#include #include "writeuser.hpp" #ifdef NG_CGNS #include #include namespace netgen::cg { typedef ngcore::ClosedHashTable, size_t> PointTable; int getDim(ElementType_t type) { switch(type) { case BAR_2: case BAR_3: return 1; case TRI_3: case TRI_6: case QUAD_4: case QUAD_8: return 2; case TETRA_4: case TETRA_10: case PYRA_5: case PYRA_13: case HEXA_8: case HEXA_20: case PENTA_6: case PENTA_15: return 3; default: throw Exception("Read CGNS: unknown element type " + string(cg_ElementTypeName(type))); } } Segment ReadCGNSElement1D( ElementType_t type, FlatArray verts ) { int np; cg_npe(type, &np); Segment s; for (auto i : Range(np)) s[i] = verts[i]; return s; } Element2d ReadCGNSElement2D( ElementType_t type, FlatArray verts ) { // static constexpr int map_tri3[] = {0,2,1}; static constexpr int map_tri6[] = {0,2,1,3,5,4}; // untested // static constexpr int map_quad4[] = {0,3,2,1}; static constexpr int map_quad8[] = {0,3,2,1,4,7,6,5}; // untested const int * map = nullptr; switch(type) { case TRI_3: // map = map_tri3; break; case QUAD_4: // map = map_quad4; break; case TRI_6: map = map_tri6; break; case QUAD_8: map = map_quad8; break; default: throw Exception("Read CGNS: unknown element type " + string(cg_ElementTypeName(type))); } int np; cg_npe(type, &np); Element2d el(np); for (auto i : Range(np)) el[i] = verts[i]; return el; } Element ReadCGNSElement3D( ElementType_t type, FlatArray verts ) { static constexpr int map_tet4[] = {0,2,1,3}; static constexpr int map_prism6[] = {0,2,1,3,5,4}; static constexpr int map_pyra5[] = {0,3,2,1,4}; static constexpr int map_hexa8[] = {0,3,2,1,4,7,6,5}; int np; cg_npe(type, &np); const int * map = nullptr; switch(type) { case TETRA_4: map = map_tet4; break; case PYRA_5: map = map_pyra5; break; case PENTA_6: map = map_prism6; break; case HEXA_8: map = map_hexa8; break; // TODO: Second order elements case TETRA_10: case PYRA_13: case HEXA_20: case PENTA_15: default: throw Exception("Read CGNS: unknown element type " + string(cg_ElementTypeName(type))); } Element el(np); for (auto i : Range(np)) el[i] = verts[map[i]]; return el; } void WriteCGNSElement( const Segment & el, Array & verts ) { verts.Append(BAR_2); verts.Append(el[0]); verts.Append(el[1]); } void WriteCGNSElement( const Element2d & el, Array & verts ) { static constexpr int map_tri6[] = {0,2,1,3,5,4}; // untested static constexpr int map_quad8[] = {0,3,2,1,4,7,6,5}; // untested ElementType_t type; const int * map = nullptr; switch(el.GetType()) { case TRIG: type = TRI_3; break; case QUAD: type = QUAD_4; break; case TRIG6: type = TRI_6; map = map_tri6; break; case QUAD8: type = QUAD_8; map = map_quad8; break; // TODO: Second order elements default: throw Exception("Write CGNS: unknown element type " + ToString(el.GetType())); } verts.Append(type); for (auto i : Range(el.GetNP())) verts.Append(el[i]); } void WriteCGNSElement( const Element & el, Array & verts ) { static constexpr int map_tet4[] = {0,2,1,3}; static constexpr int map_prism6[] = {0,2,1,3,5,4}; static constexpr int map_pyra5[] = {0,3,2,1,4}; static constexpr int map_hexa8[] = {0,3,2,1,4,7,6,5}; ElementType_t type; const int * map = nullptr; switch(el.GetType()) { case TET: map = map_tet4; type = TETRA_4; break; case PYRAMID: type = PYRA_5; map = map_pyra5; break; case PRISM: type = PENTA_6; map = map_prism6; break; case HEX: type = HEXA_8; map = map_hexa8; break; // TODO: Second order elements default: throw Exception("Write CGNS: unknown element type " + ToString(el.GetType())); } verts.Append(type); for (auto i : Range(el.GetNP())) verts.Append(el[map[i]]); } int WriteCGNSRegion( const Mesh & mesh, int dim, int index, int fn, int base, int zone, int ne_before ) { int meshdim = mesh.GetDimension(); int codim = meshdim-dim; if(codim < 0 || codim > 2) return 0; // make sure that each material/boundary name is unique string prefix[] = { "dom_", "bnd_", "bbnd_" }; string name = prefix[meshdim-dim] + ToString(index) + "_"; if(codim==0) name += mesh.GetMaterial(index+1); if(codim==1) name += *mesh.GetBCNamePtr(index); if(codim==2) name += mesh.GetCD2Name(index); int ne = 0; Array data; if(dim==3) for(const auto el : mesh.VolumeElements()) if(el.GetIndex()==index) { ne++; WriteCGNSElement(el, data); } if(dim==2) for(const auto el : mesh.SurfaceElements()) if(el.GetIndex()==index) { ne++; WriteCGNSElement(el, data); } if(dim==1) for(const auto el : mesh.LineSegments()) if(el.si==index) { ne++; WriteCGNSElement(el, data); } if(ne==0) return 0; int section; int start = 1; int end = ne; #if CGNS_VERSION < 3400 cg_section_write(fn,base,zone, name.c_str(), MIXED, ne_before+1, ne_before+ne, 0, &data[0], §ion); #else cg_poly_section_write(fn,base,zone, name.c_str(), MIXED, ne_before+1, ne_before+ne, 0, &data[0], nullptr, §ion); #endif return ne; } // maps cgns node type to ngsolve node type // enum NODE_TYPE { NT_VERTEX = 0, NT_EDGE = 1, NT_FACE = 2, NT_CELL = 3, NT_ELEMENT = 4, NT_FACET = 5 }; int getNodeType( GridLocation_t location ) { switch(location) { case Vertex: return 0; case CellCenter: return 3; case FaceCenter: return 2; case EdgeCenter: return 1; default: throw Exception("Read CGNS: unknown grid location " + string(cg_GridLocationName(location))); } } GridLocation_t getCGNodeType( int node_type ) { switch(node_type) { case 0: return Vertex; case 1: return EdgeCenter; case 2: return FaceCenter; case 3: return CellCenter; default: throw Exception("Write CGNS: unknown node type " + ToString(node_type)); } } struct Solution { int fn, base, zone, solution; string name; GridLocation_t location; // solution is defined on either cells, faces, edges or vertices PointSetType_t point_type; cgsize_t n_points; Array field_names; Array field_datatypes; Solution() = default; Solution(int fn_, int base_, int zone_, int solution_) : fn(fn_), base(base_), zone(zone_), solution(solution_) { char solname[100]; cg_sol_info(fn, base, zone, solution, solname, &location); name = solname; cg_sol_ptset_info(fn, base, zone, solution, &point_type, &n_points); int n_fields = 0; cg_nfields(fn, base, zone, solution, &n_fields); field_names.SetSize(n_fields); field_datatypes.SetSize(n_fields); for(auto fi : Range(n_fields)) { char buf[100]; cg_field_info(fn, base, zone, solution, fi+1, &field_datatypes[fi], buf); field_names[fi] = buf; } } }; struct Zone { ZoneType_t zone_type; int fn, base, zone; int first_index_1d, first_index_2d, first_index_3d; int nv=0, ne_1d=0, ne_2d=0, ne_3d=0; Array names_1d, names_2d, names_3d; string name; cgsize_t size[3]; Array solutions; Zone(int fn_, int base_, int zone_) : fn(fn_), base(base_), zone(zone_) { cg_zone_type(fn, base, zone, &zone_type); char zone_name[100]; cg_zone_read(fn,base,zone, zone_name, size); nv = size[0]; int n_solutions; cg_nsols(fn, base, zone, &n_solutions); solutions.SetSize(n_solutions); for(auto si : Range(n_solutions)) solutions[si] = Solution{fn, base, zone, si+1}; } void ReadSolutions( int meshdim, std::vector & sol_names, std::vector> & sol_values, std::vector & sol_locations ) { static Timer tall("CGNS::ReadSolutions"); RegionTimer rtall(tall); for (auto & sol : solutions) { for (auto fi : Range(sol.field_names.Size())) { cgsize_t size = sol.n_points; size=0; // TODO: check if sol.point_type is a list or range, and handle appropriately if(size==0) { switch(sol.location) { case Vertex: size = nv; break; case CellCenter: size = (meshdim == 3 ? ne_3d : ne_2d); break; case FaceCenter: case IFaceCenter: case JFaceCenter: case KFaceCenter: case EdgeCenter: default: throw Exception("Read CGNS: unknown grid location " + string(cg_GridLocationName(sol.location))); } } auto values = Array(size); cgsize_t imin = 1UL; cg_field_read(fn, base, zone, sol.solution, sol.field_names[fi].c_str(), RealDouble, &imin, &size, &values[0]); sol_names.push_back(sol.field_names[fi]); sol_values.emplace_back(std::move(values)); sol_locations.push_back(getNodeType(sol.location)); } } } void ReadMesh( Mesh & mesh, PointTable & point_table ) { static Timer tall("CGNS::ReadMesh-Zone"); RegionTimer rtall(tall); static Timer