/**************************************************************************/ /* File: nglib.cpp */ /* Author: Joachim Schoeberl */ /* Date: 7. May. 2000 */ /**************************************************************************/ /* Interface to the netgen meshing kernel */ #include #include #include #include #include #include #include #include <../visualization/soldata.hpp> #ifdef OCCGEOMETRY #include #endif #include namespace netgen { extern void MeshFromSpline2D (SplineGeometry2d & geometry, shared_ptr & mesh, MeshingParameters & mp); } #ifdef PARALLEL #include namespace netgen { // int id = 0, ntasks = 1; MPI_Comm mesh_comm; } #endif /* namespace netgen { int id = 0, ntasks = 1; } */ /* // should not be needed (occ currently requires it) namespace netgen { #include "../libsrc/visualization/vispar.hpp" VisualizationParameters vispar; VisualizationParameters :: VisualizationParameters() { ; } } */ namespace nglib { #include "nglib.h" } using namespace netgen; // constants and types: namespace nglib { // initialize, deconstruct Netgen library: DLL_HEADER void Ng_Init () { mycout = &cout; myerr = &cerr; // netgen::testout->SetOutStream (new ofstream ("test.out")); testout = new ofstream ("test.out"); } // Clean-up functions before ending usage of nglib DLL_HEADER void Ng_Exit () { ; } // Create a new netgen mesh object DLL_HEADER Ng_Mesh * Ng_NewMesh () { Mesh * mesh = new Mesh; mesh->AddFaceDescriptor (FaceDescriptor (1, 1, 0, 1)); return (Ng_Mesh*)(void*)mesh; } // Delete an existing netgen mesh object DLL_HEADER void Ng_DeleteMesh (Ng_Mesh * mesh) { if(mesh != NULL) { // Delete the Mesh structures ((Mesh*)mesh)->DeleteMesh(); // Now delete the Mesh class itself delete (Mesh*)mesh; // Set the Ng_Mesh pointer to NULL mesh = NULL; } } // Save a netgen mesh in the native VOL format DLL_HEADER void Ng_SaveMesh(Ng_Mesh * mesh, const char* filename) { ((Mesh*)mesh)->Save(filename); } // Load a netgen native VOL mesh from a given file DLL_HEADER Ng_Mesh * Ng_LoadMesh(const char* filename) { Mesh * mesh = new Mesh; mesh->Load(filename); return ( (Ng_Mesh*)mesh ); } // Merge another mesh file into the currently loaded one DLL_HEADER Ng_Result Ng_MergeMesh( Ng_Mesh* mesh, const char* filename) { Ng_Result status = NG_OK; ifstream infile(filename); Mesh * m = (Mesh*)mesh; if(!infile.good()) { status = NG_FILE_NOT_FOUND; } if(!m) { status = NG_ERROR; } if(status == NG_OK) { const int num_pts = m->GetNP(); const int face_offset = m->GetNFD(); m->Merge(infile, face_offset); if(m->GetNP() > num_pts) { status = NG_OK; } else { status = NG_ERROR; } } return status; } // Merge another mesh file into the currently loaded one DLL_HEADER Ng_Result Ng_MergeMesh( Ng_Mesh* mesh1, Ng_Mesh* mesh2) { return NG_ERROR; } // Manually add a point to an existing mesh object DLL_HEADER void Ng_AddPoint (Ng_Mesh * mesh, double * x) { Mesh * m = (Mesh*)mesh; m->AddPoint (Point3d (x[0], x[1], x[2])); } // Manually add a surface element of a given type to an existing mesh object DLL_HEADER void Ng_AddSurfaceElement (Ng_Mesh * mesh, Ng_Surface_Element_Type et, int * pi) { Mesh * m = (Mesh*)mesh; Element2d el (3); el.SetIndex (1); el.PNum(1) = pi[0]; el.PNum(2) = pi[1]; el.PNum(3) = pi[2]; m->AddSurfaceElement (el); } // Manually add a volume element of a given type to an existing mesh object DLL_HEADER void Ng_AddVolumeElement (Ng_Mesh * mesh, Ng_Volume_Element_Type et, int * pi) { Mesh * m = (Mesh*)mesh; Element el (4); el.SetIndex (1); el.PNum(1) = pi[0]; el.PNum(2) = pi[1]; el.PNum(3) = pi[2]; el.PNum(4) = pi[3]; m->AddVolumeElement (el); } // Obtain the number of points in the mesh DLL_HEADER int Ng_GetNP (Ng_Mesh * mesh) { return ((Mesh*)mesh) -> GetNP(); } // Obtain the number of surface elements in the mesh DLL_HEADER int Ng_GetNSE (Ng_Mesh * mesh) { return ((Mesh*)mesh) -> GetNSE(); } // Obtain the number of volume elements in the mesh DLL_HEADER int Ng_GetNE (Ng_Mesh * mesh) { return ((Mesh*)mesh) -> GetNE(); } // Return point coordinates of a given point index in the mesh DLL_HEADER void Ng_GetPoint (Ng_Mesh * mesh, int num, double * x) { const Point3d & p = ((Mesh*)mesh)->Point(num); x[0] = p.X(); x[1] = p.Y(); x[2] = p.Z(); } // Return the surface element at a given index "pi" DLL_HEADER Ng_Surface_Element_Type Ng_GetSurfaceElement (Ng_Mesh * mesh, int num, int * pi) { const Element2d & el = ((Mesh*)mesh)->SurfaceElement(num); for (int i = 1; i <= el.GetNP(); i++) pi[i-1] = el.PNum(i); Ng_Surface_Element_Type et; switch (el.GetNP()) { case 3: et = NG_TRIG; break; case 4: et = NG_QUAD; break; case 6: switch (el.GetNV()) { case 3: et = NG_TRIG6; break; case 4: et = NG_QUAD6; break; default: et = NG_TRIG6; break; } break; case 8: et = NG_QUAD8; break; default: et = NG_TRIG; break; // for the compiler } return et; } // Return the volume element at a given index "pi" DLL_HEADER Ng_Volume_Element_Type Ng_GetVolumeElement (Ng_Mesh * mesh, int num, int * pi) { const Element & el = ((Mesh*)mesh)->VolumeElement(num); for (int i = 1; i <= el.GetNP(); i++) pi[i-1] = el.PNum(i); Ng_Volume_Element_Type et; switch (el.GetNP()) { case 4: et = NG_TET; break; case 5: et = NG_PYRAMID; break; case 6: et = NG_PRISM; break; case 10: et = NG_TET10; break; default: et = NG_TET; break; // for the compiler } return et; } // Set a global limit on the maximum mesh size allowed DLL_HEADER void Ng_RestrictMeshSizeGlobal (Ng_Mesh * mesh, double h) { ((Mesh*)mesh) -> SetGlobalH (h); } // Set a local limit on the maximum mesh size allowed around the given point DLL_HEADER void Ng_RestrictMeshSizePoint (Ng_Mesh * mesh, double * p, double h) { ((Mesh*)mesh) -> RestrictLocalH (Point3d (p[0], p[1], p[2]), h); } // Set a local limit on the maximum mesh size allowed within a given box region DLL_HEADER void Ng_RestrictMeshSizeBox (Ng_Mesh * mesh, double * pmin, double * pmax, double h) { for (double x = pmin[0]; x < pmax[0]; x += h) for (double y = pmin[1]; y < pmax[1]; y += h) for (double z = pmin[2]; z < pmax[2]; z += h) ((Mesh*)mesh) -> RestrictLocalH (Point3d (x, y, z), h); } // Generates volume mesh from an existing surface mesh DLL_HEADER Ng_Result Ng_GenerateVolumeMesh (Ng_Mesh * mesh, Ng_Meshing_Parameters * mp) { Mesh * m = (Mesh*)mesh; // Philippose - 30/08/2009 // Do not locally re-define "mparam" here... "mparam" is a global // object //MeshingParameters mparam; mp->Transfer_Parameters(); m->CalcLocalH(mparam.grading); MeshVolume (mparam, *m); RemoveIllegalElements (*m); OptimizeVolume (mparam, *m); return NG_OK; } /* ------------------ 2D Meshing Functions ------------------------- */ DLL_HEADER void Ng_AddPoint_2D (Ng_Mesh * mesh, double * x) { Mesh * m = (Mesh*)mesh; m->AddPoint (Point3d (x[0], x[1], 0)); } DLL_HEADER void Ng_AddBoundarySeg_2D (Ng_Mesh * mesh, int pi1, int pi2) { Mesh * m = (Mesh*)mesh; Segment seg; seg[0] = pi1; seg[1] = pi2; m->AddSegment (seg); } DLL_HEADER int Ng_GetNP_2D (Ng_Mesh * mesh) { Mesh * m = (Mesh*)mesh; return m->GetNP(); } DLL_HEADER int Ng_GetNE_2D (Ng_Mesh * mesh) { Mesh * m = (Mesh*)mesh; return m->GetNSE(); } DLL_HEADER int Ng_GetNSeg_2D (Ng_Mesh * mesh) { Mesh * m = (Mesh*)mesh; return m->GetNSeg(); } DLL_HEADER void Ng_GetPoint_2D (Ng_Mesh * mesh, int num, double * x) { Mesh * m = (Mesh*)mesh; Point<3> & p = m->Point(num); x[0] = p(0); x[1] = p(1); } DLL_HEADER Ng_Surface_Element_Type Ng_GetElement_2D (Ng_Mesh * mesh, int num, int * pi, int * matnum) { const Element2d & el = ((Mesh*)mesh)->SurfaceElement(num); for (int i = 1; i <= el.GetNP(); i++) pi[i-1] = el.PNum(i); Ng_Surface_Element_Type et; switch (el.GetNP()) { case 3: et = NG_TRIG; break; case 4: et = NG_QUAD; break; case 6: switch (el.GetNV()) { case 3: et = NG_TRIG6; break; case 4: et = NG_QUAD6; break; default: et = NG_TRIG6; break; } break; case 8: et = NG_QUAD8; break; default: et = NG_TRIG; break; // for the compiler } if (matnum) *matnum = el.GetIndex(); return et; } DLL_HEADER void Ng_GetSegment_2D (Ng_Mesh * mesh, int num, int * pi, int * matnum) { const Segment & seg = ((Mesh*)mesh)->LineSegment(num); pi[0] = seg[0]; pi[1] = seg[1]; if (matnum) *matnum = seg.edgenr; } DLL_HEADER Ng_Geometry_2D * Ng_LoadGeometry_2D (const char * filename) { SplineGeometry2d * geom = new SplineGeometry2d(); geom -> Load (filename); return (Ng_Geometry_2D *)geom; } DLL_HEADER Ng_Result Ng_GenerateMesh_2D (Ng_Geometry_2D * geom, Ng_Mesh ** mesh, Ng_Meshing_Parameters * mp) { // use global variable mparam // MeshingParameters mparam; mp->Transfer_Parameters(); shared_ptr m; MeshFromSpline2D (*(SplineGeometry2d*)geom, m, mparam); new shared_ptr (m); // hack to keep mesh m alive cout << m->GetNSE() << " elements, " << m->GetNP() << " points" << endl; *mesh = (Ng_Mesh*)m.get(); return NG_OK; } DLL_HEADER void Ng_HP_Refinement (Ng_Geometry_2D * geom, Ng_Mesh * mesh, int levels) { Refinement2d ref(*(SplineGeometry2d*)geom); HPRefinement (*(Mesh*)mesh, &ref, levels); } DLL_HEADER void Ng_HP_Refinement (Ng_Geometry_2D * geom, Ng_Mesh * mesh, int levels, double parameter) { Refinement2d ref(*(SplineGeometry2d*)geom); HPRefinement (*(Mesh*)mesh, &ref, levels, parameter); } Array readtrias; //only before initstlgeometry Array > readedges; //only before init stlgeometry // loads geometry from STL file DLL_HEADER Ng_STL_Geometry * Ng_STL_LoadGeometry (const char * filename, int binary) { int i; STLGeometry geom; STLGeometry* geo; ifstream ist(filename); if (binary) { geo = geom.LoadBinary(ist); } else { geo = geom.Load(ist); } readtrias.SetSize(0); readedges.SetSize(0); Point3d p; Vec3d normal; double p1[3]; double p2[3]; double p3[3]; double