#include #include #include #include #include #include "csg2d.hpp" // Polygon clipping algorithm based on: // Foster, Erich & Hormann, Kai & Popa, Romeo. (2019). Clipping Simple Polygons with Degenerate Intersections. Computers & Graphics: X. 2. 100007. 10.1016/j.cagx.2019.100007. // extended to handle quadratic spline segments namespace netgen { constexpr static double EPSILON=0.000000001; void ComputeWeight( Spline & s, Point<2> p ) { Point<2> a = s.StartPI(); Point<2> b = s.TangentPoint(); Point<2> c = s.EndPI(); double A = (p[1]-a[1])*(b[0]-p[0]) - (p[0]-a[0])*(b[1]-p[1]); double B = (p[1]-c[1])*(b[0]-p[0]) - (p[0]-c[0])*(b[1]-p[1]); double det = sqrt(-A*B); double tt = fabs(A+det) fabs(v[1]) ? 0 : 1; double weight = fabs(tt*(p[dim]-a[dim])/v[dim] + 1.0/tt*(p[dim]-c[dim])/v[dim]); s.SetWeight(weight); } void ToggleLabel(EntryExitLabel& status) { if (status == ENTRY) { status = EXIT; return; } if (status == EXIT) { status = ENTRY; return; } } Spline Split( const Spline & s, double t0, double t1 ) { if(t0==0.0 && t1==1.0) return s; Point<2> a = s.StartPI(); if(t0!=0.0) a = s.GetPoint(t0); Point<2> c = s.EndPI(); if(t1!=1.0) c = s.GetPoint(t1); // Find new midpoints by cutting the tangents at the new end points auto tang0 = s.GetTangent(t0); auto tang1 = s.GetTangent(t1); netgen::Mat<2,2> m, minv; m(0,0) = tang0[0]; m(1,0) = tang0[1]; m(0,1) = -tang1[0]; m(1,1) = -tang1[1]; CalcInverse(m, minv); Vec<2> lam = minv*(c-a); Point<2> b = a+lam[0]*tang0; auto res = Spline{a, b, c}; // compute weight of new spline such that p lies on it Point<2> p = s.GetPoint(0.5*(t0+t1)); ComputeWeight(res, p); return res; } Vertex * Vertex :: Insert(Point<2> p, double lam) { auto vnew = make_unique(p); vnew->lam = lam; Vertex * current = this; if(lam > -1.0) { do { current = current->next; } while (!current->is_source && current->lam < lam); } else current = current->next; auto pre = current->prev; if(lam > -1.0) vnew->info = pre->info; pre->next = vnew.get(); vnew->prev = pre; vnew->next = current; vnew->pnext = std::move(current->prev->pnext); current->prev = vnew.get(); pre->pnext = std::move(vnew); return pre->next; } IntersectionType ClassifyNonOverlappingIntersection( double alpha, double beta ) { // classify alpha bool alpha_is_0 = false; bool alpha_in_0_1 = false; if ( (alpha > EPSILON) && (alpha < 1.0-EPSILON) ) alpha_in_0_1 = true; else if (fabs(alpha) <= EPSILON) alpha_is_0 = true; // classify beta bool beta_is_0 = false; bool beta_in_0_1 = false; if ( (beta > EPSILON) && (beta < 1.0-EPSILON) ) beta_in_0_1 = true; else if (fabs(beta) <= EPSILON) beta_is_0 = true; // distinguish intersection types if (alpha_in_0_1 && beta_in_0_1) return (X_INTERSECTION); if (alpha_is_0 && beta_in_0_1) return (T_INTERSECTION_Q); if (beta_is_0 && alpha_in_0_1) return (T_INTERSECTION_P); if (alpha_is_0 && beta_is_0) return (V_INTERSECTION); return NO_INTERSECTION; } IntersectionType ClassifyOverlappingIntersection( double alpha, double beta ) { // classify alpha bool alpha_is_0 = false; bool alpha_in_0_1 = false; bool alpha_not_in_0_1 = false; if ( (alpha > EPSILON) && (alpha < 1.0-EPSILON) ) alpha_in_0_1 = true; else if (fabs(alpha) <= EPSILON) alpha_is_0 = true; else alpha_not_in_0_1 = true; // classify beta bool beta_is_0 = false; bool beta_in_0_1 = false; bool beta_not_in_0_1 = false; if ( (beta > EPSILON) && (beta < 1.0-EPSILON) ) beta_in_0_1 = true; else if (fabs(alpha) <= EPSILON) beta_is_0 = true; else beta_not_in_0_1 = true; // distinguish intersection types if (alpha_in_0_1 && beta_in_0_1) return (X_OVERLAP); if (alpha_not_in_0_1 && beta_in_0_1) return (T_OVERLAP_Q); if (beta_not_in_0_1 && alpha_in_0_1) return (T_OVERLAP_P); if (alpha_is_0 && beta_is_0) return (V_OVERLAP); return NO_INTERSECTION; } IntersectionType intersect(const Point<2> P1, const Point<2> P2, const Point<2> Q1, const Point<2> Q2, double& alpha, double& beta) { double AP1 = Area(P1,Q1,Q2); double AP2 = Area(P2,Q1,Q2); if (fabs(AP1-AP2) > EPSILON) { // (P1,P2) and (Q1,Q2) are not parallel double AQ1 = Area(Q1,P1,P2); double AQ2 = Area(Q2,P1,P2); alpha = AP1 / (AP1-AP2); beta = AQ1 / (AQ1-AQ2); return ClassifyNonOverlappingIntersection(alpha, beta); } else if (fabs(AP1) < EPSILON) { // (P1,P2) and (Q1,Q2) are collinear auto dP = P2-P1; auto dQ = Q2-Q1; auto PQ = Q1-P1; alpha = (PQ*dP) / (dP*dP); beta = -(PQ*dQ) / (dQ*dQ); return ClassifyOverlappingIntersection(alpha, beta); } return NO_INTERSECTION; } IntersectionType IntersectSplineSegment( const Spline & s, const Point<2> & r0, const Point<2> & r1, double& alpha, double& beta ) { Point<2> p0 = s.StartPI(); Point<2> p1 = s.TangentPoint(); Point<2> p2 = s.EndPI(); auto vr = r1-r0; double a0 = vr[1]*(p0[0] - r0[0]) - vr[0]*(p0[1] - r0[1]); double a1 = vr[1]*(p1[0] - r0[0]) - vr[0]*(p1[1] - r0[1]); double a2 = vr[1]*(p2[0] - r0[0]) - vr[0]*(p2[1] - r0[1]); a1 *= s.GetWeight(); double a_ = a0-a1+a2; double b_ = a1-2*a0; double c_ = a0; double det = b_*b_ - 4*a_*c_; if(det<0.0) return NO_INTERSECTION; double sqrt_det = sqrt(det); double t1 = 1.0/(2*a_) * (-b_ + sqrt_det); double t2 = 1.0/(2*a_) * (-b_ - sqrt_det); double t = min(t1,t2); if(t fabs(vr[1]) ? 