#ifndef FILE_OPTI #define FILE_OPTI /**************************************************************************/ /* File: opti.hpp */ /* Author: Joachim Schoeberl */ /* Date: 01. Jun. 95 */ /**************************************************************************/ namespace netgen { /** Function to be minimized. */ class MinFunction { public: /// virtual double Func (const Vector & x) const; /// virtual void Grad (const Vector & x, Vector & g) const; /// function and gradient virtual double FuncGrad (const Vector & x, Vector & g) const; /// directional derivative virtual double FuncDeriv (const Vector & x, const Vector & dir, double & deriv) const; /// if |g| < gradaccuray, then stop bfgs virtual double GradStopping (const Vector & /* x */) const { return 0; } /// virtual void ApproximateHesse (const Vector & /* x */, DenseMatrix & /* hesse */) const; }; class OptiParameters { public: int maxit_linsearch; int maxit_bfgs; double typf; double typx; OptiParameters () { maxit_linsearch = 100; maxit_bfgs = 100; typf = 1; typx = 1; } }; /** Implementation of BFGS method. Efficient method for non-linear minimiztion problems. @param x initial value and solution @param fun function to be minimized */ extern double BFGS (Vector & x, const MinFunction & fun, const OptiParameters & par, double eps = 1e-8); /** Steepest descent method. Simple method for non-linear minimization problems. @param x initial value and solution @param fun function to be minimized */ void SteepestDescent (Vector & x, const MinFunction & fun, const OptiParameters & par); extern void lines ( Vector & x, // i: Ausgangspunkt der Liniensuche Vector & xneu, // o: Loesung der Liniensuche bei Erfolg Vector & p, // i: Suchrichtung double & f, // i: Funktionswert an der Stelle x // o: Funktionswert an der Stelle xneu, falls ifail = 0 Vector & g, // i: Gradient an der Stelle x // o: Gradient an der Stelle xneu, falls ifail = 0 const MinFunction & fun, // function to minmize const OptiParameters & par, // parameters double & alphahat, // i: Startwert f�r alpha_hat // o: Loesung falls ifail = 0 double fmin, // i: untere Schranke f�r f double mu1, // i: Parameter mu_1 aus Alg.2.1 double sigma, // i: Parameter sigma aus Alg.2.1 double xi1, // i: Parameter xi_1 aus Alg.2.1 double xi2, // i: Parameter xi_1 aus Alg.2.1 double tau, // i: Parameter tau aus Alg.2.1 double tau1, // i: Parameter tau_1 aus Alg.2.1 double tau2, // i: Parameter tau_2 aus Alg.2.1 int & ifail); // o: 0 bei erfolgreicher Liniensuche // -1 bei Abbruch wegen Unterschreiten von fmin // 1 bei Abbruch, aus sonstigen Gr�nden /** Solver for linear programming problem. \begin{verbatim} min c^t x A x <= b \end{verbatim} */ extern void LinearOptimize (const DenseMatrix & a, const Vector & b, const Vector & c, Vector & x); #ifdef NONE /** Simple projection iteration. find $u = argmin_{v >= 0} 0.5 u A u - f u$ */ extern void ApproxProject (const BaseMatrix & a, Vector & u, const Vector & f, double tau, int its); /** CG Algorithm for quadratic programming problem. See: Dostal ... d ... diag(A) ^{-1} */ extern void ApproxProjectCG (const BaseMatrix & a, Vector & x, const Vector & b, const class DiagMatrix & d, double gamma, int & steps, int & changes); #endif } #endif