#include #include "meshing.hpp" #include #ifndef SMALLLIB //#ifndef NOTCL //#include //#endif #endif namespace netgen { class Neighbour { int nr[3]; int orient[3]; public: Neighbour () { ; } void SetNr (int side, int anr) { nr[side] = anr; } int GetNr (int side) { return nr[side]; } void SetOrientation (int side, int aorient) { orient[side] = aorient; } int GetOrientation (int side) { return orient[side]; } /* void SetNr1 (int side, int anr) { nr[side-1] = anr; } int GetNr1 (int side) { return nr[side-1]; } void SetOrientation1 (int side, int aorient) { orient[side-1] = aorient; } int GetOrientation1 (int side) { return orient[side-1]; } */ }; class trionedge { public: int tnr; int sidenr; trionedge () { tnr = 0; sidenr = 0; } trionedge (int atnr, int asidenr) { tnr = atnr; sidenr = asidenr; } }; void MeshOptimize2d :: EdgeSwapping (Mesh & mesh, int usemetric) { if (!faceindex) { if (usemetric) PrintMessage (3, "Edgeswapping, metric"); else PrintMessage (3, "Edgeswapping, topological"); for (faceindex = 1; faceindex <= mesh.GetNFD(); faceindex++) { EdgeSwapping (mesh, usemetric); if (multithread.terminate) throw NgException ("Meshing stopped"); } faceindex = 0; mesh.CalcSurfacesOfNode(); return; } static int timer = NgProfiler::CreateTimer ("EdgeSwapping 2D"); NgProfiler::RegionTimer reg1 (timer); static int timerstart = NgProfiler::CreateTimer ("EdgeSwapping 2D start"); NgProfiler::StartTimer (timerstart); NgArray seia; mesh.GetSurfaceElementsOfFace (faceindex, seia); for (int i = 0; i < seia.Size(); i++) if (mesh[seia[i]].GetNP() != 3) { GenericImprove (mesh); return; } int surfnr = mesh.GetFaceDescriptor (faceindex).SurfNr(); NgArray neighbors(mesh.GetNSE()); INDEX_2_HASHTABLE other(seia.Size() + 2); NgArray swapped(mesh.GetNSE()); NgArray pdef(mesh.GetNP()); NgArray pangle(mesh.GetNP()); // int e; // double d; // Vec3d nv1, nv2; // double loch(-1); static const double minangle[] = { 0, 1.481, 2.565, 3.627, 4.683, 5.736, 7, 9 }; for (int i = 0; i < seia.Size(); i++) { const Element2d & sel = mesh[seia[i]]; for (int j = 0; j < 3; j++) pangle[sel[j]] = 0.0; } // pangle = 0; for (int i = 0; i < seia.Size(); i++) { const Element2d & sel = mesh[seia[i]]; for (int j = 0; j < 3; j++) { POINTTYPE typ = mesh[sel[j]].Type(); if (typ == FIXEDPOINT || typ == EDGEPOINT) { pangle[sel[j]] += Angle (mesh[sel[(j+1)%3]] - mesh[sel[j]], mesh[sel[(j+2)%3]] - mesh[sel[j]]); } } } // for (PointIndex pi = PointIndex::BASE; // pi < mesh.GetNP()+PointIndex::BASE; pi++) // pdef = 0; for (int i = 0; i < seia.Size(); i++) { const Element2d & sel = mesh[seia[i]]; for (int j = 0; j < 3; j++) { PointIndex pi = sel[j]; if (mesh[pi].Type() == INNERPOINT || mesh[pi].Type() == SURFACEPOINT) pdef[pi] = -6; else for (int j = 0; j < 8; j++) if (pangle[pi] >= minangle[j]) pdef[pi] = -1-j; } } for (int i = 0; i < seia.Size(); i++) { const Element2d & sel = mesh[seia[i]]; for (int j = 0; j < 3; j++) pdef[sel[j]]++; } for (int i = 0; i < seia.Size(); i++) { for (int j = 0; j < 3; j++) { neighbors[seia[i]].SetNr (j, -1); neighbors[seia[i]].SetOrientation (j, 0); } } /* NgArray normals(mesh.GetNP()); for (i = 1; i <= mesh.GetNSE(); i++) { Element2d & hel = mesh.SurfaceElement(i); if (hel.GetIndex() == faceindex) for (k = 1; k <= 3; k++) { int pi = hel.PNum(k); SelectSurfaceOfPoint (mesh.Point(pi), hel.GeomInfoPi(k)); int surfi = mesh.GetFaceDescriptor(faceindex).SurfNr(); GetNormalVector (surfi, mesh.Point(pi), normals.Elem(pi)); normals.Elem(pi) /= normals.Elem(pi).Length(); } } */ for (int i = 0; i < seia.Size(); i++) { const Element2d & sel = mesh[seia[i]]; for (int j = 0; j < 3; j++) { PointIndex pi1 = sel.PNumMod(j+2); PointIndex pi2 = sel.PNumMod(j+3); // double loch = mesh.GetH(mesh[pi1]); INDEX_2 edge(pi1, pi2); edge.Sort(); if (mesh.IsSegment (pi1, pi2)) continue; /* if (segments.Used (edge)) continue; */ INDEX_2 ii2 (pi1, pi2); if (other.Used (ii2)) { // INDEX_2 i2s(ii2); // i2s.Sort(); int i2 = other.Get(ii2).tnr; int j2 = other.Get(ii2).sidenr; neighbors[seia[i]].SetNr (j, i2); neighbors[seia[i]].SetOrientation (j, j2); neighbors[i2].SetNr (j2, seia[i]); neighbors[i2].SetOrientation (j2, j); } else { other.Set (INDEX_2 (pi2, pi1), trionedge (seia[i], j)); } } } for (int i = 0; i < seia.Size(); i++) swapped[seia[i]] = 0; NgProfiler::StopTimer (timerstart); int t = 4; int done = 0; while (!done && t >= 2) { for (int i = 0; i < seia.Size(); i++) { SurfaceElementIndex t1 = seia[i]; if (mesh[t1].IsDeleted()) continue; if (mesh[t1].GetIndex() != faceindex) continue; if (multithread.terminate) throw NgException ("Meshing stopped"); for (int o1 = 0; o1 < 3; o1++) { bool should; SurfaceElementIndex t2 = neighbors[t1].GetNr (o1); int o2 = neighbors[t1].GetOrientation (o1); if (t2 == -1) continue; if (swapped[t1] || swapped[t2]) continue; PointIndex pi1 = mesh[t1].PNumMod(o1+1+1); PointIndex pi2 = mesh[t1].PNumMod(o1+1+2); PointIndex pi3 = mesh[t1].PNumMod(o1+1); PointIndex pi4 = mesh[t2].PNumMod(o2+1); PointGeomInfo gi1 = mesh[t1].GeomInfoPiMod(o1+1+1); PointGeomInfo gi2 = mesh[t1].GeomInfoPiMod(o1+1+2); PointGeomInfo gi3 = mesh[t1].GeomInfoPiMod(o1+1); PointGeomInfo gi4 = mesh[t2].GeomInfoPiMod(o2+1); bool allowswap = true; Vec<3> auxvec1 = mesh[pi3]-mesh[pi4]; Vec<3> auxvec2 = mesh[pi1]-mesh[pi4]; allowswap = allowswap && fabs(1.-(auxvec1*auxvec2)/(auxvec1.Length()*auxvec2.Length())) > 1e-4; if(!allowswap) continue; // normal of new Vec<3> nv1 = Cross (auxvec1, auxvec2); auxvec1 = mesh.Point(pi4)-mesh.Point(pi3); auxvec2 = mesh.Point(pi2)-mesh.Point(pi3); allowswap = allowswap && fabs(1.-(auxvec1*auxvec2)/(auxvec1.Length()*auxvec2.Length())) > 1e-4; if(!allowswap) continue; Vec<3> nv2 = Cross (auxvec1, auxvec2); // normals of original Vec<3> nv3 = Cross (mesh[pi1]-mesh[pi4], mesh[pi2]-mesh[pi4]); Vec<3> nv4 = Cross (mesh[pi2]-mesh[pi3], mesh[pi1]-mesh[pi3]); nv3 *= -1; nv4 *= -1; nv3.Normalize(); nv4.Normalize(); nv1.Normalize(); nv2.Normalize(); Vec<3> nvp3, nvp4; SelectSurfaceOfPoint (mesh.Point(pi3), gi3); GetNormalVector (surfnr, mesh.Point(pi3), gi3, nvp3); nvp3.Normalize(); SelectSurfaceOfPoint (mesh.Point(pi4), gi4); GetNormalVector (surfnr, mesh.Point(pi4), gi4, nvp4); nvp4.Normalize(); double critval = cos (M_PI / 6); // 30 degree allowswap = allowswap && (nv1 * nvp3 > critval) && (nv1 * nvp4 > critval) && (nv2 * nvp3 > critval) && (nv2 * nvp4 > critval) && (nvp3 * nv3 > critval) && (nvp4 * nv4 > critval); double horder = Dist (mesh.Point(pi1), mesh.Point(pi2)); if ( // nv1 * nv2 >= 0 && nv1.Length() > 1e-3 * horder * horder && nv2.Length() > 1e-3 * horder * horder && allowswap ) { if (!usemetric) { int e = pdef[pi1] + pdef[pi2] - pdef[pi3] - pdef[pi4]; double d = Dist2 (mesh.Point(pi1), mesh.Point(pi2)) - Dist2 (mesh.Point(pi3), mesh.Point(pi4)); should = e >= t && (e > 2 || d > 0); } else { double loch = mesh.GetH(mesh[pi1]); should = CalcTriangleBadness (mesh.Point(pi4), mesh.Point(pi3), mesh.Point(pi1), metricweight, loch) + CalcTriangleBadness (mesh.Point(pi3), mesh.Point(pi4), mesh.Point(pi2), metricweight, loch) < CalcTriangleBadness (mesh.Point(pi1), mesh.Point(pi2), mesh.Point(pi3), metricweight, loch) + CalcTriangleBadness (mesh.Point(pi2), mesh.Point(pi1), mesh.Point(pi4), metricweight, loch); } if (allowswap) { Element2d sw1 (pi4, pi3, pi1); Element2d sw2 (pi3, pi4, pi2); int legal1 = mesh.LegalTrig (mesh.SurfaceElement (t1)) + mesh.LegalTrig (mesh.SurfaceElement (t2)); int legal2 = mesh.LegalTrig (sw1) + mesh.LegalTrig (sw2); if (legal1 < legal2) should = 1; if (legal2 < legal1) should = 0; } if (should) { // do swapping ! done = 1; mesh[t1].PNum(1) = pi1; mesh[t1].PNum(2) = pi4; mesh[t1].PNum(3) = pi3; mesh[t2].PNum(1) = pi2; mesh[t2].PNum(2) = pi3; mesh[t2].PNum(3) = pi4; mesh[t1].GeomInfoPi(1) = gi1; mesh[t1].GeomInfoPi(2) = gi4; mesh[t1].GeomInfoPi(3) = gi3; mesh[t2].GeomInfoPi(1) = gi2; mesh[t2].GeomInfoPi(2) = gi3; mesh[t2].GeomInfoPi(3) = gi4; pdef[pi1]--; pdef[pi2]--; pdef[pi3]++; pdef[pi4]++; swapped[t1] = 1; swapped[t2] = 1; } } } } t--; } mesh.SetNextTimeStamp(); } void MeshOptimize2d :: CombineImprove (Mesh & mesh) { if (!faceindex) { PrintMessage (3, "Combine improve"); for (faceindex = 1; faceindex <= mesh.GetNFD(); faceindex++) { CombineImprove (mesh); if (multithread.terminate) throw NgException ("Meshing stopped"); } faceindex = 0; return; } static int timer = NgProfiler::CreateTimer ("Combineimprove 2D"); NgProfiler::RegionTimer reg (timer); static int timerstart = NgProfiler::CreateTimer ("Combineimprove 2D start"); NgProfiler::StartTimer (timerstart); static int timerstart1 = NgProfiler::CreateTimer ("Combineimprove 2D start1"); NgProfiler::StartTimer (timerstart1); // int i, j, k, l; // PointIndex pi; // SurfaceElementIndex sei; NgArray seia; mesh.GetSurfaceElementsOfFace (faceindex, seia); for (int i = 0; i < seia.Size(); i++) if (mesh[seia[i]].GetNP() != 3) return; int surfnr = 0; if (faceindex) surfnr = mesh.GetFaceDescriptor (faceindex).SurfNr(); // PointIndex pi1, pi2; // MeshPoint p1, p2, pnew; double bad1, bad2; Vec<3> nv; int np = mesh.GetNP(); //int nse = mesh.GetNSE(); TABLE elementsonnode(np); NgArray hasonepi, hasbothpi; for (int i = 0; i < seia.Size(); i++) { Element2d & el = mesh[seia[i]]; for (int j = 0; j < el.GetNP(); j++) elementsonnode.Add (el[j], seia[i]); } NgArray fixed(np); fixed = false; NgProfiler::StopTimer (timerstart1); /* for (SegmentIndex si = 0; si < mesh.GetNSeg(); si++) { INDEX_2 i2(mesh[si][0], mesh[si][1]); fixed[i2.I1()] = true; fixed[i2.I2()] = true; } */ for (int