0 : 1; beta = 1.0/vr[dim] * (s.GetPoint(t)[dim] - r0[dim]); return ClassifyNonOverlappingIntersection(alpha, beta); } IntersectionType IntersectSplineSegment1( const Spline & s, const Point<2> & r0, const Point<2> & r1, double& alpha, double& beta, bool first=false) { Point<2> p0 = s.StartPI(); Point<2> p1 = s.TangentPoint(); Point<2> p2 = s.EndPI(); auto vr = r1-r0; double a0 = vr[1]*(p0[0] - r0[0]) - vr[0]*(p0[1] - r0[1]); double a1 = vr[1]*(p1[0] - r0[0]) - vr[0]*(p1[1] - r0[1]); double a2 = vr[1]*(p2[0] - r0[0]) - vr[0]*(p2[1] - r0[1]); a1 *= s.GetWeight(); double a_ = a0-a1+a2; double b_ = a1-2*a0; double c_ = a0; double det = b_*b_ - 4*a_*c_; if(det<0.0) return NO_INTERSECTION; double sqrt_det = sqrt(det); double vbeta[2]; vbeta[0] = 1.0/(2*a_) * (-b_ + sqrt_det); vbeta[1] = 1.0/(2*a_) * (-b_ - sqrt_det); int dim = fabs(vr[0]) > fabs(vr[1]) ? 0 : 1; double valpha[2]; valpha[0] = 1.0/vr[dim] * (s.GetPoint(vbeta[0])[dim] - r0[dim]); valpha[1] = 1.0/vr[dim] * (s.GetPoint(vbeta[1])[dim] - r0[dim]); IntersectionType vtype[2]; vtype[0] = ClassifyNonOverlappingIntersection(valpha[0], vbeta[0]); vtype[1] = ClassifyNonOverlappingIntersection(valpha[1], vbeta[1]); if(valpha[0]>valpha[1]) { swap(valpha[0], valpha[1]); swap(vbeta[0], vbeta[1]); swap(vtype[0], vtype[1]); } int choice = 0; if(!first) { if(vtype[0]==NO_INTERSECTION && vtype[1]!=NO_INTERSECTION) choice = 1; if(valpha[0] < alpha+EPSILON) choice = 1; } if(valpha[choice] < alpha+EPSILON) return NO_INTERSECTION; alpha = valpha[choice]; beta = vbeta[choice]; return vtype[choice]; } bool IsOverlapping( Spline p, Spline s, double & alpha, double & beta, IntersectionType & type ) { auto p_mid = Center(p.StartPI(), p.EndPI()); auto s_mid = Center(s.StartPI(), s.EndPI()); double lam0 = -1e3*EPSILON; double lam1 = -1e3*EPSILON; double lam2 = -1e3*EPSILON; double lam3 = -1e3*EPSILON; alpha=-1e8; beta=-1e8; double alpha_mid=-1e8; double beta_mid=-1e8; // Check if s.p0 lies on p and vice versa, also check if tangents are in same direction (TODO: TEST) // If so, assume overlapping splines // TODO: Better checks! False positives could happen here! IntersectSplineSegment1( p, s.StartPI(), p_mid, lam0, alpha, true ); IntersectSplineSegment1( s, p.StartPI(), s_mid, lam1, beta, true ); // Also check if midpoints lie on other spline IntersectSplineSegment1( p, s.GetPoint(0.5), p_mid, lam2, alpha_mid, true ); IntersectSplineSegment1( s, p.GetPoint(0.5), s_mid, lam3, beta_mid, true ); auto tang0 = s.GetTangent(0.); auto tang1 = p.GetTangent(alpha); double err = tang0*tang1; err*=err; err *= 1.0/(tang0.Length2()*tang1.Length2()); double constexpr eps = 1e3*EPSILON; if(fabs(lam0)>eps) return false; if(fabs(lam1)>eps) return false; if(fabs(lam2)>eps) return false; if(fabs(lam3)>eps) return false; if(fabs(1.0-err)>eps) return false; type = ClassifyOverlappingIntersection( alpha, beta ); return true; } bool IsInsideTrig( const array,3> & t, Point<2> r ) { int w = 0; Point<2> trig[4] = {t[0],t[1],t[2],t[0]}; for(auto i : Range(3)) w += CalcSide(trig[i], trig[i+1], r); return ( (w % 2) != 0 ); } IntersectionType IntersectTrig( Point<2> p0, Point<2> p1, const array,3> & trig) { Point<2> lt[4] = { trig[0], trig[1], trig[2], trig[0] }; double alpha, beta; for(auto i : IntRange(3)) { auto type = intersect(p0, p1, lt[i], lt[i+1], alpha, beta); if(type != NO_INTERSECTION) return type; } return NO_INTERSECTION; } bool IntersectTrigs( const array,3> & trig0, const array,3> & trig1) { Point<2> lt0[4] = { trig0[0], trig0[1], trig0[2], trig0[0] }; for(auto i : IntRange(3)) { if(IntersectTrig(lt0[i], lt0[i+1], trig1)) return true; if(IsInsideTrig(trig0, trig1[i])) return true; if(IsInsideTrig(trig1, trig0[i])) return true; } return false; } bool BisectIntersect( Spline p, Spline s, double &t0, double &t1, double &s0, double &s1, int