#ifndef FILE_TRANSFORM3D #define FILE_TRANSFORM3D /* *************************************************************************/ /* File: transform3d.hh */ /* Author: Joachim Schoeberl */ /* Date: 22. Mar. 98 */ /* *************************************************************************/ /* Affine - Linear mapping in 3D space */ namespace netgen { class Transformation3d; ostream & operator<< (ostream & ost, Transformation3d & trans); class Transformation3d { double lin[3][3]; double offset[3]; public: /// Transformation3d (); /// Unit tet is mapped to tet described by pp Transformation3d (const Point3d ** pp); /// Unit tet is mapped to tet described by pp Transformation3d (const Point3d pp[]); /// translation Transformation3d (const Vec3d & translate); /// rotation with ... Transformation3d (const Point3d & c, double alpha, double beta, double gamma); /// void CalcInverse (Transformation3d & inv) const; /// this = ta x tb void Combine (const Transformation3d & ta, const Transformation3d & tb); /// dir = 1..3 (== x..z) void SetAxisRotation (int dir, double alpha); /// void Transform (const Point3d & from, Point3d & to) const { for (int i = 1; i <= 3; i++) { to.X(i) = offset[i-1] + lin[i-1][0] * from.X(1) + lin[i-1][1] * from.X(2) + lin[i-1][2] * from.X(3); } } /// void Transform (Point3d & p) const { Point3d hp; Transform (p, hp); p = hp; } /// transform vector, apply only linear part, not offset void Transform (const Vec3d & from, Vec3d & to) const { for (int i = 1; i <= 3; i++) { to.X(i) = lin[i-1][0] * from.X(1) + lin[i-1][1] * from.X(2) + lin[i-1][2] * from.X(3); } } friend ostream & operator<< (ostream & ost, Transformation3d & trans); }; template <int D> class Transformation { Mat<D> m; Vec<D> v; public: /// Transformation () { m = 0; v = 0; } /// Unit tet is mapped to tet described by pp Transformation (const Point<D> * pp); /// translation Transformation (const Vec<D> & translate) { v = translate; m = 0; for (int i = 0; i < D; i++) m(i,i) = 1; } Transformation (const Point<D> & c, const Vec<3> & axes, double angle); // rotation with ... Transformation (const Point<D> & c, double alpha, double beta, double gamma) { // total = T_c x Rot_0 x T_c^{-1} // Use Euler angles, see many books from tech mech, e.g. // Shabana "multibody systems" Vec<D> vc(c); Transformation<D> tc(vc); Transformation<D> tcinv(-vc); // tc.CalcInverse (tcinv); Transformation<D> r1, r2, r3, ht, ht2; r1.SetAxisRotation (3, alpha); r2.SetAxisRotation (1, beta); r3.SetAxisRotation (3, gamma); ht.Combine (tc, r3); ht2.Combine (ht, r2); ht.Combine (ht2, r1); Combine (ht, tcinv); // cout << "Rotation - Transformation:" << (*this) << endl; // (*testout) << "Rotation - Transformation:" << (*this) << endl; } Mat<D> & GetMatrix() { return m; } Vec<D> & GetVector() { return v; } void DoArchive(Archive& ar) { ar & m & v; } /// Transformation CalcInverse () const { Transformation inv; // inv.m = Inv(m); ::netgen::CalcInverse (m, inv.m); inv.v = inv.m * (-v); return inv; } /// this = ta x tb void Combine (const Transformation & ta, const Transformation & tb) { v = ta.v + ta.m * tb.v; m = ta.m * tb.m; } /// dir = 1..3 (== x..z) void SetAxisRotation (int dir, double alpha) { double co = cos(alpha); double si = sin(alpha); dir--; int pos1 = (dir+1) % 3; int pos2 = (dir+2) % 3; int i, j; for (i = 0; i <= 2; i++) { v(i) = 0; for (j = 0; j <= 2; j++) m(i,j) = 0; } m(dir,dir) = 1; m(pos1, pos1) = co; m(pos2, pos2) = co; m(pos1, pos2) = si; m(pos2, pos1) = -si; } /// void Transform (const Point<D> & from, Point<D> & to) const { to = Point<D> (v + m * Vec<D>(from)); } void Transform (Point<D> & p) const { p = Point<D> (v + m * Vec<D>(p)); } /// transform vector, apply only linear part, not offset void Transform (const Vec<D> & from, Vec<D> & to) const { to = m * from; } Point<D> operator() (Point<D> from) const { Point<D> to; Transform(from, to); return to; } Vec<D> operator() (Vec<D> from) const { Vec<D> to; Transform(from, to); return to; } }; template <int D> ostream & operator<< (ostream & ost, Transformation<D> & trans); } #endif