } if (strcmp (argv[1], "parametersrange") == 0) { vssolution.invcolor = atoi (Tcl_GetVar (interp, "::visoptions.invcolor", TCL_GLOBAL_ONLY)); vssolution.mminval = atof (Tcl_GetVar (interp, "::visoptions.mminval", TCL_GLOBAL_ONLY)); vssolution.mmaxval = atof (Tcl_GetVar (interp, "::visoptions.mmaxval", TCL_GLOBAL_ONLY)); vssolution.lineartexture = atoi (Tcl_GetVar (interp, "::visoptions.lineartexture", TCL_GLOBAL_ONLY)); vssolution.numtexturecols = atoi (Tcl_GetVar (interp, "::visoptions.numtexturecols", TCL_GLOBAL_ONLY)); if (vssolution.usetexture == 0 || vssolution.logscale) vssolution.UpdateSolutionTimeStamp(); } if (argc >= 3 && strcmp (argv[1], "time") == 0) { vssolution.time = double (atoi (argv[2])) / 1000; vssolution.timetimestamp = NextTimeStamp(); cout << "\rtime = " << vssolution.time << " " << flush; } } #ifdef PARALLELGL vsmesh.Broadcast (); #endif return TCL_OK; } int Ng_Vis_Field (ClientData clientData, Tcl_Interp * interp, int argc, tcl_const char *argv[]) { int i; static char buf[1000]; buf[0] = 0; if (argc >= 2) { if (strcmp (argv[1], "setfield") == 0) { if (argc < 3) return TCL_ERROR; for (i = 0; i < vssolution.GetNSolData(); i++) if (strcmp (vssolution.GetSolData(i)->name, argv[2]) == 0) { cout << "found soldata " << i << endl; } } if (strcmp (argv[1], "getnfieldnames") == 0) { sprintf (buf, "%d", vssolution.GetNSolData()); } if (strcmp (argv[1], "getfieldname") == 0) { sprintf (buf, "%s", vssolution.GetSolData(atoi(argv[2])-1)->name); } if (strcmp (argv[1], "iscomplex") == 0) { sprintf (buf, "%d", vssolution.GetSolData(atoi(argv[2])-1)->iscomplex); } if (strcmp (argv[1], "getfieldcomponents") == 0) { sprintf (buf, "%d", vssolution.GetSolData(atoi(argv[2])-1)->components); } if (strcmp (argv[1], "getfieldnames") == 0) { for (i = 0; i < vssolution.GetNSolData(); i++) { strcat (buf, vssolution.GetSolData(i)->name); strcat (buf, " "); } strcat (buf, "var1 var2 var3"); Tcl_SetResult (interp, buf, TCL_STATIC); } if (strcmp (argv[1], "setcomponent") == 0) { cout << "set component " << argv[2] << endl; } if (strcmp (argv[1], "getactivefield") == 0) { sprintf (buf, "1"); } if (strcmp (argv[1], "getdimension") == 0) { sprintf (buf, "%d", mesh->GetDimension()); } } Tcl_SetResult (interp, buf, TCL_STATIC); return TCL_OK; } extern "C" int Ng_Vis_Init (Tcl_Interp * interp); int Ng_Vis_Init (Tcl_Interp * interp) { Tcl_CreateCommand (interp, "Ng_Vis_Set", Ng_Vis_Set, (ClientData)NULL, (Tcl_CmdDeleteProc*) NULL); Tcl_CreateCommand (interp, "Ng_Vis_Field", Ng_Vis_Field, (ClientData)NULL, (Tcl_CmdDeleteProc*) NULL); return TCL_OK; } } #endif // NOTCL