depth=-50) { if(depth==0) { s0 = s1; t0 = t1; return true; } bool side = depth%2==0; double & lam0 = side ? t0 : s0; double & lam1 = side ? t1 : s1; Spline & spline = side ? p : s; Spline & spline_other = side ? s : p; double lam_mid = 0.5*(lam0+lam1); auto left = Split(spline, lam0, lam_mid); auto right = Split(spline, lam_mid, lam1); double & lam0_other = side ? s0 : t0; double & lam1_other = side ? s1 : t1; auto curr = Split(spline_other, lam0_other, lam1_other); bool left_hull_intersecting = IntersectTrigs( {left.StartPI(), left.TangentPoint(), left.EndPI()}, {curr.StartPI(), curr.TangentPoint(), curr.EndPI()}); bool right_hull_intersecting = IntersectTrigs( {right.StartPI(), right.TangentPoint(), right.EndPI()}, {curr.StartPI(), curr.TangentPoint(), curr.EndPI()}); // TODO: Additionaly check if one spline intersects with convex hull of other? // // Check if one spline intersects with convex hull of spline // if(left_hull_intersecting) // { // double a,b; // left_hull_intersecting = left.Intersect( curr.p0, curr.p1, a, b ); // left_hull_intersecting |= left.Intersect( curr.p1, curr.p2, a, b ); // left_hull_intersecting |= left.Intersect( curr.p2, curr.p0, a, b ); // } // // if(right_hull_intersecting) // { // double a,b; // right_hull_intersecting = right.Intersect( curr.p0, curr.p1, a, b ); // right_hull_intersecting |= right.Intersect( curr.p1, curr.p2, a, b ); // right_hull_intersecting |= right.Intersect( curr.p2, curr.p0, a, b ); // } if(!left_hull_intersecting && !right_hull_intersecting) return false; if(left_hull_intersecting && right_hull_intersecting) { // cout << "intersect both sides " << endl; double temp_lam; temp_lam = lam1; lam1 = lam_mid; double t0_ = t0; double t1_ = t1; double s0_ = s0; double s1_ = s1; // cout << "recursive bisect " << t0 << ',' << t1 << ',' << s0 << ',' << s1 << endl; bool first_intersecting = BisectIntersect(p, s, t0_, t1_, s0_, s1_, depth+1); if(first_intersecting) { t0 = t0_; t1 = t1_; s0 = s0_; s1 = s1_; return true; } else { // cout << "search other side " << endl; // no first intersection -> search other side lam1 = temp_lam; left_hull_intersecting = false; } } if(left_hull_intersecting) lam1 = lam_mid; else lam0 = lam_mid; return BisectIntersect(p, s, t0, t1, s0, s1, depth+1); } bool NewtonIntersect( Spline p, Spline s, double & alpha, double & beta ) { Point<2> p0, s0; Vec<2> dp, ds, ddp, dds; p.GetDerivatives(alpha, p0, dp, ddp); s.GetDerivatives(beta, s0, ds, dds); netgen::Mat<2,2> m, minv; m(0,0) = dp[0]; m(1,0) = dp[1]; m(0,1) = -ds[0]; m(1,1) = -ds[1]; CalcInverse(m, minv); Vec<2> res = s0-p0; Vec<2> h = minv*res; alpha +=h[0]; beta +=h[1]; return true; } IntersectionType Intersect( Spline p, Spline s, double &alpha, double &beta) { bool is_convex_hull_intersecting = IntersectTrigs( {p.StartPI(), p.TangentPoint(), p.EndPI()}, {s.StartPI(), s.TangentPoint(), s.EndPI()}); if(!is_convex_hull_intersecting) return NO_INTERSECTION; { // Check if splines overlap double alpha_ = alpha; double beta_ = beta; IntersectionType overlap_type; bool have_overlap = IsOverlapping( p, s, alpha_, beta_, overlap_type ); if(have_overlap) { alpha = alpha_; beta = beta_; return overlap_type; } } // Bisection double t1 = 1.0; double s1 = 1.0; bool have_intersection = false; if(alpha>0.0) // alpha > 0 means, we have found one intersection already { // reverse parametrization of first spline to make sure, we find the second intersection first auto p_ = Spline{p.EndPI(), p.TangentPoint(), p.StartPI(), p.GetWeight()}; t1 = 1.0-alpha; alpha = 0.0; beta = 0.0; have_intersection = BisectIntersect(p_,s,alpha,t1,beta,s1); alpha = 1.0-alpha; } else have_intersection = BisectIntersect(p,s,alpha,t1,beta,s1); if(have_intersection) { for(auto i : IntRange(10)) NewtonIntersect(p, s, alpha, beta); return ClassifyNonOverlappingIntersection( alpha, beta ); } return NO_INTERSECTION; } IntersectionType intersect(const Edge& edgeP, const Edge& edgeQ, double& alpha, double& beta) { const Point<2>& P1 = *edgeP.v0; const Point<2>& P2 = *edgeP.v1; const Point<2>& Q1 = *edgeQ.v0; const Point<2>& Q2 = *edgeQ.v1; if(edgeP.v0->spline) { if(edgeQ.v0->spline) return Intersect(*edgeP.v0->spline, *edgeQ.v0->spline, alpha, beta); else return IntersectSplineSegment(*edgeP.v0->spline, Q1, Q2, alpha, beta); } else { if(edgeQ.v0->spline) return IntersectSplineSegment1(*edgeQ.v0->spline, P1, P2, alpha, beta); else return intersect(P1, P2, Q1, Q2, alpha, beta); } } void AddIntersectionPoint(Edge edgeP, Edge