#include <mystdlib.h> #include <myadt.hpp> #include <gprim.hpp> #ifndef M_PI #define M_PI 3.14159265358979323846 #endif namespace netgen { ostream & operator<<(ostream & s, const Point2d & p) { return s << "(" << p.px << ", " << p.py << ")"; } ostream & operator<<(ostream & s, const Vec2d & v) { return s << "(" << v.vx << ", " << v.vy << ")"; } #ifdef none ostream & operator<<(ostream & s, const Line2d & l) { return s << l.p1 << "-" << l.p2; } ostream & operator<<(ostream & s, const TRIANGLE2D & t) { return s << t.p1 << "-" << t.p2 << "-" << t.p3; } #endif double Fastatan2 (double x, double y) { if (y > 0) { if (x > 0) return y / (x+y); else return 1 - x / (y-x); } else if (y < 0) { if (x < 0) return 2 + y / (x+y); else return 3 - x / (y-x); } else { if (x >= 0) return 0; else return 2; } } double Angle (const Vec2d & v) { if (v.X() == 0 && v.Y() == 0) return 0; double ang = atan2 (v.Y(), v.X()); if (ang < 0) ang+= 2 * M_PI; return ang; } double FastAngle (const Vec2d & v) { return Fastatan2 (v.X(), v.Y()); } double Angle (const Vec2d & v1, const Vec2d & v2) { double ang = Angle(v2) - Angle(v1); if (ang < 0) ang += 2 * M_PI; return ang; } double FastAngle (const Vec2d & v1, const Vec2d & v2) { double ang = FastAngle(v2) - FastAngle(v1); if (ang < 0) ang += 4; return ang; } /* int CW (const Point2d & p1,const Point2d & p2,const Point2d & p3) { return Cross (p2 - p1, p3 - p2) < 0; } int CCW (const Point2d & p1,const Point2d & p2,const Point2d & p3) { return Cross (p2 - p1, p3 - p2) > 0; } */ double Dist2(const Line2d & g, const Line2d & h ) { double dd = 0.0, d1,d2,d3,d4; Point2d cp = CrossPoint(g,h); if ( Parallel(g,h) || !IsOnLine(g,cp) || !IsOnLine(h,cp) ) { d1 = Dist2(g.P1(),h.P1()); d2 = Dist2(g.P1(),h.P2()); d3 = Dist2(g.P2(),h.P1()); d4 = Dist2(g.P2(),h.P2()); if (d1<d2) d2 = d1; if (d3<d4) d4 = d3; dd = ( d2 < d4 ) ? d2 : d4; } return dd; } Point2d CrossPoint (const Line2d & l1, const Line2d & l2) { double den = Cross (l1.Delta(), l2.Delta()); double num = Cross ( (l2.P1() - l1.P1()), l2.Delta()); if (den == 0) return l1.P1(); else return l1.P1() + (num/den) * l1.Delta(); } int CrossPointBarycentric (const Line2d & l1, const Line2d & l2, double & lam1, double & lam2) { // p = l1.1 + lam1 (l1.2-l1.1) = l2.1 + lam2 (l2.2-l2.1) double a11 = l1.p2.X() - l1.p1.X(); double a21 = l1.p2.Y() - l1.p1.Y(); double a12 = -(l2.p2.X() - l2.p1.X()); double a22 = -(l2.p2.Y() - l2.p1.Y()); double b1 = l2.p1.X() - l1.p1.X(); double b2 = l2.p1.Y() - l1.p1.Y(); double det = a11*a22 - a12 * a21; if (det == 0) return 1; lam1 = (a22 * b1 - a12 * b2) / det; lam2 = (a11 * b2 - a21 * b1) / det; return 0; } int Parallel (const Line2d & l1, const Line2d & l2, double peps) { double p = fabs (Cross (l1.Delta(), l2.Delta())); // (*mycout) << endl << p << " " << l1.Length() << " " << l2.Length() << endl; return