#ifndef FILE_IMPROVE2 #define FILE_IMPROVE2 inline void AppendEdges( const Element2d & elem, PointIndex pi, Array> & edges ) { for (int j = 0; j < 3; j++) { PointIndex pi0 = elem[j]; PointIndex pi1 = elem[(j+1)%3]; if (pi1 < pi0) Swap(pi0, pi1); if(pi0==pi) edges.Append(std::make_tuple(pi0, pi1)); } } inline void AppendEdges( const Element & elem, PointIndex pi, Array> & edges ) { static constexpr int tetedges[6][2] = { { 0, 1 }, { 0, 2 }, { 0, 3 }, { 1, 2 }, { 1, 3 }, { 2, 3 } }; if(elem.Flags().fixed) return; for (int j = 0; j < 6; j++) { PointIndex pi0 = elem[tetedges[j][0]]; PointIndex pi1 = elem[tetedges[j][1]]; if (pi1 < pi0) Swap(pi0, pi1); if(pi0==pi) edges.Append(std::make_tuple(pi0, pi1)); } } template void BuildEdgeList( const Mesh & mesh, const Table & elementsonnode, Array> & edges ) { static_assert(is_same_v||is_same_v, "Invalid type for TINDEX"); static Timer tbuild_edges("Build edges"); RegionTimer reg(tbuild_edges); int ntasks = 4*ngcore::TaskManager::GetMaxThreads(); Array>> task_edges(ntasks); ParallelFor(IntRange(ntasks), [&] (int ti) { auto myrange = mesh.Points().Range().Split(ti, ntasks); ArrayMem, 100> local_edges; for (auto pi : myrange) { local_edges.SetSize(0); for(auto ei : elementsonnode[pi]) { const auto & elem = mesh[ei]; if (elem.IsDeleted()) continue; AppendEdges(elem, pi, local_edges); } QuickSort(local_edges); auto edge_prev = std::make_tuple(-1,-1); for(auto edge : local_edges) if(edge != edge_prev) { task_edges[ti].Append(edge); edge_prev = edge; } } }, ntasks); int num_edges = 0; for (auto & edg : task_edges) num_edges += edg.Size(); edges.SetAllocSize(num_edges); for (auto & edg : task_edges) edges.Append(edg); } class Neighbour { int nr[3]; int orient[3]; public: Neighbour () { ; } void SetNr (int side, int anr) { nr[side] = anr; } int GetNr (int side) { return nr[side]; } void SetOrientation (int side, int aorient) { orient[side] = aorient; } int GetOrientation (int side) { return orient[side]; } }; /// class MeshOptimize2d { int faceindex = 0; int improveedges = 0; double metricweight = 0.; int writestatus = 1; Mesh& mesh; const NetgenGeometry& geo; public: /// MeshOptimize2d(Mesh& amesh) : mesh(amesh), geo(*mesh.GetGeometry()) {} virtual ~MeshOptimize2d() { ; } /// DLL_HEADER void ImproveMesh (const MeshingParameters & mp); DLL_HEADER void ImproveMeshJacobian (const MeshingParameters & mp); DLL_HEADER void ImproveVolumeMesh (); DLL_HEADER void ProjectBoundaryPoints(NgArray & surfaceindex, const NgArray* > & from, NgArray* > & dest); DLL_HEADER bool EdgeSwapping (const int usemetric, Array &neighbors, Array &swapped, DLL_HEADER const SurfaceElementIndex t1, const int edge, const int t, Array &pdef, const bool check_only=false); DLL_HEADER void EdgeSwapping (int usemetric); DLL_HEADER void CombineImprove (); DLL_HEADER void SplitImprove (); DLL_HEADER void GenericImprove (); void SetFaceIndex (int fi) { faceindex = fi; } void SetImproveEdges (int ie) { improveedges = ie; } void SetMetricWeight (double mw) { metricweight = mw; } void SetWriteStatus (int ws) { writestatus = ws; } /// liefert zu einem 3d-Punkt die geominfo (Dreieck) und liefert 1, wenn erfolgreich, /// 0, wenn nicht (Punkt ausserhalb von chart) /// void CheckMeshApproximation (Mesh & mesh); /// friend class Opti2SurfaceMinFunction; /// friend class Opti2EdgeMinFunction; /// friend double Opti2FunctionValueGrad (const Vector & x, Vector & grad); /// friend double Opti2EdgeFunctionValueGrad (const Vector & x, Vector & grad); }; extern void CalcTriangleBadness (double x2, double x3, double y3, double metricweight, double h, double & badness, double & g1x, double & g1y); extern double CalcTriangleBadness (const Point<3> & p1, const Point<3> & p2, const Point<3> & p3, double metricweight, double h); extern double CalcTriangleBadness (const Point<3> & p1, const Point<3> & p2, const Point<3> & p3, const Vec<3> & n, double metricweight, double h); #endif