edgeQ, IntersectionType i, double alpha, double beta) { Point<2> I; Vertex* I_P; Vertex* I_Q; Vertex* P1 = edgeP.v0; Vertex* Q1 = edgeQ.v0; switch(i) { case X_INTERSECTION: if(edgeP.v0->spline) I = edgeP.v0->spline->GetPoint(alpha); else I = *edgeP.v0 + alpha*(*edgeP.v1 - *edgeP.v0); I_P = edgeP.v0->Insert(I, alpha); I_Q = edgeQ.v0->Insert(I, beta); I_P->Link(I_Q); break; case X_OVERLAP: I_Q = edgeQ.v0->Insert(*P1, beta); P1->Link( I_Q); I_P = edgeP.v0->Insert(*Q1, alpha); I_P->Link( Q1); break; case T_INTERSECTION_Q: case T_OVERLAP_Q: I_Q = edgeQ.v0->Insert(*P1, beta); P1->Link( I_Q); break; case T_INTERSECTION_P: case T_OVERLAP_P: I_P = edgeP.v0->Insert(*Q1, alpha); I_P->Link( Q1); break; case V_INTERSECTION: case V_OVERLAP: P1->Link(Q1); break; default: break; } } void ComputeIntersections(Solid2d & sp, Solid2d & sq) { auto & PP = sp.polys; auto & QQ = sq.polys; for (Loop& P : PP) for (Edge edgeP : P.Edges(SOURCE)) for (Loop& Q : QQ) for (Edge edgeQ : Q.Edges(SOURCE)) { double alpha = 0.0; double beta = 0.0; IntersectionType i = intersect(edgeP, edgeQ, alpha, beta); AddIntersectionPoint(edgeP, edgeQ, i, alpha, beta); if(i==X_INTERSECTION && (edgeP.v0->spline || edgeQ.v0->spline)) { double alpha1 = alpha+1e2*EPSILON; double beta1 = 0.0; //beta+1e2*EPSILON; // search for possible second intersection i = intersect(edgeP, edgeQ, alpha1, beta1); // cout << "second intersection " << i << ',' << alpha1 << ',' << beta1 << ',' << alpha1-alpha << ',' << beta1-beta << endl; if(i!=NO_INTERSECTION && alpha+EPSILON MP; if(edgeP.v0->spline) { MP = edgeP.v0->spline->GetPoint(alpha_mid); edgeP.v0->Insert(MP, alpha_mid); } else MP = edgeQ.v0->spline->GetPoint(beta_mid); if(edgeQ.v0->spline) edgeQ.v0->Insert(MP, beta_mid); AddIntersectionPoint(edgeP, edgeQ, i, alpha1, beta1); } } } // Split splines at new vertices auto split_spline_at_vertex = [](Vertex *v) { if(!v->spline) return; Spline ori{*v->spline}; Vertex * curr = v; do { auto next = curr->next; if(!curr->is_source || !next->is_source) { double t0 = curr->is_source ? 0.0 : curr->lam; double t1 = next->is_source ? 1.0 : next->lam; curr->spline = Split(ori, t0, t1); } curr = next; } while(!curr->is_source); }; for (Loop& P : PP) for (Vertex* v : P.Vertices(SOURCE)) split_spline_at_vertex(v); for (Loop& Q : QQ) for (Vertex* v : Q.Vertices(SOURCE)) split_spline_at_vertex(v); } enum RelativePositionType { LEFT, RIGHT, IS_P_m, IS_P_p }; RelativePositionType oracle(bool prev, Vertex* P1, Vertex* P2, Vertex* P3) { Vertex* Q; Point<2> q; if(prev) { Q = P2->neighbour->prev; q = *Q; if(Q->spline) q = Q->spline->TangentPoint(); } else { Q = P2->neighbour->next; q = *Q; if(P2->neighbour->spline) q = P2->neighbour->spline->TangentPoint(); } // is Q linked to P1 ? if ( P1->is_intersection && (P1->neighbour == Q) ) return(IS_P_m); // is Q linked to P2 ? if ( P3->is_intersection && (P3->neighbour == Q) ) return(IS_P_p); Point<2> p1 = *P1; Point<2> p2 = *P2; Point<2> p3 = *P3; if(P1->spline) p1 = P1->spline->TangentPoint(); if(P2->spline) p3 = P2->spline->TangentPoint(); // check relative position of Q with respect to chain (P1,P2,P3) double s1 = Area( q, p1, p2); double s2 = Area( q, p2, p3); double s3 = Area( p1, p2, p3); if (s3 > 0) { // chain makes a left turn if (s1 > 0 && s2 > 0) return(LEFT); else return(RIGHT); } else { // chain makes a right turn (or is straight) if (s1 < 0 && s2 < 0) return(RIGHT); else return(LEFT); } } void LabelIntersections(Solid2d & sp, Solid2d & sq, Solid2d & sr, bool UNION) { auto & PP = sp.polys; auto & QQ = sq.polys; auto & RR = sr.polys; // 1) initial classification for (Loop& P : PP) for (Vertex* I : P.Vertices(INTERSECTION)) { // determine local configuration at this intersection vertex Vertex* P_m = I->prev; Vertex* P_p = I->next; // check positions of Q- and Q+ relative to (P-, I, P+) RelativePositionType Q_m_type = oracle(true, P_m, I, P_p); RelativePositionType Q_p_type = oracle(false, P_m, I, P_p); // check non-overlapping cases if ((Q_m_type == LEFT && Q_p_type == RIGHT) || (Q_m_type == RIGHT && Q_p_type == LEFT )) { I->label = CROSSING; } if ((Q_m_type == LEFT && Q_p_type == LEFT ) || (Q_m_type == RIGHT && Q_p_type == RIGHT)) { I->label = BOUNCING; } // check overlapping cases if ( ( (Q_p_type == IS_P_p) && (Q_m_type == RIGHT) ) || ( (Q_m_type == IS_P_p) && (Q_p_type == RIGHT) ) ) I->label = LEFT_ON; if ( ( (Q_p_type == IS_P_p) && (Q_m_type == LEFT) ) || ( (Q_m_type == IS_P_p) && (Q_p_type == LEFT) ) ) I->label = RIGHT_ON; if ( ( (Q_p_type == IS_P_p) && (Q_m_type == IS_P_m) ) || ( (Q_m_type == IS_P_p) && (Q_p_type == IS_P_m) ) ) I->label = ON_ON; if ( ( (Q_m_type == IS_P_m) && (Q_p_type == RIGHT) ) || ( (Q_p_type == IS_P_m) && (Q_m_type == RIGHT) ) ) I->label = ON_LEFT; if ( ( (Q_m_type == IS_P_m) && (Q_p_type == LEFT) ) || ( (Q_p_type == IS_P_m) && (Q_m_type == LEFT) ) ) I->label = ON_RIGHT; } // 2) classify intersection chains for (Loop& P : PP) for (Vertex* I : P.Vertices(INTERSECTION)) { // start of an intersection chain ? if (I->label == LEFT_ON || I->label == RIGHT_ON) { // remember status of the first chain vertex and vertex itself RelativePositionType x; if (I->label == LEFT_ON) x = LEFT; else x = RIGHT; Vertex* X = I; // proceed to end of intersection chain and mark all visited vertices as NONE do { I->label = NONE; I = I->next; } while (I->label == ON_ON); RelativePositionType y; if (I->label == ON_LEFT) y = LEFT; else y = RIGHT; // determine type of intersection chain IntersectionLabel chainType; if (x != y) chainType = DELAYED_CROSSING; else chainType = DELAYED_BOUNCING; // mark both ends of an intersection chain with chainType (i.e., as DELAYED_*) X->label = chainType; I->label = chainType; } } // 3) copy labels from P to Q // loop over intersection vertices of P for (Loop& P : PP) for (Vertex* I : P.Vertices(INTERSECTION)) I->neighbour->label = I->label; // 3.5) check for special cases set noIntersection[2]; set identical[2]; for (int i=0; i<2; ++i) { Array* P_or_Q = &PP; // if i=0, then do it for P w.r.t. Q Array* Q_or_P = &QQ; if (i==1) { // if i=1, then do it for Q w.r.t. P P_or_Q = &QQ; Q_or_P = &PP; } // loop over all components of P (or Q) for (Loop& P : *P_or_Q) if (P.noCrossingVertex(UNION)) { // P_ has no crossing vertex (but may have bounces or delayed bounces, except for UNION), // hence it does not intersect with Q_or_P noIntersection[i].insert(&P); // remember component, and ignore it later in step 4 // is P identical to some component of and Q_or_P? if (P.allOnOn()) { identical[i].insert(&P); // -> remember for further processing below } else { // is P inside Q_or_P? bool isInside = false; auto p = P.getNonIntersectionPoint(); for (Loop& Q : *Q_or_P) if ( Q.IsInside(p) ) isInside = !isInside; if (isInside ^ UNION) RR.Append(P); // -> add P to the result } } } // handle components of P that are identical to some component of Q for (Loop* P : identical[0]) { // is P a hole? bool P_isHole = false; for (Loop& P_ : PP) if ( ( P_.first.get() != P->first.get() ) && (P_.IsInside(*P->first)) ) P_isHole = !P_isHole; for (Loop* Q : identical[1]) for (Vertex* V : Q->Vertices(ALL)) if (V == P->first->neighbour) { // found Q that matches P // is Q a hole? bool Q_isHole = false; for (Loop& Q_ : QQ) if ( ( Q_.first.get() != Q->first.get() ) && (Q_.IsInside(*Q->first)) ) Q_isHole = !Q_isHole; // if P and Q are both holes or both are not holes if (P_isHole == Q_isHole) RR.Append(*P); // -> add P to the result goto next_P; } next_P: ; } // 4) set entry/exit flags set split[2]; // split vertex candidates for P and Q set crossing[2]; // CROSSING vertex candidates for P and Q for (int i=0; i<2; ++i) { Array* P_or_Q = &PP; // if i=0, then do it for P w.r.t. Q Array* Q_or_P = &QQ; if (i==1) { // if i=1, then do it for Q w.r.t. P P_or_Q = &QQ; Q_or_P = &PP; } // loop over all components of P (or Q) for (Loop& P : *P_or_Q) { // ignore P if it does not intersect with Q_or_P (detected in step 3.5 above) if(noIntersection[i].find(&P) != noIntersection[i].end()) continue; // start at a non-intersection vertex of P Vertex* V = P.getNonIntersectionVertex(); // check if it is inside or outside Q (or P) // and set ENTRY/EXIT status accordingly EntryExitLabel status = ENTRY; for (Loop& Q : *Q_or_P) if (Q.IsInside(*V)) ToggleLabel(status); // starting at V, loop over those vertices of P, that are either // a crossing intersection or marked as ends of an intersection chain bool first_chain_vertex = true; // needed for dealing with crossing chains for (Vertex* I : P.Vertices(INTERSECTION, V)) { // in the case of normal crossings, we... if (I->label == CROSSING) { // mark vertex with current ENTRY/EXIT status I->enex = status; // toggle status from ENTRY to EXIT or vice versa ToggleLabel(status); } // identify split vertex candidates (INTERIOR bouncing vertices) if ( (I->label == BOUNCING) && ((status == EXIT) ^ UNION) ) split[i].insert(I); // // in the case of a delayed crossing chain, we // mark both end points of the chain with the