#include #include #include namespace netgen { double QuadraticSurface :: CalcFunctionValue (const Point<3> & p) const { return p(0) * (cxx * p(0) + cxy * p(1) + cxz * p(2) + cx) + p(1) * (cyy * p(1) + cyz * p(2) + cy) + p(2) * (czz * p(2) + cz) + c1; } void QuadraticSurface :: CalcGradient (const Point<3> & p, Vec<3> & grad) const { grad(0) = 2 * cxx * p(0) + cxy * p(1) + cxz * p(2) + cx; grad(1) = 2 * cyy * p(1) + cxy * p(0) + cyz * p(2) + cy; grad(2) = 2 * czz * p(2) + cxz * p(0) + cyz * p(1) + cz; } void QuadraticSurface :: CalcHesse (const Point<3> & /* p */, Mat<3> & hesse) const { hesse(0,0) = 2 * cxx; hesse(1,1) = 2 * cyy; hesse(2,2) = 2 * czz; hesse(0,1) = hesse(1,0) = cxy; hesse(0,2) = hesse(2,0) = cxz; hesse(1,2) = hesse(2,1) = cyz; } void QuadraticSurface :: Read (istream & ist) { ist >> cxx >> cyy >> czz >> cxy >> cxz >> cyz >> cx >> cy >> cz >> c1; } void QuadraticSurface :: Print (ostream & ost) const { ost << cxx << " " << cyy << " " << czz << " " << cxy << " " << cxz << " " << cyz << " " << cx << " " << cy << " " << cz << " " << c1; } void QuadraticSurface :: PrintCoeff (ostream & ost) const { ost << " cxx = " << cxx << " cyy = " << cyy << " czz = " << czz << " cxy = " << cxy << " cxz = " << cxz << " cyz = " << cyz << " cx = " << cx << " cy = " << cy << " cz = " << cz << " c1 = " << c1 << endl; } Point<3> QuadraticSurface :: GetSurfacePoint () const { MyError ("GetSurfacePoint called for QuadraticSurface"); return Point<3> (0, 0, 0); } Plane :: Plane (const Point<3> & ap, Vec<3> an) { eps_base = 1e-8; p = ap; n = an; CalcData(); } void Plane :: CalcData() { n.Normalize(); cxx = cyy = czz = cxy = cxz = cyz = 0; cx = n(0); cy = n(1); cz = n(2); c1 = - (cx * p(0) + cy * p(1) + cz * p(2)); } Primitive * Plane :: Copy () const { return new Plane (p, n); } void Plane :: Print (ostream & ost) const { ost << "plane(" << p << "; " << n << ")"; } void Plane :: Transform (Transformation<3> & trans) { Point<3> hp; Vec<3> hn; trans.Transform (p, hp); trans.Transform (n, hn); p = hp; n = hn; CalcData(); } void Plane :: GetPrimitiveData (const char *& classname, Array & coeffs) const { classname = "plane"; coeffs.SetSize (6); coeffs.Elem(1) = p(0); coeffs.Elem(2) = p(1); coeffs.Elem(3) = p(2); coeffs.Elem(4) = n(0); coeffs.Elem(5) = n(1); coeffs.Elem(6) = n(2); } void Plane :: SetPrimitiveData (Array & coeffs) { p(0) = coeffs.Elem(1); p(1) = coeffs.Elem(2); p(2) = coeffs.Elem(3); n(0) = coeffs.Elem(4); n(1) = coeffs.Elem(5); n(2) = coeffs.Elem(6); CalcData(); } Primitive * Plane :: CreateDefault () { return new Plane (Point<3> (0,0,0), Vec<3> (0,0,1)); } int Plane :: IsIdentic (const Surface & s2, int & inv, double eps) const { const Plane * ps2 = dynamic_cast(&s2); if(ps2) { Point<3> pp2 = ps2->GetSurfacePoint(); Vec<3> n2 = s2.GetNormalVector(pp2); if(fabs(n*n2) < 1.-eps_base) return 0; if (fabs (s2.CalcFunctionValue(p)) > eps) return 0; } else { if (fabs (s2.CalcFunctionValue(p)) > eps) return 0; Vec<3> hv1, hv2; hv1 = n.GetNormal (); hv2 = Cross (n, hv1); Point<3> hp = p + hv1; if (fabs (s2.CalcFunctionValue(hp)) > eps) return 0; hp = p + hv2; if (fabs (s2.CalcFunctionValue(hp)) > eps) return 0; } Vec<3> n1, n2; n1 = GetNormalVector (p); n2 = s2.GetNormalVector (p); inv = (n1 * n2 < 0); return 1; } void Plane :: DefineTangentialPlane (const Point<3> & ap1, const Point<3> & ap2) { Surface::DefineTangentialPlane (ap1, ap2); } void Plane :: ToPlane (const Point<3> & p3d, Point<2> & pplane, double h, int & zone) const { Vec<3> p1p; p1p = p3d - p1; p1p /= h; pplane(0) = p1p * ex; pplane(1) = p1p * ey; zone = 0; } void Plane :: FromPlane (const Point<2> & pplane, Point<3> & p3d, double h) const { p3d = p1 + (h * pplane(0)) * ex + (h * pplane(1)) * ey; } void Plane :: Project (Point<3> & p3d) const { double val = Plane::CalcFunctionValue (p3d); p3d -= val * n; } INSOLID_TYPE Plane :: BoxInSolid (const BoxSphere<3> & box) const { int i; double val; Point<3> pp; val = Plane::CalcFunctionValue (box.Center()); if (val > box.Diam() / 2) return IS_OUTSIDE; if (val < -box.Diam() / 2) return IS_INSIDE; if (val > 0) { /* double modify = ((box.MaxX()-box.MinX()) * fabs (cx) + (box.MaxY()-box.MinY()) * fabs (cy) + (box.MaxZ()-box.MinZ()) * fabs (cz)) / 2; */ Vec<3> vdiag = box.PMax() - box.PMin(); double modify = (vdiag(0) * fabs (cx) + vdiag(1) * fabs (cy) + vdiag(2) * fabs (cz) ) / 2; if (val - modify < 0) return DOES_INTERSECT; return IS_OUTSIDE; // only outside or intersect possible for (i = 0; i < 8; i++) { pp = box.GetPointNr (i); val = Plane::CalcFunctionValue (pp); if (val < 0) return DOES_INTERSECT; } return IS_OUTSIDE; } else { /* double modify = ((box.MaxX()-box.MinX()) * fabs (cx) + (box.MaxY()-box.MinY()) * fabs (cy) + (box.MaxZ()-box.MinZ()) * fabs (cz)) / 2; */ Vec<3> vdiag = box.PMax() - box.PMin(); double modify = (vdiag(0) * fabs (cx) + vdiag(1) * fabs (cy) + vdiag(2) * fabs (cz) ) / 2; if (val + modify > 0) return DOES_INTERSECT; return IS_INSIDE; // only inside or intersect possible for (i = 0; i < 8; i++) { pp = box.GetPointNr (i); val = Plane::CalcFunctionValue (pp); if (val > 0) return DOES_INTERSECT; } return IS_INSIDE; } /* for (i = 1; i <= 8; i++) { box.GetPointNr (i, p); val = CalcFunctionValue (p); if (val > 0) inside = 0; if (val < 0) outside = 0; } if (inside) return IS_INSIDE; if (outside) return IS_OUTSIDE; return DOES_INTERSECT; */ } // double Plane :: CalcFunctionValue (const Point<3> & p3d) const // { // return cx * p3d(0) + cy * p3d(1) + cz * p3d(2) + c1; // } void Plane :: CalcGradient (const Point<3> & /* p */, Vec<3> & grad) const { grad(0) = cx; grad(1) = cy; grad(2) = cz; } void Plane :: CalcHesse (const Point<3> & /* p */, Mat<3> & hesse) const { hesse = 0; } double Plane :: HesseNorm () const { return 0; } Point<3> Plane :: GetSurfacePoint () const { return p; } void Plane :: GetTriangleApproximation (TriangleApproximation & tas, const Box<3> & boundingbox, double /* facets */) const { // find triangle, such that // boundingbox \cap plane is contained in it Point<3> c = boundingbox.Center(); double r = boundingbox.Diam(); Project (c); Vec<3> t1 = n.GetNormal(); Vec<3> t2 = Cross (n, t1); t1.Normalize(); t2.Normalize(); tas.AddPoint (c + (-0.5 * r) * t2 + (sqrt(0.75) * r) * t1); tas.AddPoint (c + (-0.5 * r) * t2 + (-sqrt(0.75) * r) * t1); tas.AddPoint (c + r * t2); tas.AddTriangle (TATriangle (0, 0, 1, 2)); } Sphere :: Sphere (const Point<3> & ac, double ar) { c = ac; r = ar; invr = 1.0/r; cxx = cyy = czz = 0.5 / r; cxy = cxz = cyz = 0; cx = - c(0) / r; cy = - c(1) / r; cz = - c(2) / r; c1 = (c(0) * c(0) + c(1) * c(1) + c(2) * c(2)) / (2 * r) - r / 2; } void Sphere :: GetPrimitiveData (const char *& classname, Array & coeffs) const { classname = "sphere"; coeffs.SetSize (4); coeffs.Elem(1) = c(0); coeffs.Elem(2) = c(1); coeffs.Elem(3) = c(2); coeffs.Elem(4) = r; } void Sphere :: SetPrimitiveData (Array & coeffs) { c(0) = coeffs.Elem(1); c(1) = coeffs.Elem(2); c(2) = coeffs.Elem(3); r = coeffs.Elem(4); invr = 1.0/r; cxx = cyy = czz = 0.5 / r; cxy = cxz = cyz = 0; cx = - c(0) / r; cy = - c(1) / r; cz = - c(2) / r; c1 = (c(0) * c(0) + c(1) * c(1) + c(2) * c(2)) / (2 * r) - r / 2; } Primitive * Sphere :: CreateDefault () { return new Sphere (Point<3> (0,0,0), 1); } Primitive * Sphere :: Copy () const { return new Sphere (c, r); } void Sphere :: Transform (Transformation<3> & trans) { Point<3> hp; trans.Transform (c, hp); c = hp; cxx = cyy = czz = 0.5 / r; cxy = cxz = cyz = 0; cx = - c(0) / r; cy = - c(1) / r; cz = - c(2) / r; c1 = (c(0) * c(0) + c(1) * c(1) + c(2) * c(2)) / (2 * r) - r / 2; } double Sphere :: CalcFunctionValue (const Point<3> & point) const { return 0.5* (invr * Abs2 (point-c) - r); } int Sphere :: IsIdentic (const Surface & s2, int & inv, double eps) const { const Sphere * sp2 = dynamic_cast (&s2); if (!sp2) return 0; if (Dist (sp2->c, c) > eps) return 0; if (fabs (sp2->r - r) > eps) return 0; inv = 0; return 1; } void Sphere :: DefineTangentialPlane (const Point<3> & ap1, const Point<3> & ap2) { Surface::DefineTangentialPlane (ap1, ap2); ez = p1 - c; ez /= ez.Length(); ex = p2 - p1; ex -= (ex * ez) * ez; ex /= ex.Length(); ey = Cross (ez, ex); } void Sphere :: ToPlane (const Point<3> & p, Point<2> & pplane, double h, int & zone) const { Vec<3> p1p; p1p = p - p1; /* if (p1p * ez < -r) { zone = -1; pplane = Point<2> (1E8, 1E8); } else { zone = 0; p1p /= h; pplane(0) = p1p * ex; pplane(1) = p1p * ey; } */ Point<3> p1top = c + (c - p1); Vec<3> p1topp = p - p1top; Vec<3> p1topp1 = p1 - p1top; Vec<3> lam; // SolveLinearSystem (ex, ey, p1topp, p1topp1, lam); Mat<3> m; for (int i = 0; i < 3; i++) { m(i, 0) = ex(i); m(i, 1) = ey(i); m(i, 2) = p1topp(i); } m.Solve (p1topp1, lam); pplane(0) = -lam(0) / h; pplane(1) = -lam(1) / h; if (lam(2) > 2) zone = -1; else zone = 0; } void Sphere :: FromPlane (const Point<2> & pplane, Point<3> & p, double h) const { /* // Vec<3> p1p; double z; Point<2> pplane2 (pplane); pplane2(0) *= h; pplane2(1) *= h; z = -r + sqrt (sqr (r) - sqr (pplane2(0)) - sqr (pplane2(1))); // p = p1; p(0) = p1(0) + pplane2(0) * ex(0) + pplane2(1) * ey(0) + z * ez(0); p(1) = p1(1) + pplane2(0) * ex(1) + pplane2(1) * ey(1) + z * ez(1); p(2) = p1(2) + pplane2(0) * ex(2) + pplane2(1) * ey(2) + z * ez(2); */ Point<2> pplane2 (pplane); pplane2(0) *= h; pplane2(1) *= h; p(0) = p1(0) + pplane2(0) * ex(0) + pplane2(1) * ey(0); p(1) = p1(1) + pplane2(0) * ex(1) + pplane2(1) * ey(1); p(2) = p1(2) + pplane2(0) * ex(2) + pplane2(1) * ey(2); Project (p); } void Sphere :: Project (Point<3> & p) const { Vec<3> v; v = p - c; v *= (r / v.Length()); p = c + v; } INSOLID_TYPE Sphere :: BoxInSolid (const BoxSphere<3> & box) const { double dist; dist = Dist (box.Center(), c); if (dist - box.Diam()/2 > r) return IS_OUTSIDE; if (dist + box.Diam()/2 < r) return IS_INSIDE; return DOES_INTERSECT; } double Sphere :: HesseNorm () const { return 2 / r; } Point<3> Sphere :: GetSurfacePoint () const { return c + Vec<3> (r, 0, 0); } void Sphere :: GetTriangleApproximation (TriangleApproximation & tas, const Box<3> & /* boundingbox */, double facets) const { int n = int(facets) + 1; for (int j = 0; j <= n; j++) for (int i = 0; i <= n; i++) { double lg = 2 * M_PI * double (i) / n; double bg = M_PI * (double(j) / n - 0.5); Point<3> p(c(0) + r * cos(bg) * sin (lg), c(1) + r * cos(bg) * cos (lg), c(2) + r * sin(bg)); tas.AddPoint (p); } for (int j = 0; j < n; j++) for (int i = 0; i < n; i++) { int pi = i + (n+1) * j; tas.AddTriangle (TATriangle (0, pi, pi+1, pi+n+2)); tas.AddTriangle (TATriangle (0, pi, pi+n+2, pi+n+1)); } } Ellipsoid :: Ellipsoid (const Point<3> & aa, const Vec<3> & av1, const Vec<3> & av2, const Vec<3> & av3) { a = aa; v1 = av1; v2 = av2; v3 = av3; CalcData(); } void Ellipsoid :: CalcData () { // f = (x-a, vl)^2 / |vl|^2 + (x-a, vs)^2 / |vs|^2 -1 // f = sum_{i=1}^3 (x-a,v_i)^2 / |vi|^4 - 1 = sum (x-a,hv_i)^2 Vec<3> hv1, hv2, hv3; double lv1 = v1.Length2 (); if (lv1 < 1e-32) lv1 = 1; double lv2 = v2.Length2 (); if (lv2 < 1e-32) lv2 = 1; double lv3 = v3.Length2 (); if (lv3 < 1e-32) lv3 = 1; rmin = sqrt (min3 (lv1, lv2, lv3)); hv1 = (1.0 / lv1) * v1; hv2 = (1.0 / lv2) * v2; hv3 = (1.0 / lv3) * v3; cxx = hv1(0) * hv1(0) + hv2(0) * hv2(0) + hv3(0) * hv3(0); cyy = hv1(1) * hv1(1) + hv2(1) * hv2(1) + hv3(1) * hv3(1); czz = hv1(2) * hv1(2) + hv2(2) * hv2(2) + hv3(2) * hv3(2); cxy = 2 * (hv1(0) * hv1(1) + hv2(0) * hv2(1) + hv3(0) * hv3(1)); cxz = 2 * (hv1(0) * hv1(2) + hv2(0) * hv2(2) + hv3(0) * hv3(2)); cyz = 2 * (hv1(1) * hv1(2) + hv2(1) * hv2(2) + hv3(1) * hv3(2)); Vec<3> va (a); c1 = sqr(va * hv1) + sqr(va * hv2) + sqr(va * hv3) - 1; Vec<3> v = -2 * (va * hv1) * hv1 - 2 * (va * hv2) * hv2 - 2 * (va * hv3) * hv3; cx = v(0); cy = v(1); cz = v(2); } INSOLID_TYPE Ellipsoid :: BoxInSolid (const BoxSphere<3> & box) const { // double grad = 2.0 / rmin; // double grad = 3*(box.Center()-a).Length() / (rmin*rmin*rmin); double ggrad = 1.0 / (rmin*rmin); Vec<3> g; double val = CalcFunctionValue (box.Center()); CalcGradient (box.Center(), g); double grad = g.Length(); double r = box.Diam() / 2; double maxval = grad * r + ggrad * r * r; // (*testout) << "box = " << box << ", val = " << val << ", maxval = " << maxval << endl; if (val > maxval) return IS_OUTSIDE; if (val < -maxval) return IS_INSIDE; return DOES_INTERSECT; } double Ellipsoid :: HesseNorm () const { return 1.0/ (rmin * rmin); } double Ellipsoid :: MaxCurvature () const { const double a2 = v1.Length2(); const double b2 = v2.Length2(); const double c2 = v3.Length2(); return max3 ( sqrt(a2)/min2(b2,c2), sqrt(b2)/min2(a2,c2), sqrt(c2)/min2(a2,b2) ); } Point<3> Ellipsoid :: GetSurfacePoint () const { return a + v1; } void Ellipsoid :: GetTriangleApproximation (TriangleApproximation & tas, const Box<3> & /* boundingbox */, double facets) const { int n = int(facets) + 1; for (int j = 0; j <= n; j++) for (int i = 0; i <= n; i++) { double lg = 2 * M_PI * double (i) / n; double bg = M_PI * (double(j) / n - 0.5); Point<3> p(a + sin (bg) * v1 + cos (bg) * sin (lg) * v2 + cos (bg) * cos (lg) * v3); tas.AddPoint (p); } for (int j = 0; j < n; j++) for (int i = 0; i < n; i++) { int pi = i + (n+1) * j; tas.AddTriangle (TATriangle (0, pi, pi+1, pi+n+2)); tas.AddTriangle (TATriangle (0, pi, pi+n+2, pi+n+1)); } } Cylinder :: Cylinder (Array & coeffs) { SetPrimitiveData(coeffs); } Cylinder :: Cylinder (const Point<3> & aa, const Point<3> & ab, double ar) { a = aa; b = ab; vab = (b - a); vab /= vab.Length(); r = ar; // ( - 2 + // - ^2 + 2 - ^2 // - r^2) / (2r) = 0 double hv; cxx = cyy = czz = 0.5 / r; cxy = cxz = cyz = 0; cx = - a(0) / r; cy = - a(1) / r; cz = - a(2) / r; c1 = (a(0) * a(0) + a(1) * a(1) + a(2) * a(2)) / (2 * r); hv = a(0) * vab(0) + a(1) * vab(1) + a(2) * vab(2); cxx -= vab(0) * vab(0) / (2 * r); cyy -= vab(1) * vab(1) / (2 * r); czz -= vab(2) * vab(2) / (2 * r); cxy -= vab(0) * vab(1) / r; cxz -= vab(0) * vab(2) / r; cyz -= vab(1) * vab(2) / r; cx += vab(0) * hv / r; cy += vab(1) * hv / r; cz += vab(2) * hv / r; c1 -= hv * hv / (2 * r); c1 -= r / 2; // PrintCoeff (); } void Cylinder :: GetPrimitiveData (const char *& classname, Array & coeffs) const { classname = "cylinder"; coeffs.SetSize (7); coeffs.Elem(1) = a(0); coeffs.Elem(2) = a(1); coeffs.Elem(3) = a(2); coeffs.Elem(4) = b(0); coeffs.Elem(5) = b(1); coeffs.Elem(6) = b(2); coeffs.Elem(7) = r; } void Cylinder :: SetPrimitiveData (Array & coeffs) { a(0) = coeffs.Elem(1); a(1) = coeffs.Elem(2); a(2) = coeffs.Elem(3); b(0) = coeffs.Elem(4); b(1) = coeffs.Elem(5); b(2) = coeffs.Elem(6); r = coeffs.Elem(7); vab = (b - a); vab /= vab.Length(); double hv; cxx = cyy = czz = 0.5 / r; cxy = cxz = cyz = 0; cx = - a(0) / r; cy = - a(1) / r; cz = - a(2) / r; c1 = (a(0) * a(0) + a(1) * a(1) + a(2) * a(2)) / (2 * r); hv = a(0) * vab(0) + a(1) * vab(1) + a(2) * vab(2); cxx -= vab(0) * vab(0) / (2 * r); cyy -= vab(1) * vab(1) / (2 * r); czz -= vab(2) * vab(2) / (2 * r); cxy -= vab(0) * vab(1) / r; cxz -= vab(0) * vab(2) / r; cyz -= vab(1) * vab(2) / r; cx += vab(0) * hv / r; cy += vab(1) * hv / r; cz += vab(2) * hv / r; c1 -= hv * hv / (2 * r); c1 -= r / 2; } Primitive * Cylinder :: CreateDefault () { return new Cylinder (Point<3> (0,0,0), Point<3> (1,0,0), 1); } Primitive * Cylinder :: Copy () const { return new Cylinder (a, b, r); } void Cylinder :: Print (ostream & ost) const { ost << "cylinder(" << a << "; " << b << "; " << r << ")"; } int Cylinder :: IsIdentic (const Surface & s2, int & inv, double eps) const { const Cylinder * cyl2 = dynamic_cast (&s2); if (!cyl2) return 0; if (fabs (cyl2->r - r) > eps) return 0; Vec<3> v1 = b - a; Vec<3> v2 = cyl2->a - a; if ( fabs (v1 * v2) < (1-eps) * v1.Length() * v2.Length()) return 0; v2 = cyl2->b - a; if ( fabs (v1 * v2) < (1-eps) * v1.Length() * v2.Length()) return 0; inv = 0; return 1; } void Cylinder :: Transform (Transformation<3> & trans) { Point<3> hp; trans.Transform (a, hp); a = hp; trans.Transform (b, hp); b = hp; vab = (b - a); vab /= vab.Length(); // ( - 2 + // - ^2 + 2 - ^2 // - r^2) / (2r) = 0 double hv; cxx = cyy = czz = 0.5 / r; cxy = cxz = cyz = 0; cx = - a(0) / r; cy = - a(1) / r; cz = - a(2) / r; c1 = (a(0) * a(0) + a(1) * a(1) + a(2) * a(2)) / (2 * r); hv = a(0) * vab(0) + a(1) * vab(1) + a(2) * vab(2); cxx -= vab(0) * vab(0) / (2 * r); cyy -= vab(1) * vab(1) / (2 * r); czz -= vab(2) * vab(2) / (2 * r); cxy -= vab(0) * vab(1) / r; cxz -= vab(0) * vab(2) / r; cyz -= vab(1) * vab(2) / r; cx += vab(0) * hv / r; cy += vab(1) * hv / r; cz += vab(2) * hv / r; c1 -= hv * hv / (2 * r); c1 -= r / 2; // PrintCoeff (); } void Cylinder :: DefineTangentialPlane (const Point<3> & ap1, const Point<3> & ap2) { Surface::DefineTangentialPlane (ap1, ap2); ez = Center (p1, p2) - a; ez -= (ez * vab) * vab; ez /= ez.Length(); ex = p2 - p1; ex -= (ex * ez) * ez; ex /= ex.Length(); ey = Cross (ez, ex); } void Cylinder :: ToPlane (const Point<3> & p, Point<2> & pplane, double h, int & zone) const { Point<3> cp1p2 = Center (p1, p2); Project (cp1p2); Point<3> ccp1p2 = a + ( (cp1p2 - a) * vab ) * vab; Vec<3> er = cp1p2 - ccp1p2; er.Normalize(); Vec<3> ephi = Cross (vab, er); double co, si; Point<2> p1p, p2p, pp; co = er * (p1 - ccp1p2); si = ephi * (p1 - ccp1p2); p1p(0) = r * atan2 (si, co); p1p(1) = vab * (p1 - ccp1p2); co = er * (p2 - ccp1p2); si = ephi * (p2 - ccp1p2); p2p(0) = r * atan2 (si, co); p2p(1) = vab * (p2 - ccp1p2); co = er * (p - ccp1p2); si = ephi * (p - ccp1p2); double phi = atan2 (si, co); pp(0) = r * phi; pp(1) = vab * (p - ccp1p2); zone = 0; if (phi > 1.57) zone = 1; if (phi < -1.57) zone = 2; Vec<2> e2x = p2p - p1p; e2x /= e2x.Length(); Vec<2> e2y (-e2x(1), e2x(0)); Vec<2> p1pp = pp - p1p; pplane(0) = (p1pp * e2x) / h; pplane(1) = (p1pp * e2y) / h; /* (*testout) << "p1 = " << p1 << ", p2 = " << p2 << endl; (*testout) << "p = " << p << ", pp = " << pp << ", pplane = " << pplane << endl; */ /* Vec<3> p1p; p1p = p - p1; if (p1p * ez < -1 * r) { zone = -1; pplane(0) = 1e8; pplane(1) = 1e8; } else { zone = 0; p1p /= h; pplane(0) = p1p * ex; pplane(1) = p1p * ey; } */ } void Cylinder :: FromPlane (const Point<2> & pplane, Point<3> & p, double h) const { Point<2> pplane2 (pplane); pplane2(0) *= h; pplane2(1) *= h; p(0) = p1(0) + pplane2(0) * ex(0) + pplane2(1) * ey(0); p(1) = p1(1) + pplane2(0) * ex(1) + pplane2(1) * ey(1); p(2) = p1(2) + pplane2(0) * ex(2) + pplane2(1) * ey(2); Project (p); } void Cylinder :: Project (Point<3> & p) const { Vec<3> v; Point<3> c; c = a + ((p - a) * vab) * vab; v = p - c; v *= (r / v.Length()); p = c + v; } /* int Cylinder :: RootInBox (const BoxSphere<3> & box) const { double dist; dist = sqrt (2 * CalcFunctionValue(box.Center()) * r + r * r); if (fabs (dist - r) > box.Diam()/2) return 0; return 2; } */ INSOLID_TYPE Cylinder :: BoxInSolid (const BoxSphere<3> & box) const { double dist; // dist = sqrt (2 * CalcFunctionValue(box.Center()) * r + r * r); dist = (2 * CalcFunctionValue(box.Center()) * r + r * r); if (dist <= 0) dist = 0; else dist = sqrt (dist + 1e-16); if (dist - box.Diam()/2 > r) return IS_OUTSIDE; if (dist + box.Diam()/2 < r) return IS_INSIDE; return DOES_INTERSECT; } double Cylinder :: HesseNorm () const { return 2 / r; } Point<3> Cylinder :: GetSurfacePoint () const { Vec<3> vr; if (fabs (vab(0)) > fabs(vab(2))) vr = Vec<3> (vab(1), -vab(0), 0); else vr = Vec<3> (0, -vab(2), vab(1)); vr *= (r / vr.Length()); return a + vr; } void Cylinder :: GetTriangleApproximation (TriangleApproximation & tas, const Box<3> & /* boundingbox */, double facets) const { int n = int(facets) + 1; Vec<3> lvab = b - a; Vec<3> n1 = lvab.GetNormal(); Vec<3> n2 = Cross (lvab, n1); n1.Normalize(); n2.Normalize(); for (int j = 0; j <= n; j++) for (int i = 0; i <= n; i++) { double lg = 2 * M_PI * double (i) / n; double bg = double(j) / n; Point<3> p = a + (bg * lvab) + ((r * cos(lg)) * n1) + ((r * sin(lg)) * n2); tas.AddPoint (p); } for (int j = 0; j < n; j++) for (int i = 0; i < n; i++) { int pi = i + (n+1) * j; tas.AddTriangle (TATriangle (0, pi, pi+1, pi+n+2)); tas.AddTriangle (TATriangle (0, pi, pi+n+2, pi+n+1)); } } EllipticCylinder :: EllipticCylinder (const Point<3> & aa, const Vec<3> & avl, const Vec<3> & avs) { a = aa; if(avl.Length2() > avs.Length2()) { vl = avl; vs = avs; } else { vl = avs; vs = avl; } CalcData(); } EllipticCylinder :: EllipticCylinder (Array & coeffs) { SetPrimitiveData(coeffs); } void EllipticCylinder :: GetPrimitiveData (const char *& classname, Array & coeffs) const { classname = "ellipticcylinder"; coeffs.SetSize (9); coeffs[0] = a(0); coeffs[1] = a(1); coeffs[2] = a(2); coeffs[3] = vl(0); coeffs[4] = vl(1); coeffs[5] = vl(2); coeffs[6] = vs(0); coeffs[7] = vs(1); coeffs[8] = vs(2); } void EllipticCylinder :: SetPrimitiveData (Array & coeffs) { a(0) = coeffs[0]; a(1) = coeffs[1]; a(2) = coeffs[2]; vl(0) = coeffs[3]; vl(1) = coeffs[4]; vl(2) = coeffs[5]; vs(0) = coeffs[6]; vs(1) = coeffs[7]; vs(2) = coeffs[8]; CalcData(); } void EllipticCylinder :: CalcData () { // f = (x-a, vl)^2 / |vl|^2 + (x-a, vs)^2 / |vs|^2 -1 Vec<3> hvl, hvs; double lvl = vl.Length2 (); if (lvl < 1e-32) lvl = 1; double lvs = vs.Length2 (); if (lvs < 1e-32) lvs = 1; hvl = (1.0 / lvl) * vl; hvs = (1.0 / lvs) * vs; cxx = hvl(0) * hvl(0) + hvs(0) * hvs(0); cyy = hvl(1) * hvl(1) + hvs(1) * hvs(1); czz = hvl(2) * hvl(2) + hvs(2) * hvs(2); cxy = 2 * (hvl(0) * hvl(1) + hvs(0) * hvs(1)); cxz = 2 * (hvl(0) * hvl(2) + hvs(0) * hvs(2)); cyz = 2 * (hvl(1) * hvl(2) + hvs(1) * hvs(2)); Vec<3> va (a); c1 = pow(va * hvl,2) + pow(va * hvs,2) - 1; Vec<3> v = -2 * (va * hvl) * hvl - 2 * (va * hvs) * hvs; cx = v(0); cy = v(1); cz = v(2); } INSOLID_TYPE EllipticCylinder :: BoxInSolid (const BoxSphere<3> & box) const { double grad = 2.0 / vs.Length (); double ggrad = 1.0 / vs.Length2 (); double val = CalcFunctionValue (box.Center()); double r = box.Diam() / 2; double maxval = grad * r + ggrad * r * r; // (*testout) << "box = " << box << ", val = " << val << ", maxval = " << maxval << endl; if (val > maxval) return IS_OUTSIDE; if (val < -maxval) return IS_INSIDE; return DOES_INTERSECT; } double EllipticCylinder :: HesseNorm () const { return 1.0/min(vs.Length2 (),vl.Length2()); } double EllipticCylinder :: MaxCurvature () const { double aa = vs.Length(); double bb = vl.Length(); return max2(bb/(aa*aa),aa/(bb*bb)); } double EllipticCylinder :: MaxCurvatureLoc (const Point<3> & /* c */, double /* rad */) const { // saubere Loesung wird noch notwendig !!! double aa = vs.Length(); double bb = vl.Length(); return max2(bb/(aa*aa),aa/(bb*bb)); } Point<3> EllipticCylinder :: GetSurfacePoint () const { return a + vl; } void EllipticCylinder :: GetTriangleApproximation (TriangleApproximation & tas, const Box<3> & /* boundingbox */, double facets) const { int n = int(facets) + 1; Vec<3> axis = Cross (vl, vs); for (int j = 0; j <= n; j++) for (int i = 0; i <= n; i++) { double lg = 2 * M_PI * double (i) / n; double bg = double(j) / n; Point<3> p = a + (bg * axis) + cos(lg) * vl + sin(lg) * vs; tas.AddPoint (p); } for (int j = 0; j < n; j++) for (int i = 0; i < n; i++) { int pi = i + (n+1) * j; tas.AddTriangle (TATriangle (0, pi, pi+1, pi+n+2)); tas.AddTriangle (TATriangle (0, pi, pi+n+2, pi+n+1)); } } Cone :: Cone (const Point<3> & aa, const Point<3> & ab, double ara, double arb) { a = aa; b = ab; ra = ara; rb = arb; CalcData(); // Print (cout); } Primitive * Cone :: CreateDefault () { return new Cone (Point<3> (0,0,0), Point<3> (1,0,0), 0.5, 0.2); } void Cone :: GetPrimitiveData (const char *& classname, Array & coeffs) const { classname = "cone"; coeffs.SetSize (8); coeffs.Elem(1) = a(0); coeffs.Elem(2) = a(1); coeffs.Elem(3) = a(2); coeffs.Elem(4) = b(0); coeffs.Elem(5) = b(1); coeffs.Elem(6) = b(2); coeffs.Elem(7) = ra; coeffs.Elem(8) = rb; } void Cone :: SetPrimitiveData (Array & coeffs) { a(0) = coeffs.Elem(1); a(1) = coeffs.Elem(2); a(2) = coeffs.Elem(3); b(0) = coeffs.Elem(4); b(1) = coeffs.Elem(5); b(2) = coeffs.Elem(6); ra = coeffs.Elem(7); rb = coeffs.Elem(8); CalcData(); } void Cone :: CalcData () { minr = (ra < rb) ? ra : rb; vab = b - a; vabl = vab.Length(); Vec<3> va (a); // // f = r(P)^2 - R(z(P))^2 // // z(P) = t0vec * P + t0 = (P-a, b-a)/(b-a,b-a) // R(z(P)) = t1vec * P + t1 = rb * z + ra * (1-z) // r(P)^2 =||P-a||^2 - ||a-b||^2 z^2k cosphi = vabl / sqrt (vabl*vabl+sqr(ra-rb)); t0vec = vab; t0vec /= (vabl * vabl); t0 = -(va * vab) / (vabl * vabl); t1vec = t0vec; t1vec *= (rb - ra); t1 = ra + (rb - ra) * t0; cxx = cyy = czz = 1; cxy = cxz = cyz = 0; cxx = 1 - (vab*vab) * t0vec(0) * t0vec(0) - t1vec(0) * t1vec(0); cyy = 1 - (vab*vab) * t0vec(1) * t0vec(1) - t1vec(1) * t1vec(1); czz = 1 - (vab*vab) * t0vec(2) * t0vec(2) - t1vec(2) * t1vec(2); cxy = -2 * (vab * vab) * t0vec(0) * t0vec(1) - 2 * t1vec(0) * t1vec(1); cxz = -2 * (vab * vab) * t0vec(0) * t0vec(2) - 2 * t1vec(0) * t1vec(2); cyz = -2 * (vab * vab) * t0vec(1) * t0vec(2) - 2 * t1vec(1) * t1vec(2); cx = -2 * a(0) - 2 * (vab * vab) * t0 * t0vec(0) - 2 * t1 * t1vec(0); cy = -2 * a(1) - 2 * (vab * vab) * t0 * t0vec(1) - 2 * t1 * t1vec(1); cz = -2 * a(2) - 2 * (vab * vab) * t0 * t0vec(2) - 2 * t1 * t1vec(2); c1 = va.Length2() - (vab * vab) * t0 * t0 - t1 * t1; double maxr = max2(ra,rb); cxx /= maxr; cyy /= maxr; czz /= maxr; cxy /= maxr; cxz /= maxr; cyz /= maxr; cx /= maxr; cy /= maxr; cz /= maxr; c1 /= maxr; // (*testout) << "t0vec = " << t0vec << " t0 = " << t0 << endl; // (*testout) << "t1vec = " << t1vec << " t1 = " << t1 << endl; // PrintCoeff (*testout); } INSOLID_TYPE Cone :: BoxInSolid (const BoxSphere<3> & box) const { Vec<3> cv(box.Center()); double rzp = cv * t1vec + t1; double dist = sqrt (CalcFunctionValue(box.Center()) *max2(ra,rb) + rzp * rzp) - rzp; dist *= cosphi; INSOLID_TYPE res = DOES_INTERSECT; if (dist - box.Diam() > 0) res = IS_OUTSIDE; if (dist + box.Diam() < 0) res = IS_INSIDE; return res; } double Cone :: HesseNorm () const { // cout << "2/minr = " << 2/minr << ", cxx .. = " << cxx << ", " << cyy << ", " << czz << endl; return 2 / minr; } double Cone :: LocH (const Point<3> & p, double /* x */, double /* c */, const MeshingParameters & mparam, double hmax) const { //double bloch = Surface::LocH (p, x, c, hmax); Vec<3> g; CalcGradient (p, g); double lam = Abs(g); double meancurv = -( 2 * g(0)*g(1)*cxy - 2 * czz * (g(0)*g(0)+g(1)*g(1)) +2 * g(1)*g(2)*cyz - 2 * cxx * (g(1)*g(1)+g(2)*g(2)) +2 * g(0)*g(2)*cxz - 2 * cyy * (g(0)*g(0)+g(2)*g(2))) / (3*lam*lam*lam); // cout << "type = " << typeid(*this).name() << ", baseh = " << bloch << ", meancurv = " << meancurv << endl; // return bloch; meancurv = fabs (meancurv); if (meancurv < 1e-20) meancurv = 1e-20; // cout << "c = " << c << ", safety = " << mparam.curvaturesafety << endl; double hcurv = 1.0/(4*meancurv*mparam.curvaturesafety); return min2 (hmax, hcurv); } Point<3> Cone :: GetSurfacePoint () const { Vec<3> vr = vab.GetNormal (); vr *= (ra / vr.Length()); return a + vr; } void Cone :: GetTriangleApproximation (TriangleApproximation & tas, const Box<3> & /* boundingbox */, double facets) const { int i, j; double lg, bg; int n = int(facets) + 1; Vec<3> lvab = b - a; Vec<3> n1 = lvab.GetNormal(); Vec<3> n2 = Cross (lvab, n1); n1.Normalize(); n2.Normalize(); for (j = 0; j <= n; j++) for (i = 0; i <= n; i++) { lg = 2 * M_PI * double (i) / n; bg = double(j) / n; Point<3> p = a + (bg * lvab) + (( (ra+(rb-ra)*bg) * cos(lg)) * n1) + (( (ra+(rb-ra)*bg) * sin(lg)) * n2); tas.AddPoint (p); } for (j = 0; j < n; j++) for (i = 0; i < n; i++) { int pi = i + (n+1) * j; tas.AddTriangle (TATriangle (0, pi, pi+1, pi+n+2)); tas.AddTriangle (TATriangle (0, pi, pi+n+2, pi+n+1)); } } /// Elliptic Cone /// Josephat Kalezhi (kalezhi@cbu.ac.zm) /// February 21st, 2018 /// EllipticCone :: EllipticCone (const Point<3> & aa, const Vec<3> & avl, const Vec<3> & avs, double ah, double avlr) { a = aa; h = ah; vlr = avlr; if (avl.Length2() >= avs.Length2()) { vl = avl; vs = avs; } else { vl = avs; vs = avl; } CalcData(); // Print (cout); } Primitive * EllipticCone :: CreateDefault () { return new EllipticCone (Point<3> (0,0,0), Vec<3> (1,0,0), Vec<3> (0,1,0), 1, 0.5); } void EllipticCone :: GetPrimitiveData (const char *& classname, Array & coeffs) const { classname = "ellipticcone"; coeffs.SetSize (15); coeffs.Elem(1) = a(0); coeffs.Elem(2) = a(1); coeffs.Elem(3) = a(2); coeffs.Elem(4) = vl(0); coeffs.Elem(5) = vl(1); coeffs.Elem(6) = vl(2); coeffs.Elem(7) = vs(0); coeffs.Elem(8) = vs(1); coeffs.Elem(9) = vs(2); coeffs.Elem(10) = h; coeffs.Elem(11) = vlr; } void EllipticCone :: SetPrimitiveData (Array & coeffs) { a(0) = coeffs.Elem(1); a(1) = coeffs.Elem(2); a(2) = coeffs.Elem(3); vl(0) = coeffs.Elem(4); vl(1) = coeffs.Elem(5); vl(2) = coeffs.Elem(6); vs(0) = coeffs.Elem(7); vs(1) = coeffs.Elem(8); vs(2) = coeffs.Elem(9); h = coeffs.Elem(10); vlr = coeffs.Elem(11); CalcData(); } void EllipticCone :: CalcData () { Vec<3> nh = Cross(vl, vs); nh.Normalize(); double lvl = vl.Length(); double lvs = vs.Length(); Vec<3> t1vec = lvl*(vlr -1)*(1/h)*nh; Vec<3> va (a); double t1 = lvl*(1 - (vlr -1)*(1/h)*(va*nh)); Vec<3> nvl = (1.0/lvl)*vl; Vec<3> nvs = (1.0/lvs)*vs; double ellipt2 = sqr(lvl/lvs); cxx = nvl(0)*nvl(0) + ellipt2*nvs(0)*nvs(0) - t1vec(0)*t1vec(0); cyy = nvl(1)*nvl(1) + ellipt2*nvs(1)*nvs(1) - t1vec(1)*t1vec(1); czz = nvl(2)*nvl(2) + ellipt2*nvs(2)*nvs(2) - t1vec(2)*t1vec(2); cxy = 2*(nvl(0)*nvl(1) + ellipt2*nvs(0)*nvs(1) - t1vec(0)*t1vec(1)); cxz = 2*(nvl(0)*nvl(2) + ellipt2*nvs(0)*nvs(2) - t1vec(0)*t1vec(2)); cyz = 2*(nvl(1)*nvl(2) + ellipt2*nvs(1)*nvs(2) - t1vec(1)*t1vec(2)); Vec<3> v = -2*((va*nvl)*nvl + ellipt2*(va*nvs)*nvs + t1*t1vec); cx = v(0); cy = v(1); cz = v(2); c1 = pow(va*nvl,2) + ellipt2*pow(va*nvs,2) - t1*t1; double lvltop = vlr*lvl; double minlvl = (lvl < lvltop) ? lvl : lvltop; double maxlvl = max2( lvl,lvltop); cxx /= maxlvl; cyy /= maxlvl; czz /= maxlvl; cxy /= maxlvl; cxz /= maxlvl; cyz /= maxlvl; cx /= maxlvl; cy /= maxlvl; cz /= maxlvl; c1 /= maxlvl; } INSOLID_TYPE EllipticCone :: BoxInSolid (const BoxSphere<3> & box) const { double rp, dist; Vec<3> cv( box.Center()); Vec<3> nh = Cross(vl, vs); nh.Normalize(); double lvl = vl.Length(); Vec<3> t1vec = lvl*(vlr -1)*(1/h)*nh; Vec<3> va (a); double t1 = lvl*(1 - (vlr -1)*(1/h)*(va*nh)); rp = cv*t1vec + t1; double lvltop = vlr*lvl; double maxlvl = max2( lvl,lvltop); dist = sqrt( CalcFunctionValue(box.Center())*maxlvl + rp*rp) - rp; if (dist - box.Diam() > 0) return IS_OUTSIDE; if (dist + box.Diam() < 0) return IS_INSIDE; return DOES_INTERSECT; } double EllipticCone :: HesseNorm () const { return 1.0/min(vs.Length2 (),vl.Length2()); } double EllipticCone :: MaxCurvature () const { double a = vs.Length(); double b = vl.Length(); return max2(b/(a*a),a/(b*b)); } double EllipticCone :: MaxCurvatureLoc (const Point<3> & c, double rad) const { #ifdef JOACHIMxxx cout << "max curv local" << endl; return 0.02; #endif // saubere Loesung wird noch notwendig !!! double a = vs.Length(); double b = vl.Length(); return max2(b/(a*a),a/(b*b)); } Point<3> EllipticCone :: GetSurfacePoint () const { return a + vl; } void EllipticCone :: GetTriangleApproximation (TriangleApproximation & tas, const Box<3> & boundingbox, double facets) const { int i, j; double lg, bg; int n = int(facets) + 1; Vec<3> nh = Cross(vl, vs); nh.Normalize(); Vec<3> vh = h*nh; double lvl = vl.Length(); double lvs = vs.Length(); Vec<3> nvl = (1.0/lvl)*vl; Vec<3> nvs = (1.0/lvs)*vs; for ( j = 0; j <= n; j++ ) for (i = 0; i <= n; i++) { lg = 2 *M_PI * double (i) /n; bg = double(j) /n; Point<3> p = a + (bg *vh) + (( lvl*(1 + (vlr -1)*bg) * cos(lg)) * nvl) + (( lvs*(1 + (vlr -1)*bg)* sin(lg) ) * nvs); tas.AddPoint (p); } for ( j = 0; j < n; j++) for ( i = 0; i < n; i++) { int pi = i + (n+1) * j; tas.AddTriangle (TATriangle (0, pi, pi+1, pi+n+2)); tas.AddTriangle (TATriangle (0, pi, pi+n+2, pi+n+1)); } } /// Torus /// Lorenzo Codecasa (codecasa@elet.polimi.it) /// April 27th, 2005 /// Torus :: Torus (const Point<3> & ac, const Vec<3> & an, double aR, double ar) { c = ac; n = an; n.Normalize(); R = aR; r = ar; } void Torus :: GetPrimitiveData (const char *& classname, Array & coeffs) const { classname = "torus"; coeffs.SetSize (8); coeffs.Elem(1) = c(0); coeffs.Elem(2) = c(1); coeffs.Elem(3) = c(2); coeffs.Elem(4) = n(0); coeffs.Elem(5) = n(1); coeffs.Elem(6) = n(2); coeffs.Elem(7) = R; coeffs.Elem(8) = r; } void Torus :: SetPrimitiveData (Array & coeffs) { c(0) = coeffs.Elem(1); c(1) = coeffs.Elem(2); c(2) = coeffs.Elem(3); n(0) = coeffs.Elem(4); n(1) = coeffs.Elem(5); n(2) = coeffs.Elem(6); R = coeffs.Elem(7); r = coeffs.Elem(8); } Primitive * Torus :: CreateDefault () { return new Torus (Point<3> (0,0,0), Vec<3> (0,0,1), 2, 1); } Primitive * Torus :: Copy () const { return new Torus (c, n, R, r); } void Torus :: Transform (Transformation<3> & trans) { Point<3> hc; trans.Transform (c, hc); c = hc; Vec<3> hn; trans.Transform (n, hn); n = hn; } int Torus :: IsIdentic (const Surface & s2, int & inv, double