n[3]; Ng_STL_Geometry * geo2 = Ng_STL_NewGeometry(); for (i = 1; i <= geo->GetNT(); i++) { const STLTriangle& t = geo->GetTriangle(i); p = geo->GetPoint(t.PNum(1)); p1[0] = p.X(); p1[1] = p.Y(); p1[2] = p.Z(); p = geo->GetPoint(t.PNum(2)); p2[0] = p.X(); p2[1] = p.Y(); p2[2] = p.Z(); p = geo->GetPoint(t.PNum(3)); p3[0] = p.X(); p3[1] = p.Y(); p3[2] = p.Z(); normal = t.Normal(); n[0] = normal.X(); n[1] = normal.Y(); n[2] = normal.Z(); Ng_STL_AddTriangle(geo2, p1, p2, p3, n); } return geo2; } // generate new STL Geometry DLL_HEADER Ng_STL_Geometry * Ng_STL_NewGeometry () { return (Ng_STL_Geometry*)(void*)new STLGeometry; } // after adding triangles (and edges) initialize DLL_HEADER Ng_Result Ng_STL_InitSTLGeometry (Ng_STL_Geometry * geom) { STLGeometry* geo = (STLGeometry*)geom; geo->InitSTLGeometry(readtrias); readtrias.SetSize(0); if (readedges.Size() != 0) { /* for (int i = 1; i <= readedges.Size(); i+=2) { cout << "e(" << readedges.Get(i) << "," << readedges.Get(i+1) << ")" << endl; } */ geo->AddEdges(readedges); } if (geo->GetStatus() == STLTopology::STL_GOOD || geo->GetStatus() == STLTopology::STL_WARNING) return NG_OK; return NG_SURFACE_INPUT_ERROR; } // automatically generates edges: DLL_HEADER Ng_Result Ng_STL_MakeEdges (Ng_STL_Geometry * geom, Ng_Mesh* mesh, Ng_Meshing_Parameters * mp) { STLGeometry* stlgeometry = (STLGeometry*)geom; Mesh* me = (Mesh*)mesh; // Philippose - 27/07/2009 // Do not locally re-define "mparam" here... "mparam" is a global // object //MeshingParameters mparam; mp->Transfer_Parameters(); me -> SetGlobalH (mparam.maxh); me -> SetLocalH (stlgeometry->GetBoundingBox().PMin() - Vec3d(10, 10, 10), stlgeometry->GetBoundingBox().PMax() + Vec3d(10, 10, 10), 0.3); me -> LoadLocalMeshSize (mp->meshsize_filename); /* if (mp->meshsize_filename) { ifstream infile (mp->meshsize_filename); if (!infile.good()) return NG_FILE_NOT_FOUND; me -> LoadLocalMeshSize (infile); } */ STLMeshing (*stlgeometry, *me); stlgeometry->edgesfound = 1; stlgeometry->surfacemeshed = 0; stlgeometry->surfaceoptimized = 0; stlgeometry->volumemeshed = 0; return NG_OK; } // generates mesh, empty mesh be already created. DLL_HEADER Ng_Result Ng_STL_GenerateSurfaceMesh (Ng_STL_Geometry * geom, Ng_Mesh* mesh, Ng_Meshing_Parameters * mp) { STLGeometry* stlgeometry = (STLGeometry*)geom; Mesh* me = (Mesh*)mesh; // Philippose - 27/07/2009 // Do not locally re-define "mparam" here... "mparam" is a global // object //MeshingParameters mparam; mp->Transfer_Parameters(); /* me -> SetGlobalH (mparam.maxh); me -> SetLocalH (stlgeometry->GetBoundingBox().PMin() - Vec3d(10, 10, 10), stlgeometry->GetBoundingBox().PMax() + Vec3d(10, 10, 10), 0.3); */ /* STLMeshing (*stlgeometry, *me); stlgeometry->edgesfound = 1; stlgeometry->surfacemeshed = 0; stlgeometry->surfaceoptimized = 0; stlgeometry->volumemeshed = 0; */ int retval = STLSurfaceMeshing (*stlgeometry, *me); if (retval == MESHING3_OK) { (*mycout) << "Success !!!!" << endl; stlgeometry->surfacemeshed = 1; stlgeometry->surfaceoptimized = 0; stlgeometry->volumemeshed = 0; } else if (retval == MESHING3_OUTERSTEPSEXCEEDED) { (*mycout) << "ERROR: Give up because of too many trials. Meshing aborted!" << endl; } else