current ENTRY/EXIT status, // toggling the status only at the end last chain vertex, // and, in case of a delayed EXIT crossing, the first vertex // or, in case of a delayed ENTRY crossing, the last vertex, // of the chain as CROSSING // if (I->label == DELAYED_CROSSING) { // mark vertex with current ENTRY/EXIT status I->enex = status; if (first_chain_vertex) { // are we at the first vertex of a delayed crossing chain? if ((status == EXIT) ^ UNION) I->label = CROSSING; // mark first vertex as CROSSING first_chain_vertex = false; } else { // here we are at the last vertex of a delayed crossing chain if ((status == ENTRY) ^ UNION) I->label = CROSSING; // mark last vertex as CROSSING first_chain_vertex = true; // toggle status from ENTRY to EXIT or vice versa (only for last chain vertex) ToggleLabel(status); } } // // in the case of a delayed bouncing chain, we // mark both end points of the chain with the current ENTRY/EXIT status // toggling the status at both end points of the chain, // and, in case of a delayed INTERIOR bouncing, both end points // of the chain as CROSSING candidates // if (I->label == DELAYED_BOUNCING) { // mark vertex with current ENTRY/EXIT status I->enex = status; if (first_chain_vertex) { // are we at the first vertex of a delayed crossing chain? if ((status == EXIT) ^ UNION) crossing[i].insert(I); // mark first EXIT vertex as CROSSING candidate first_chain_vertex = false; } else { // here we are at the last vertex of a delayed crossing chain if ((status == ENTRY) ^ UNION) crossing[i].insert(I); // mark last ENTRY vertex as CROSSING candidate first_chain_vertex = true; } // toggle status from ENTRY to EXIT or vice versa (for first AND last chain vertex) ToggleLabel(status); } } } } // 5) handle split vertex pairs // loop over P's split candidates for (Vertex* I_P : split[0]) { Vertex* I_Q = I_P->neighbour; // check if the neighbour on Q is also a split candidate if (split[1].find(I_Q) != split[1].end()) { // compute areas to compare local orientation double sP = Area( *I_P->prev, *I_P, *I_P->next); double sQ = Area( *I_Q->prev, *I_Q, *I_Q->next); // add duplicate vertices to P and Q auto V_P = I_P->Insert(*I_P); V_P->spline = I_P->spline; auto V_Q = I_Q->Insert(*I_Q); V_Q->spline = I_Q->spline; // link vertices correctly if (sP*sQ > 0) { // same local orientation I_P->Link( V_Q); I_Q->Link( V_P); } else { // different local orientation V_P->Link( V_Q); } // mark all four vertices correctly if (!UNION) { I_P->enex = EXIT; V_P->enex = ENTRY; I_Q->enex = EXIT; V_Q->enex = ENTRY; } else { I_P->enex = ENTRY; V_P->enex = EXIT; I_Q->enex = ENTRY; V_Q->enex = EXIT; } I_P->label = CROSSING; V_P->label = CROSSING; I_Q->label = CROSSING; V_Q->label = CROSSING; } } // 6) handle CROSSING vertex candidates // loop over P's CROSSING candidates for (Vertex* I_P : crossing[0]) { Vertex* I_Q = I_P->neighbour; // check if the neighbour on Q is also a CROSSING candidate if (crossing[1].find(I_Q) != crossing[1].end()) { // mark CROSSING candidate pair as such I_P->label = CROSSING; I_Q->label = CROSSING; } } } void CreateResult(Solid2d & sp, Solid2d & sr, bool UNION) { auto & PP = sp.polys; auto & RR = sr.polys; // // for all crossing vertices // // NOTE: all crossing vertices that are visited while contructing a // component of the result polygon are marked as "not intersection", // so that they cannot serve as start vertex of another component // for (Loop& P : PP) { for (Vertex* I : P.Vertices(CROSSING_INTERSECTION)) { Loop R; // result polygon component Vertex* V = I; // start traversal at I V->is_intersection = false; // mark visited vertices do { EntryExitLabel status = V->enex; ToggleLabel(status); while ( !(V->enex == status)) // ... we arrive at a vertex with opposite entry/exit flag, or { auto & vnew = R.AppendVertex(*V); if ((status == EXIT) ^ UNION) { vnew.info = V->info; if(V->spline) vnew.spline = *V->spline; else vnew.spline = nullopt; V = V->next; // move forward from an ENTRY vertex to the next EXIT vertex V->is_intersection = false; // mark visited vertices } else { V = V->prev; // move backward from an EXIT vertex to the next ENTRY vertex if(V->spline) { auto & s = *V->spline; vnew.spline = Spline{s.EndPI(), s.TangentPoint(), s.StartPI(), s.GetWeight()}; } else vnew.spline = nullopt; vnew.info = V->info; V->is_intersection = false; // mark visited vertices } if(V == I) break; } if (V != I) { V = V->neighbour; // switch from P to Q or vice versa V->is_intersection = false; // mark