eps) const { const Torus * torus2 = dynamic_cast (&s2); if (!torus2) return 0; if (fabs (torus2->R - R) > eps) return 0; if (fabs (torus2->r - r) > eps) return 0; Vec<3> v2 = torus2->n - n; if ( v2 * v2 > eps ) return 0; v2 = torus2->c - c; if ( v2 * v2 > eps ) return 0; inv = 0; return 1; } double Torus :: CalcFunctionValue (const Point<3> & point) const { /* // original version Vec<3> v1 = point - c; double a1 = Abs2 (v1); // v1(0) * v1(0) + v1(1) * v1(1) + v1(2) * v1(2); double a2 = n * v1; // n(0) * v1(0) + n(1) * v1(1) + n(2) * v1(2); double a3 = a1 + R * R - r * r; double a4 = Abs2 (n); // n(0) * n(0) + n(1) * n(1) + n(2) * n(2); return ( a3 * a3 -4 * R * R * ( a1 - a2 * a2 / a4 ) ) / ( R * R * R ); */ // JS, April 2011 Vec<3> v1 = point-c; double abs2 = Abs2(v1); double tau = v1 * n; double rho = sqrt (abs2 - tau*tau); return sqr (R - rho) + tau*tau - r*r; // double val2 = sqr (tau*tau + sqr (R - rho) -r*r) / (R*R*R); } void Torus :: CalcGradient (const Point<3> & point, Vec<3> & grad) const { /* Vec<3> v1 = point - c; double a1 = v1(0) * v1(0) + v1(1) * v1(1) + v1(2) * v1(2); double a2 = n(0) * v1(0) + n(1) * v1(1) + n(2) * v1(2); double a3 = a1 - R * R - r * r; double a4 = n(0) * n(0) + n(1) * n(1) + n(2) * n(2); grad(0) = ( 4 * a3 * v1(0) + 8 * R * R * a2 / a4 * n(0) ) / ( R * R * R ); grad(1) = ( 4 * a3 * v1(1) + 8 * R * R * a2 / a4 * n(1) ) / ( R * R * R ); grad(2) = ( 4 * a3 * v1(2) + 8 * R * R * a2 / a4 * n(2) ) / ( R * R * R ); */ Vec<3> v1 = point-c; double abs2 = Abs2(v1); double tau = v1 * n; double rho = sqrt (abs2 - tau*tau); // double func = sqr (R - rho) + tau*tau - r*r; Vec<3> gradabs2 = 2 * v1; Vec<3> gradtau = n; Vec<3> gradrho = 0.5 / rho * (gradabs2 - 2 * tau * gradtau); grad = -2 * (R - rho) * gradrho + 2 * tau * gradtau; } void Torus :: CalcHesse (const Point<3> & point, Mat<3> & hesse) const { Surface::CalcHesse (point, hesse); return; Vec<3> v1 = point - c; double a1 = v1(0) * v1(0) + v1(1) * v1(1) + v1(2) * v1(2); double a3 = a1 - R * R - r * r; double a4 = n(0) * n(0) + n(1) * n(1) + n(2) * n(2); hesse(0,0) = ( 4 * a3 + 8 * (v1(0) * v1(0) + (R * n(0)) * (R * n(0)) / a4 ) ) / ( R * R * R ); hesse(1,1) = ( 4 * a3 + 8 * (v1(1) * v1(1) + (R * n(1)) * (R * n(1)) / a4 ) ) / ( R * R * R ); hesse(2,2) = ( 4 * a3 + 8 * (v1(2) * v1(2) + (R * n(2)) * (R * n(2)) / a4 ) ) / ( R * R * R ); hesse(0,1) = hesse(1,0) = 8 * (v1(0) * v1(1) + (R * n(0)) * (R * n(1)) / a4 ) / ( R * R * R ); hesse(1,2) = hesse(2,1) = 8 * (v1(1) * v1(2) + (R * n(1)) * (R * n(2)) / a4) / ( R * R * R ); hesse(0,2) = hesse(2,0) = 8 * (v1(0) * v1(2) + (R * n(0)) * (R * n(2)) / a4) / ( R * R * R ); } double Torus :: HesseNorm () const { return 4/(r*r); // return ( 2 / r + 2 / ( R - r ) ); } Point<3> Torus :: GetSurfacePoint () const { Vec<3> vn = n.GetNormal(); return c + ( R + r ) * vn.Normalize(); } /// void Torus :: DefineTangentialPlane (const Point<3> & ap1, const Point<3> & ap2) /// { /// } /// void Torus :: ToPlane (const Point<3> & p, /// Point<2> & pplane, /// double h, int & zone) const /// { /// } /// void Torus :: FromPlane (const Point<2> & pplane, Point<3> & p, double h) const /// { /// } /// void Torus :: Project (Point<3> & p) const /// { /// } INSOLID_TYPE Torus :: BoxInSolid (const BoxSphere<3> & box) const { Vec<3> v1 = box.Center() - c; double a1 = Abs2(v1); // v1(0) * v1(0) + v1(1) * v1(1) + v1(2) * v1(2); double a2 = n * v1; // n(0) * v1(0) + n(1) * v1(1) + n(2) * v1(2); double a4 = Abs2(n); // n(0) * n(0) + n(1) * n(1) + n(2) * n(2); double dist = sqrt( a1 + R * R - 2 * R * sqrt( a1 - a2 * a2 / a4) ); if (dist - box.Diam()/2 > r) return IS_OUTSIDE; if (dist + box.Diam()/2 < r) return IS_INSIDE; return DOES_INTERSECT; } void Torus :: GetTriangleApproximation (TriangleApproximation & tas, const Box<3> & /* boundingbox */, double facets) const { int N = int(facets) + 1; Vec<3> lvab = n ; lvab.Normalize(); Vec<3> n1 = lvab.GetNormal(); n1.Normalize(); Vec<3> n2 = Cross(lvab, n1); n2.Normalize(); for (int j = 0; j <= N; j++) for (int i = 0; i <= N; i++) { double lg = 2 * M_PI * double (i) / N; double bg = 2 * M_PI * double(j) / N; Point<3> p = c + ( R + r * cos(lg) ) * ( cos(bg) * n1 + sin(bg) * n2 ) + r * sin(lg) * n; tas.AddPoint (p); } for (int j = 0; j < N; j++) for (int i = 0; i < N; i++) { int pi = i + (N+1) * j; tas.AddTriangle (TATriangle (0, pi, pi+1, pi+N+2)); tas.AddTriangle (TATriangle (0, pi, pi+N+2, pi+N+1)); } } void Torus :: Read (istream & ist) { ist >> c(0) >> c(1) >> c(2) >> n(0) >> n(1) >> n(2) >> R >> r; } void Torus :: Print (ostream & ost) const { ost << c(0) << " " << c(1) << " " << c(2) << " " << n(0) << " " << n(1) << " " << n(2) << " " << R << " " << r << endl; } }