i = 0; i < seia.Size(); i++) { Element2d & sel = mesh[seia[i]]; for (int j = 0; j < sel.GetNP(); j++) { PointIndex pi1 = sel.PNumMod(j+2); PointIndex pi2 = sel.PNumMod(j+3); if (mesh.IsSegment (pi1, pi2)) { fixed[pi1] = true; fixed[pi2] = true; } } } for(int i = 0; i < mesh.LockedPoints().Size(); i++) fixed[mesh.LockedPoints()[i]] = true; NgArray,PointIndex::BASE> normals(np); // for (PointIndex pi = mesh.Points().Begin(); pi < mesh.Points().End(); pi++) for (PointIndex pi : mesh.Points().Range()) { if (elementsonnode[pi].Size()) { Element2d & hel = mesh[elementsonnode[pi][0]]; for (int k = 0; k < 3; k++) if (hel[k] == pi) { SelectSurfaceOfPoint (mesh[pi], hel.GeomInfoPi(k+1)); GetNormalVector (surfnr, mesh[pi], hel.GeomInfoPi(k+1), normals[pi]); break; } } } NgProfiler::StopTimer (timerstart); for (int i = 0; i < seia.Size(); i++) { SurfaceElementIndex sei = seia[i]; Element2d & elem = mesh[sei]; if (elem.IsDeleted()) continue; for (int j = 0; j < 3; j++) { PointIndex pi1 = elem[j]; PointIndex pi2 = elem[(j+1) % 3]; if (pi1 < PointIndex::BASE || pi2 < PointIndex::BASE) continue; /* INDEX_2 i2(pi1, pi2); i2.Sort(); if (segmentht.Used(i2)) continue; */ bool debugflag = 0; if (debugflag) { (*testout) << "Combineimprove, face = " << faceindex << "pi1 = " << pi1 << " pi2 = " << pi2 << endl; } /* // save version: if (fixed.Get(pi1) || fixed.Get(pi2)) continue; if (pi2 < pi1) swap (pi1, pi2); */ // more general if (fixed[pi2]) Swap (pi1, pi2); if (fixed[pi2]) continue; double loch = mesh.GetH (mesh[pi1]); INDEX_2 si2 (pi1, pi2); si2.Sort(); /* if (edgetested.Used (si2)) continue; edgetested.Set (si2, 1); */ hasonepi.SetSize(0); hasbothpi.SetSize(0); for (int k = 0; k < elementsonnode[pi1].Size(); k++) { const Element2d & el2 = mesh[elementsonnode[pi1][k]]; if (el2.IsDeleted()) continue; if (el2[0] == pi2 || el2[1] == pi2 || el2[2] == pi2) { hasbothpi.Append (elementsonnode[pi1][k]); nv = Cross (Vec3d (mesh[el2[0]], mesh[el2[1]]), Vec3d (mesh[el2[0]], mesh[el2[2]])); } else { hasonepi.Append (elementsonnode[pi1][k]); } } Element2d & hel = mesh[hasbothpi[0]]; for (int k = 0; k < 3; k++) if (hel[k] == pi1) { SelectSurfaceOfPoint (mesh[pi1], hel.GeomInfoPi(k+1)); GetNormalVector (surfnr, mesh[pi1], hel.GeomInfoPi(k+1), nv); break; } // nv = normals.Get(pi1); for (int k = 0; k < elementsonnode[pi2].Size(); k++) { const Element2d & el2 = mesh[elementsonnode[pi2][k]]; if (el2.IsDeleted()) continue; if (el2[0] == pi1 || el2[1] == pi1 || el2[2] == pi1) ; else hasonepi.Append (elementsonnode[pi2][k]); } bad1 = 0; int illegal1 = 0, illegal2 = 0; for (int k = 0; k < hasonepi.Size(); k++) { const Element2d & el = mesh[hasonepi[k]]; bad1 += CalcTriangleBadness (mesh[el[0]], mesh[el[1]], mesh[el[2]], nv, -1, loch); illegal1 += 1-mesh.LegalTrig(el); } for (int k = 0; k < hasbothpi.Size(); k++) { const Element2d & el = mesh[hasbothpi[k]]; bad1 += CalcTriangleBadness (mesh[el[0]], mesh[el[1]], mesh[el[2]], nv, -1, loch); illegal1 += 1-mesh.LegalTrig(el); } bad1 /= (hasonepi.Size()+hasbothpi.Size()); MeshPoint p1 = mesh[pi1]; MeshPoint p2 = mesh[pi2]; MeshPoint pnew = p1; mesh[pi1] = pnew; mesh[pi2] = pnew; bad2 = 0; for (int