visited vertices } } while (V != I); // the result polygon component is complete, // if we are back to the initial vertex I RR.Append(R); } } } void CleanUpResult(Solid2d & sr) { auto & RR = sr.polys; for (Loop& R : RR) { while ( (R.first.get() != NULL) && (fabs(Area(*R.first->prev,*R.first,*R.first->next)) < EPSILON) ) R.Remove(R.first.get()); if (R.first.get() != NULL) for (Vertex* V : R.Vertices(ALL)) if (!V->spline && !V->prev->spline && fabs(Area(*V->prev,*V,*V->next)) < EPSILON) { R.Remove(V); } } for (int i = RR.Size()-1; i>=0; i--) if(RR[i].Size()==0) RR.RemoveElement(i); } void RemoveDuplicates(Solid2d & sr) { for(auto & poly : sr.polys) { if(poly.first==nullptr) continue; Vertex * last = poly.first->prev; for(auto v : poly.Vertices(ALL)) { if(Dist2(*v, *last) p0, Point<2> p1, string name, string bc) { using P = Point<2>; return { {p0, P{p1[0],p0[1]}, p1, P{p0[0],p1[1]}}, name, bc }; } Solid2d Circle(Point<2> center, double r, string name, string bc) { double x = center[0]; double y = center[1]; using P = Point<2>; Point<2> p[] = { {x+r, y+0}, {x+0, y+r}, {x-r, y+0}, {x+0, y-r}, }; EdgeInfo cp[] = { P{x+r, y+r}, P{x-r, y+r}, P{x-r, y-r}, P{x+r, y-r} }; return Solid2d( { p[0], cp[0], p[1], cp[1], p[2], cp[2], p[3], cp[3] }, name, bc ); } void AddIntersectionPoints ( Solid2d & s1, Solid2d & s2 ) { ComputeIntersections(s1, s2); RemoveDuplicates(s1); RemoveDuplicates(s2); } Solid2d ClipSolids ( Solid2d s1, Solid2d s2, bool intersect) { static Timer t1("intersection"); static Timer t2("label"); static Timer t3("cut"); static Timer t4("cleanup"); for(auto & poly : s1.polys) for(auto v : poly.Vertices(ALL)) { v->is_source = true; v->neighbour = nullptr; v->lam = -1.0; v->is_intersection = false; v->label = NONE; v->enex = NEITHER; } for(auto & poly : s2.polys) for(auto v : poly.Vertices(ALL)) { v->is_source = true; v->neighbour = nullptr; v->lam = -1.0; v->is_intersection = false; v->label = NONE; v->enex = NEITHER; } Solid2d res; res.name = s1.name; t1.Start(); ComputeIntersections(s1, s2); t1.Stop(); t2.Start(); LabelIntersections(s1, s2, res, !intersect); t2.Stop(); t3.Start(); CreateResult(s1, res, !intersect); t3.Stop(); t4.Start(); CleanUpResult(res); RemoveDuplicates(res); t4.Stop(); return res; } bool Loop :: IsInside( Point<2> r ) const { int w = 0; for(auto e : Edges(ALL)) { int w_simple = CalcSide(*e.v0, *e.v1, r); if(!e.v0->spline) w += w_simple; else { auto s = *e.v0->spline; auto s0 = s.StartPI(); auto s1 = s.TangentPoint(); auto s2 = s.EndPI(); if(!IsInsideTrig( {s0, s1, s2} , r )) w += w_simple; else { // r close to spline, need exact test // idea: compute weight, such that r lies on spline // weight increases -> same side of spline as control point, simple test gives correct result // weight decreases -> opposite side of spline as control point, adding control point to test polygon gives correct result double old_weight = s.GetWeight(); ComputeWeight( s, r ); double new_weight = s.GetWeight(); if(new_weight >= old_weight) w += w_simple; else w += CalcSide(s0, s1, r) + CalcSide(s1, s2, r); } } } return ( (w % 2) != 0 ); } Solid2d :: Solid2d(const Array, EdgeInfo>> & points, string name_, string bc) : name(name_) { Loop l; for (auto & v : points) { if(auto point = std::get_if>(&v)) l.Append(*point, true); if(auto edge_info = std::get_if(&v)) l.first->prev->info.Assign( *edge_info ); } for(auto v : l.Vertices(ALL)) { if(v->info.bc==BC_DEFAULT) v->info.bc = bc; if(v->info.control_point) v->spline = Spline(*v, *v->info.control_point, *v->next); } polys.Append(l); } Solid2d Solid2d :: operator+(const Solid2d & other) const { if(polys.Size()==0) return other; auto res = ClipSolids(*this, other, false); res.name = name; return res; } Solid2d Solid2d :: operator*(const Solid2d & other) const { auto res = ClipSolids(*this, other, true); res.name = name; return res; } Solid2d Solid2d :: operator-(const Solid2d & other_) const { // TODO: Check dimensions of solids with bounding box Solid2d other = other_; other.Append(RectanglePoly(-1e8, 1e8, -1e8, 1e8, "JUST_FOR_CLIPPING")); auto res = ClipSolids(*this, other); res.name = name; return res; } Solid2d & Solid2d :: operator+=(const Solid2d & other) { *this = *this + other; return *this; } Solid2d & Solid2d :: operator*=(const Solid2d & other) { *this = *this * other; return *this; } Solid2d & Solid2d :: operator-=(const Solid2d & other) { *this = *this - other; return *this; } Solid2d & Solid2d :: Move( Vec<2> v ) { return