#ifdef NG_PYTHON #ifdef OCCGEOMETRY #include <../general/ngpython.hpp> #include #include using namespace netgen; namespace netgen { extern std::shared_ptr ng_geometry; } DLL_HEADER void ExportNgOCC(py::module &m) { py::class_, NetgenGeometry> (m, "OCCGeometry", R"raw_string(Use LoadOCCGeometry to load the geometry from a *.step file.)raw_string") .def(py::init<>()) .def("Heal",[](OCCGeometry & self, double tolerance, bool fixsmalledges, bool fixspotstripfaces, bool sewfaces, bool makesolids, bool splitpartitions) { self.tolerance = tolerance; self.fixsmalledges = fixsmalledges; self.fixspotstripfaces = fixspotstripfaces; self.sewfaces = sewfaces; self.makesolids = makesolids; self.splitpartitions = splitpartitions; self.HealGeometry(); self.BuildFMap(); },py::arg("tolerance")=1e-3, py::arg("fixsmalledges")=true, py::arg("fixspotstripfaces")=true, py::arg("sewfaces")=true, py::arg("makesolids")=true, py::arg("splitpartitions")=false,R"raw_string(Heal the OCCGeometry.)raw_string",py::call_guard()) .def("_visualizationData", [] (shared_ptr occ_geo) { std::vector vertices; std::vector trigs; std::vector normals; std::vector min = {std::numeric_limits::max(), std::numeric_limits::max(), std::numeric_limits::max()}; std::vector max = {std::numeric_limits::lowest(), std::numeric_limits::lowest(), std::numeric_limits::lowest()}; std::vector surfnames; auto box = occ_geo->GetBoundingBox(); for(int i = 0; i < 3; i++) { min[i] = box.PMin()[i]; max[i] = box.PMax()[i]; } occ_geo->BuildVisualizationMesh(0.01); gp_Pnt2d uv; gp_Pnt pnt; gp_Vec n; gp_Pnt p[3]; int count = 0; for (int i = 1; i <= occ_geo->fmap.Extent(); i++) { surfnames.push_back("occ_surface" + to_string(i)); auto face = TopoDS::Face(occ_geo->fmap(i)); auto surf = BRep_Tool::Surface(face); TopLoc_Location loc; BRepAdaptor_Surface sf(face, Standard_False); BRepLProp_SLProps prop(sf, 1, 1e-5); Handle(Poly_Triangulation) triangulation = BRep_Tool::Triangulation (face, loc); if (triangulation.IsNull()) cout << "cannot visualize face " << i << endl; trigs.reserve(trigs.size() + triangulation->NbTriangles()*4); vertices.reserve(vertices.size() + triangulation->NbTriangles()*3*3); normals.reserve(normals.size() + triangulation->NbTriangles()*3*3); for (int j = 1; j < triangulation->NbTriangles()+1; j++) { auto triangle = (triangulation->Triangles())(j); for (int k = 1; k < 4; k++) p[k-1] = (triangulation->Nodes())(triangle(k)).Transformed(loc); for (int k = 1; k < 4; k++) { vertices.insert(vertices.end(),{float(p[k-1].X()), float(p[k-1].Y()), float(p[k-1].Z())}); trigs.insert(trigs.end(),{count, count+1, count+2,i}); count += 3; uv = (triangulation->UVNodes())(triangle(k)); prop.SetParameters(uv.X(), uv.Y()); if (prop.IsNormalDefined()) n = prop.Normal(); else { gp_Vec a(p[0], p[1]); gp_Vec b(p[0], p[2]); n = b^a; } if (face.Orientation() == TopAbs_REVERSED) n*= -1; normals.insert(normals.end(),{float(n.X()), float(n.Y()), float(n.Z())}); } } } py::gil_scoped_acquire ac; py::dict res; py::list snames; for(auto name : surfnames) snames.append(py::cast(name)); res["vertices"] = MoveToNumpy(vertices); res["triangles"] = MoveToNumpy(trigs); res["normals"] = MoveToNumpy(normals); res["surfnames"] = snames; res["min"] = MoveToNumpy(min); res["max"] = MoveToNumpy(max); return res; }, py::call_guard()) ; m.def("LoadOCCGeometry",FunctionPointer([] (const string & filename) { cout << "load OCC geometry"; ifstream ist(filename); OCCGeometry * instance = new OCCGeometry(); instance = LoadOCC_STEP(filename.c_str()); ng_geometry = shared_ptr(instance, NOOP_Deleter); return ng_geometry; }),py::call_guard()); m.def("GenerateMesh", FunctionPointer([] (shared_ptr geo, MeshingParameters ¶m) { auto mesh = make_shared(); SetGlobalMesh(mesh); mesh->SetGeometry(geo); ng_geometry = geo; try { geo->GenerateMesh(mesh,param); } catch (NgException ex) { cout << "Caught NgException: " << ex.What() << endl; } return mesh; }),py::call_guard()) ; } PYBIND11_MODULE(libNgOCC, m) { ExportNgOCC(m); } #endif // OCCGEOMETRY #endif // NG_PYTHON