p <= peps * l1.Length() * l2.Length(); } int IsOnLine (const Line2d & l, const Point2d & p, double heps) { double c1 = (p - l.P1()) * l.Delta(); double c2 = (p - l.P2()) * l.Delta(); double d = fabs (Cross ( (p - l.P1()), l.Delta())); double len2 = l.Length2(); return c1 >= -heps * len2 && c2 <= heps * len2 && d <= heps * len2; } #ifdef none int IsOnLine (const PLine2d & l, const Point2d & p, double heps) { double c1 = (p - l.P1()) * l.Delta(); double c2 = (p - l.P2()) * l.Delta(); double d = fabs (Cross ( (p - l.P1()), l.Delta())); double len2 = l.Length2(); return c1 >= -heps * len2 && c2 <= heps * len2 && d <= heps * len2; } int IsOnLongLine (const Line2d & l, const Point2d & p) { double d = fabs (Cross ( (p - l.P1()), l.Delta())); return d <= EPSGEOM * l.Length(); } int Hit (const Line2d & l1, const Line2d & l2, double heps) { double den = Cross ( (l1.P2() - l1.P1()), (l2.P1() - l2.P2())); double num1 = Cross ( (l2.P1() - l1.P1()), (l2.P1() - l2.P2())); double num2 = Cross ( (l1.P2() - l1.P1()), (l2.P1() - l1.P1())); num1 *= sgn (den); num2 *= sgn (den); den = fabs (den); int ch = (-den * heps <= num1 && num1 <= den * (1 + heps) && -den * heps <= num2 && num2 <= den * (1 + heps)); return ch; } void Line2d :: GetNormal (Line2d & n) const { double ax = P2().X()-P1().X(), ay = P2().Y()-P1().Y(); Point2d mid(P1().X()+.5*ax, P1().Y()+.5*ay); n=Line2d(mid,Point2d(mid.X()+ay,mid.Y()-ax)) ; } Vec2d Line2d :: NormalDelta () const { Line2d tmp; GetNormal(tmp); return tmp.Delta(); } int TRIANGLE2D :: IsOn (const Point2d & p) const { return IsOnLine (Line2d (p1, p2), p) || IsOnLine (Line2d (p1, p3), p) || IsOnLine (Line2d (p2, p3), p); } int TRIANGLE2D :: IsIn (const Point2d & p) const { return ::CW(p, p1, p2) == ::CW(p, p2, p3) && ::CW(p, p1, p2) == ::CW(p, p3, p1); } int PTRIANGLE2D :: IsOn (const Point2d & p) const { return IsOnLine (Line2d (*p1, *p2), p) || IsOnLine (Line2d (*p1, *p3), p) || IsOnLine (Line2d (*p2, *p3), p); } int PTRIANGLE2D :: IsIn (const Point2d & p) const { return ::CW(p, *p1, *p2) == ::CW(p, *p2, *p3) && ::CW(p, *p1, *p2) == ::CW(p, *p3, *p1); } #endif Polygon2d :: Polygon2d () { ; } Polygon2d :: ~Polygon2d () { ; } void Polygon2d :: AddPoint (const Point2d & p) { points.Append(p); } double Polygon2d :: HArea () const { int i; double ar = 0; for (i = 1; i <= points.Size(); i++) { const Point2d & p1 = points.Get(i); const Point2d & p2 = points.Get(i%points.Size()+1); ar += (p2.X()-p1.X()) * p1.Y() - (p2.Y()-p1.Y()) * p1.X(); } return ar/2; /* CURSOR c; double ar = 0; Point2d * p1, * p2, p0 = Point2d(0, 0); Vec2d v1, v2 = Vec2d(1, 0); p2 = points[points.Last()]; for (c = points.First(); c != points.Head(); c++) { p1 = p2; p2 = points[c]; ar += Cross ( (*p2-*p1), (*p1 - p0)); } return ar / 2; */ } int Polygon2d :: IsOn (const Point2d & p) const { int i; for (i = 1; i <= points.Size(); i++) { const Point2d & p1 = points.Get(i); const Point2d & p2 = points.Get(i%points.Size()+1); if (IsOnLine (Line2d(p1, p2), p)) return 1; } return 0; /* CURSOR c; Point2d * p1, * p2; p2 = points[points.Last()]; for (c = points.First(); c != points.Head(); c++) { p1 = p2; p2 = points[c]; if (IsOnLine (Line2d(*p1, *p2), p)) return 1; } return 0; */ } int Polygon2d :: IsIn (const Point2d & p) const { int i; double sum = 0, ang; for (i = 1; i <= points.Size(); i++) { const Point2d & p1 = points.Get(i); const Point2d & p2 = points.Get(i%points.Size()+1); ang = Angle ( (p1 - p), (p2 - p) ); if (ang > M_PI) ang -= 2 * M_PI; sum += ang; } return fabs(sum) > M_PI; /* CURSOR c; Point2d * p1, * p2; double sum = 0, ang; p2 = points[points.Last()]; for (c = points.First(); c != points.Head(); c++) { p1 = p2; p2 = points[c]; ang = Angle ( (*p1 - p), (*p2 - p) ); if (ang > M_PI) ang -= 2 * M_PI; sum += ang; } return fabs(sum) > M_PI; */ } int Polygon2d :: IsConvex () const { /* Point2d *p, *pold, *pnew; char cw; CURSOR c; if (points.Length() < 3) return 0; c = points.Last(); p = points[c]; c--; pold = points[c]; pnew = points[points.First()]; cw = ::CW (*pold, *p, *pnew); for (c = points.First(); c != points.Head(); c++) { pnew = points[c]; if (cw != ::CW (*pold, *p, *pnew)) return 0; pold = p; p = pnew; } */ return 0; } int Polygon2d :: IsStarPoint (const Point2d & p) const { /* Point2d *pnew, *pold; char cw; CURSOR c; if (points.Length() < 3) return 0; pold = points[points.Last()]; pnew = points[points.First()]; cw = ::CW (p, *pold, *pnew); for (c = points.First(); c != points.Head(); c++) { pnew = points[c]; if (cw != ::CW (p, *pold, *pnew)) return 0; pold = pnew; } return 1; */ return 0; } Point2d Polygon2d :: Center () const { /* double ai, a = 0, x = 0, y = 0; Point2d * p, *p2; Point2d p0 = Point2d(0, 0); CURSOR c; p2 = points[points.Last()]; for (c = points.First(); c != points.Head(); c++) { p = points[c]; ai = Cross (*p2 - p0, *p - p0); x += ai / 3 * (p2->X() + p->X()); y += ai / 3 * (p2->Y() + p->Y()); a+= ai; p2 = p; } if (a != 0) return Point2d (x / a, y / a); else return Point2d (0, 0); */ return Point2d (0, 0); } Point2d Polygon2d :: EqualAreaPoint () const { /* double a11 = 0, a12 = 0, a21= 0, a22 = 0; double b1 = 0, b2 = 0, dx, dy; double det; Point2d * p, *p2; CURSOR c; p = points[points.Last()]; for (c = points.First(); c != points.Head(); c++) { p2 = p; p = points[c]; dx = p->X() - p2->X(); dy = p->Y() - p2->Y(); a11 += sqr (dy); a12 -= dx * dy; a21 -= dx * dy; a22 += sqr (dx); b1 -= dy * (p->X() * p2->Y() - p2->X() * p->Y()); b2 -= dx * (p->Y() * p2->X() - p2->Y() * p->X()); } det = a11 * a22 - a21 * a12; if (det != 0) return Point2d ( (b1 * a22 - b2 * a12) / det, (a11 * b2 - a21 * b1) / det); else return Point2d (0, 0); */ return Point2d (0, 0); } }