Transform( [v](Point<2> p) -> Point<2> { return p+v; } ); } Solid2d & Solid2d :: Scale( double sx, double sy ) { if(sy==0.0) sy=sx; return Transform( [sx,sy](Point<2> p) -> Point<2> { return{p[0]*sx, p[1]*sy}; } ); } Solid2d & Solid2d :: RotateRad( double ang, Point<2> center ) { double sina = sin(ang); double cosa = cos(ang); Vec<2> c = { center[0], center[1] }; return Transform( [c, sina, cosa](Point<2> p) -> Point<2> { p -= c; double x = p[0]; double y = p[1]; p[0] = cosa*x+sina*y; p[1] = -sina*x+cosa*y; p += c; return p; } ); } bool Solid2d :: IsInside( Point<2> r ) const { int w = 0; for(auto & poly : polys) w += poly.IsInside(r); return ( (w % 2) != 0 ); } bool Solid2d :: IsLeftInside( const Vertex & p0 ) { auto & p1 = *p0.next; if(p0.spline) { auto s = *p0.spline; auto v = s.GetTangent(0.5); auto n = Vec<2>{-v[1], v[0]}; auto q = s.GetPoint(0.5) + 1e-6*n; return IsInside(q); } auto v = p1-p0; auto n = Vec<2>{-v[1], v[0]}; auto q = p0 + 0.5*v + 1e-6*n; return IsInside(q); } bool Solid2d :: IsRightInside( const Vertex & p0 ) { auto & p1 = *p0.next; if(p0.spline) { auto s = *p0.spline; auto v = s.GetTangent(0.5); auto n = Vec<2>{v[1], -v[0]}; auto q = s.GetPoint(0.5) + 1e-6*n; return IsInside(q); } auto v = p1-p0; auto n = Vec<2>{v[1], -v[0]}; auto q = p0 + 0.5*v + 1e-6*n; return IsInside(q); } netgen::Box<2> Solid2d :: GetBoundingBox() { netgen::Box<2> box(netgen::Box<2>::EMPTY_BOX); for(auto & poly : polys) for(auto v : poly.Vertices(ALL)) box.Add(*v); return box; } shared_ptr CSG2d :: GenerateSplineGeometry() { static Timer t_intersections("CSG2d - AddIntersections()"); static Timer tall("CSG2d - GenerateSplineGeometry()"); RegionTimer rt(tall); struct Seg { int p0; int p1; int left; int right; int bc; int p2; double weight; double maxh = 1e99; }; auto geo = std::make_shared(); std::map, Seg> seg_map; std::map bcmap; Array points; // Cut each solid with each other one to add all possible intersection points and have conforming edges from both domains t_intersections.Start(); // First build bounding boxes for each solid to skip non-overlapping pairs netgen::Box<2> box(netgen::Box<2>::EMPTY_BOX); for(auto i : Range(solids)) { auto sbox = solids[i].GetBoundingBox(); box.Add(sbox.PMin()); box.Add(sbox.PMax()); } netgen::BoxTree <2, int> solid_tree(box); for(auto i : Range(solids)) solid_tree.Insert(solids[i].GetBoundingBox(), i); for(auto i1 : Range(solids)) { auto sbox = solids[i1].GetBoundingBox(); solid_tree.GetFirstIntersecting(sbox.PMin(), sbox.PMax(), [&] (int i2) { if(i1 ptree(box); auto getPoint = [&](Point<2> p ) { int res = -1; ptree.GetFirstIntersecting(p, p, [&] (int pi) { res = pi; return true; }); return res; }; auto insertPoint = [&](Point<2> p ) { int pi = getPoint(p); if(pi==-1) { // not found -> insert to tree netgen::GeomPoint<2> gp(p); gp.name = ""; geo->geompoints.Append(gp); ptree.Insert(p,p,geo->geompoints.Size()-1); } }; for(auto & s : solids) for(auto & poly : s.polys) for(auto v : poly.Vertices(ALL)) { box.Add(*v); insertPoint(*v); if(v->spline) insertPoint(v->spline->TangentPoint()); } // Generate segments from polygon edges and find left/right domain of each segment int dom = 0; for(auto & s : solids) { dom++; bool is_solid_degenerated = true; // Don't create new domain for degenerated solids for(auto & poly : s.polys) { for(auto v : poly.Vertices(ALL)) { auto & p0 = *v; auto & p1 = *v->next; auto pi0 = getPoint(p0); auto pi1 = getPoint(p1); int pi2 = -1; double weight = 0.0; if(v->spline) { auto p2 = v->spline->TangentPoint(); pi2 = getPoint(p2); weight = v->spline->GetWeight(); } bool flip = false; if(pi1SetMaterial(dom, s.name); else dom--; // degenerated solid, use same domain index again } for(auto & [name, bc] : bcmap) { geo->SetBCName(bc, name); } for(auto const &m : seg_map) { auto ls = m.second; netgen::SplineSegExt * seg; if(ls.p2!=-1) { // spline segment auto * seg3 = new netgen::SplineSeg3<2>( geo->GetPoint(ls.p0), geo->GetPoint(ls.p2), geo->GetPoint(ls.p1), ls.weight ); seg = new netgen::SplineSegExt(*seg3); } else { // line segment auto * l = new netgen::LineSeg<2>(geo->GetPoint(ls.p0), geo->GetPoint(ls.p1)); seg = new netgen::SplineSegExt(*l); } seg->leftdom = ls.left; seg->rightdom = ls.right; seg->bc = ls.bc; seg->reffak = 1; seg->copyfrom = -1; seg->hmax = ls.maxh; geo->AppendSegment(seg); } return geo; } shared_ptr CSG2d :: GenerateMesh(MeshingParameters & mp) { auto geo = GenerateSplineGeometry(); auto mesh = make_shared(); geo->GenerateMesh(mesh, mp); return mesh; } }