k = 0; k < hasonepi.Size(); k++) { Element2d & el = mesh[hasonepi[k]]; double err = CalcTriangleBadness (mesh[el[0]], mesh[el[1]], mesh[el[2]], nv, -1, loch); bad2 += err; Vec<3> hnv = Cross (Vec3d (mesh[el[0]], mesh[el[1]]), Vec3d (mesh[el[0]], mesh[el[2]])); if (hnv * nv < 0) bad2 += 1e10; for (int l = 0; l < 3; l++) if ( (normals[el[l]] * nv) < 0.5) bad2 += 1e10; illegal2 += 1-mesh.LegalTrig(el); } bad2 /= hasonepi.Size(); mesh[pi1] = p1; mesh[pi2] = p2; if (debugflag) { (*testout) << "bad1 = " << bad1 << ", bad2 = " << bad2 << endl; } bool should = (bad2 < bad1 && bad2 < 1e4); if (bad2 < 1e4) { if (illegal1 > illegal2) should = 1; if (illegal2 > illegal1) should = 0; } if (should) { /* (*testout) << "combine !" << endl; (*testout) << "bad1 = " << bad1 << ", bad2 = " << bad2 << endl; (*testout) << "illegal1 = " << illegal1 << ", illegal2 = " << illegal2 << endl; (*testout) << "loch = " << loch << endl; */ mesh[pi1] = pnew; PointGeomInfo gi; // bool gi_set(false); Element2d *el1p(NULL); int l = 0; while(mesh[elementsonnode[pi1][l]].IsDeleted() && lGetNP(); l++) if ((*el1p)[l] == pi1) { gi = el1p->GeomInfoPi (l+1); // gi_set = true; } // (*testout) << "Connect point " << pi2 << " to " << pi1 << "\n"; for (int k = 0; k < elementsonnode[pi2].Size(); k++) { Element2d & el = mesh[elementsonnode[pi2][k]]; if(el.IsDeleted()) continue; elementsonnode.Add (pi1, elementsonnode[pi2][k]); bool haspi1 = 0; for (l = 0; l < el.GetNP(); l++) if (el[l] == pi1) haspi1 = 1; if (haspi1) continue; for (int l = 0; l < el.GetNP(); l++) { if (el[l] == pi2) { el[l] = pi1; el.GeomInfoPi (l+1) = gi; } fixed[el[l]] = true; } } /* for (k = 0; k < hasbothpi.Size(); k++) { cout << mesh[hasbothpi[k]] << endl; for (l = 0; l < 3; l++) cout << mesh[mesh[hasbothpi[k]][l]] << " "; cout << endl; } */ for (int k = 0; k < hasbothpi.Size(); k++) { mesh[hasbothpi[k]].Delete(); /* for (l = 0; l < 4; l++) mesh[hasbothpi[k]][l] = PointIndex::BASE-1; */ } } } } // mesh.Compress(); mesh.SetNextTimeStamp(); } void MeshOptimize2d :: CheckMeshApproximation (Mesh & mesh) { // Check angles between elements and normals at corners /* int i, j; int ne = mesh.GetNSE(); int surfnr; Vec3d n, ng; NgArray ngs(3); (*mycout) << "Check Surface Approximation" << endl; (*testout) << "Check Surface Approximation" << endl; for (i = 1; i <= ne; i++) { const Element2d & el = mesh.SurfaceElement(i); surfnr = mesh.GetFaceDescriptor (el.GetIndex()).SurfNr(); Vec3d n = Cross (mesh.Point (el.PNum(1)) - mesh.Point (el.PNum(2)), mesh.Point (el.PNum(1)) - mesh.Point (el.PNum(3))); n /= n.Length(); for (j = 1; j <= el.GetNP(); j++) { SelectSurfaceOfPoint (mesh.Point(el.PNum(j)), el.GeomInfoPi(j)); GetNormalVector (surfnr, mesh.Point(el.PNum(j)), ng); ng /= ng.Length(); ngs.Elem(j) = ng; double angle = (180.0 / M_PI) * Angle (n, ng); if (angle > 60) { (*testout) << "el " << i << " node " << el.PNum(j) << "has angle = " << angle << endl; } } for (j = 1; j <= 3; j++) { double angle = (180.0 / M_PI) * Angle (ngs.Get(j), ngs.Get(j%3+1)); if (angle > 60) { (*testout) << "el " << i << " node-node " << ngs.Get(j) << " - " << ngs.Get(j%3+1) << " has angle = " << angle << endl; } } } */ } }