if (retval == MESHING3_TERMINATE) { (*mycout) << "Meshing Stopped!" << endl; } else { (*mycout) << "ERROR: Surface meshing not successful. Meshing aborted!" << endl; } STLSurfaceOptimization (*stlgeometry, *me, mparam); return NG_OK; } // fills STL Geometry // positive orientation // normal vector may be null-pointer DLL_HEADER void Ng_STL_AddTriangle (Ng_STL_Geometry * geom, double * p1, double * p2, double * p3, double * nv) { Point<3> apts[3]; apts[0] = Point<3>(p1[0],p1[1],p1[2]); apts[1] = Point<3>(p2[0],p2[1],p2[2]); apts[2] = Point<3>(p3[0],p3[1],p3[2]); Vec<3> n; if (!nv) n = Cross (apts[0]-apts[1], apts[0]-apts[2]); else n = Vec<3>(nv[0],nv[1],nv[2]); readtrias.Append(STLReadTriangle(apts,n)); } // add (optional) edges: DLL_HEADER void Ng_STL_AddEdge (Ng_STL_Geometry * geom, double * p1, double * p2) { readedges.Append(Point3d(p1[0],p1[1],p1[2])); readedges.Append(Point3d(p2[0],p2[1],p2[2])); } #ifdef OCCGEOMETRY // --------------------- OCC Geometry / Meshing Utility Functions ------------------- // Create new OCC Geometry Object DLL_HEADER Ng_OCC_Geometry * Ng_OCC_NewGeometry () { return (Ng_OCC_Geometry*)(void*)new OCCGeometry; } // Delete the OCC Geometry Object DLL_HEADER Ng_Result Ng_OCC_DeleteGeometry(Ng_OCC_Geometry * geom) { if (geom != NULL) { delete (OCCGeometry*)geom; geom = NULL; return NG_OK; } return NG_ERROR; } // Loads geometry from STEP File DLL_HEADER Ng_OCC_Geometry * Ng_OCC_Load_STEP (const char * filename) { // Call the STEP File Load function. Note.. the geometry class // is created and instantiated within the load function OCCGeometry * occgeo = LoadOCC_STEP(filename); return ((Ng_OCC_Geometry *)occgeo); } // Loads geometry from IGES File DLL_HEADER Ng_OCC_Geometry * Ng_OCC_Load_IGES (const char * filename) { // Call the IGES File Load function. Note.. the geometry class // is created and instantiated within the load function OCCGeometry * occgeo = LoadOCC_IGES(filename); return ((Ng_OCC_Geometry *)occgeo); } // Loads geometry from BREP File DLL_HEADER Ng_OCC_Geometry * Ng_OCC_Load_BREP (const char * filename) { // Call the BREP File Load function. Note.. the geometry class // is created and instantiated within the load function OCCGeometry * occgeo = LoadOCC_BREP(filename); return ((Ng_OCC_Geometry *)occgeo); } // Locally limit the size of the mesh to be generated at various points // based on the topology of the geometry DLL_HEADER Ng_Result Ng_OCC_SetLocalMeshSize (Ng_OCC_Geometry * geom, Ng_Mesh * mesh, Ng_Meshing_Parameters * mp) { OCCGeometry * occgeom = (OCCGeometry*)geom; Mesh * me = (Mesh*)mesh; me->geomtype = Mesh::GEOM_OCC; mp->Transfer_Parameters(); occparam.resthcloseedgeenable = mp->closeedgeenable; occparam.resthcloseedgefac = mp->closeedgefact; // Delete the mesh structures in order to start with a clean // slate me->DeleteMesh(); OCCSetLocalMeshSize(*occgeom, *me); return(NG_OK); } // Mesh the edges and add Face descriptors to prepare for surface meshing DLL_HEADER Ng_Result Ng_OCC_GenerateEdgeMesh (Ng_OCC_Geometry * geom, Ng_Mesh * mesh, Ng_Meshing_Parameters * mp) { OCCGeometry * occgeom = (OCCGeometry*)geom; Mesh * me = (Mesh*)mesh; mp->Transfer_Parameters(); OCCFindEdges(*occgeom, *me); if((me->GetNP()) && (me->GetNFD())) { return NG_OK; } else { return NG_ERROR; } } // Mesh the edges and add Face descriptors to prepare for surface meshing DLL_HEADER Ng_Result Ng_OCC_GenerateSurfaceMesh (Ng_OCC_Geometry * geom, Ng_Mesh * mesh, Ng_Meshing_Parameters * mp) { int numpoints = 0; OCCGeometry * occgeom = (OCCGeometry*)geom; Mesh * me = (Mesh*)mesh; // Set the internal meshing parameters structure from the nglib meshing // parameters structure mp->Transfer_Parameters(); // Only go into surface meshing if the face descriptors have already been added if(!me->GetNFD()) return NG_ERROR; numpoints = me->GetNP(); // Initially set up only for surface meshing without any optimisation int perfstepsend = MESHCONST_MESHSURFACE; // Check and if required, enable surface mesh optimisation step if(mp->optsurfmeshenable) { perfstepsend = MESHCONST_OPTSURFACE; } OCCMeshSurface(*occgeom, *me, perfstepsend); me->CalcSurfacesOfNode(); if(me->GetNP() <= numpoints) return NG_ERROR; if(me->GetNSE() <= 0) return NG_ERROR; return NG_OK; } // Extract the face map from the OCC geometry // The face map basically gives an index to each face in the geometry, // which can be used to access a specific face DLL_HEADER Ng_Result Ng_OCC_GetFMap(Ng_OCC_Geometry * geom, Ng_OCC_TopTools_IndexedMapOfShape * FMap) { OCCGeometry* occgeom = (OCCGeometry*)geom; TopTools_IndexedMapOfShape *occfmap = (TopTools_IndexedMapOfShape *)FMap; // Copy the face map from the geometry to the given variable occfmap->Assign(occgeom->fmap); if(occfmap->Extent()) { return NG_OK; } else { return NG_ERROR; } } // ------------------ End - OCC Geometry / Meshing Utility Functions ---------------- #endif // ------------------ Begin - Meshing Parameters related functions ------------------ // Constructor for the local nglib meshing parameters class DLL_HEADER Ng_Meshing_Parameters :: Ng_Meshing_Parameters() { uselocalh = 1; maxh = 1000; minh = 0.0; fineness = 0.5; grading = 0.3; elementsperedge = 2.0; elementspercurve = 2.0; closeedgeenable = 0; closeedgefact = 2.0; minedgelenenable = 0; minedgelen = 1e-4; second_order = 0; quad_dominated = 0; meshsize_filename = 0; optsurfmeshenable = 1; optvolmeshenable = 1; optsteps_2d = 3; optsteps_3d = 3; invert_tets = 0; invert_trigs = 0; check_overlap = 1; check_overlapping_boundary = 1; } // Reset the local meshing parameters to the default values DLL_HEADER void Ng_Meshing_Parameters :: Reset_Parameters() { uselocalh = 1; maxh = 1000; minh = 0; fineness = 0.5; grading = 0.3; elementsperedge = 2.0; elementspercurve = 2.0; closeedgeenable = 0; closeedgefact = 2.0; minedgelenenable = 0; minedgelen = 1e-4; second_order = 0; quad_dominated = 0; meshsize_filename = 0; optsurfmeshenable = 1; optvolmeshenable = 1; optsteps_2d = 3; optsteps_3d = 3; invert_tets = 0; invert_trigs = 0; check_overlap = 1; check_overlapping_boundary = 1; } // DLL_HEADER void Ng_Meshing_Parameters :: Transfer_Parameters() { mparam.uselocalh = uselocalh; mparam.maxh = maxh; mparam.minh = minh; mparam.grading = grading; mparam.curvaturesafety = elementspercurve; mparam.segmentsperedge = elementsperedge; mparam.secondorder = second_order; mparam.quad = quad_dominated; mparam.meshsizefilename = meshsize_filename; mparam.optsteps2d = optsteps_2d; mparam.optsteps3d = optsteps_3d; mparam.inverttets = invert_tets; mparam.inverttrigs = invert_trigs; mparam.checkoverlap = check_overlap; mparam.checkoverlappingboundary = check_overlapping_boundary; } // ------------------ End - Meshing Parameters related functions -------------------- // ------------------ Begin - Second Order Mesh generation functions ---------------- DLL_HEADER void Ng_Generate_SecondOrder(Ng_Mesh * mesh) { Refinement ref; ref.MakeSecondOrder(*(Mesh*) mesh); } DLL_HEADER void Ng_2D_Generate_SecondOrder(Ng_Geometry_2D * geom, Ng_Mesh * mesh) { ( (SplineGeometry2d*)geom ) -> GetRefinement().MakeSecondOrder( * (Mesh*) mesh ); } DLL_HEADER void Ng_STL_Generate_SecondOrder(Ng_STL_Geometry * geom, Ng_Mesh * mesh) { ((STLGeometry*)geom)->GetRefinement().MakeSecondOrder(*(Mesh*) mesh); } DLL_HEADER void Ng_CSG_Generate_SecondOrder (Ng_CSG_Geometry * geom, Ng_Mesh * mesh) { ((CSGeometry*)geom)->GetRefinement().MakeSecondOrder(*(Mesh*) mesh); } #ifdef OCCGEOMETRY DLL_HEADER void Ng_OCC_Generate_SecondOrder (Ng_OCC_Geometry * geom, Ng_Mesh * mesh) { ((OCCGeometry*)geom )->GetRefinement().MakeSecondOrder(*(Mesh*) mesh); } #endif // ------------------ End - Second Order Mesh generation functions ------------------ // ------------------ Begin - Uniform Mesh Refinement functions --------------------- DLL_HEADER void Ng_Uniform_Refinement (Ng_Mesh * mesh) { Refinement ref; ref.Refine ( * (Mesh*) mesh ); } DLL_HEADER void Ng_2D_Uniform_Refinement (Ng_Geometry_2D * geom, Ng_Mesh * mesh) { ( (SplineGeometry2d*)geom ) -> GetRefinement().Refine ( * (Mesh*) mesh ); } DLL_HEADER void Ng_STL_Uniform_Refinement (Ng_STL_Geometry * geom, Ng_Mesh * mesh) { ( (STLGeometry*)geom ) -> GetRefinement().Refine ( * (Mesh*) mesh ); } DLL_HEADER void Ng_CSG_Uniform_Refinement (Ng_CSG_Geometry * geom, Ng_Mesh * mesh) { ( (CSGeometry*)geom ) -> GetRefinement().Refine ( * (Mesh*) mesh ); } #ifdef OCCGEOMETRY DLL_HEADER void Ng_OCC_Uniform_Refinement (Ng_OCC_Geometry * geom, Ng_Mesh * mesh) { ( (OCCGeometry*)geom ) -> GetRefinement().Refine ( * (Mesh*) mesh ); } #endif // ------------------ End - Uniform Mesh Refinement functions ----------------------- } // End of namespace nglib // compatibility functions: namespace netgen { char geomfilename[255]; DLL_HEADER void MyError2 (const char * ch) { cerr << ch; } //Destination for messages, errors, ... DLL_HEADER void Ng_PrintDest2(const char * s) { #ifdef PARALLEL int id = 0; MPI_Comm_rank(MPI_COMM_WORLD, &id); if (id != 0) return; #endif (*mycout) << s << flush; } /* DLL_HEADER double GetTime () { return 0; } */ #ifndef WIN32 void ResetTime () { ; } #endif void MyBeep (int i) { ; } void Render() { ; } } // End of namespace netgen void Ng_Redraw () { ; } void Ng_ClearSolutionData () { ; } void Ng_SetSolutionData (Ng_SolutionData * soldata) { delete soldata->solclass; } void Ng_InitSolutionData (Ng_SolutionData * soldata) { ; } #ifdef NG_PYTHON #include void ExportNetgenMeshing(); void ExportCSG(); void ExportGeom2d(); BOOST_PYTHON_MODULE(nglib) { ExportCSG(); ExportNetgenMeshing(); ExportGeom2d(); } #endif