tsection("CGNS::ReadMesh-Section"); first_index_1d = mesh.GetRegionNamesCD(2).Size(); first_index_2d = mesh.GetRegionNamesCD(1).Size(); first_index_3d = mesh.GetRegionNamesCD(0).Size(); Array x(nv), y(nv), z(nv); cgsize_t imin=1; cg_coord_read(fn,base,zone, "CoordinateX", RealDouble, &imin, &nv, &x[0]); cg_coord_read(fn,base,zone, "CoordinateY", RealDouble, &imin, &nv, &y[0]); cg_coord_read(fn,base,zone, "CoordinateZ", RealDouble, &imin, &nv, &z[0]); Array point_map(nv); for(auto i : Range(nv)) { ngcore::INT<3,size_t> hash = {*reinterpret_cast(&x[i]), *reinterpret_cast(&y[i]), *reinterpret_cast(&z[i])}; size_t pi_ng; size_t pos; // check if this point is new if( point_table.PositionCreate (hash, pos) ) { pi_ng = mesh.AddPoint( {x[i], y[i], z[i]} ); point_table.SetData(pos, pi_ng); } else point_table.GetData(pos, pi_ng); point_map[i] = pi_ng; } int nsections; cg_nsections(fn, base, zone, &nsections); int index_1d = first_index_1d; int index_2d = first_index_2d; int index_3d = first_index_3d; for (auto section : Range(1,nsections+1)) { RegionTimer rtsection(tsection); char sec_name[100]; ElementType_t type; cgsize_t start, end; int nbndry, parent_flag; cg_section_read(fn, base, zone, section, sec_name, &type, &start, &end, &nbndry, &parent_flag); PrintMessage(4, "Read section ", section, " with name ", sec_name, " and element type ", cg_ElementTypeName(type)); string ngname{sec_name}; for (char & c : ngname) if(c==' ') c = '_'; if(type==MIXED) { bool have_1d_elements = false; bool have_2d_elements = false; bool have_3d_elements = false; cgsize_t nv; cg_ElementDataSize(fn, base, zone, section, &nv); Array vertices(nv); #if CGNS_VERSION < 3400 cg_elements_read(fn, base, zone, section, &vertices[0], nullptr); #else cg_poly_elements_read(fn, base, zone, section, &vertices[0], nullptr, nullptr); #endif size_t vi = 0; while(vi(vertices[vi++]); int dim = getDim(type); int np; cg_npe(type, &np); for (auto & v : vertices.Range(vi, vi+np)) v = point_map[v-1]; if(dim==1) { if(!have_1d_elements) { index_1d++; have_1d_elements = true; mesh.AddEdgeDescriptor(EdgeDescriptor{}); names_1d.Append(ngname); } auto el = ReadCGNSElement1D(type, vertices.Range(vi, vertices.Size())); el.si = index_1d; mesh.AddSegment(el); vi += el.GetNP(); ne_1d++; } if(dim==2) { if(!have_2d_elements) { index_2d++; have_2d_elements = true; mesh.AddFaceDescriptor(FaceDescriptor(index_2d, 1, 0, 1)); names_2d.Append(ngname); } auto el = ReadCGNSElement2D(type, vertices.Range(vi, vertices.Size())); el.SetIndex(index_2d); mesh.AddSurfaceElement(el); vi += el.GetNP(); ne_2d++; } if(dim==3) { if(!have_3d_elements) { index_3d++; have_3d_elements = true; names_3d.Append(ngname); } auto el = ReadCGNSElement3D(type, vertices.Range(vi, vertices.Size())); el.SetIndex(index_3d); mesh.AddVolumeElement(el); vi += el.GetNP(); ne_3d++; } } } else { int dim = getDim(type); cgsize_t nv; cg_ElementDataSize(fn, base, zone, section, &nv); int np=0; cg_npe(type, &np); Array vertices(nv); cg_elements_read(fn, base, zone, section, &vertices[0], nullptr); for (auto & v : vertices) v = point_map[v-1]; int ne_section = nv/np; if(dim==1) { index_1d++; mesh.AddEdgeDescriptor(EdgeDescriptor{}); names_1d.Append(ngname); for(auto i : Range(ne_section)) { auto el = ReadCGNSElement1D(type, vertices.Range(np*i, np*(i+1))); el.si = index_1d; mesh.AddSegment(el); } ne_1d += ne_section; } if(dim==2) { index_2d++; mesh.AddFaceDescriptor(FaceDescriptor(index_2d, 1, 0, 1)); names_2d.Append(ngname); for(auto i : Range(ne_section)) { auto el = ReadCGNSElement2D(type, vertices.Range(np*i, np*(i+1))); el.SetIndex(index_2d); mesh.AddSurfaceElement(el); } ne_2d += ne_section; } if(dim==3) { index_3d++; names_3d.Append(ngname); for(auto i : Range(ne_section)) { auto el = ReadCGNSElement3D(type, vertices.Range(np*i, np*(i+1))); el.SetIndex(index_3d); mesh.AddVolumeElement(el); } ne_3d += ne_section; } } } mesh.GetRegionNamesCD(2).SetSize(index_1d); mesh.GetRegionNamesCD(1).SetSize(index_2d); mesh.GetRegionNamesCD(0).SetSize(index_3d); mesh.GetRegionNamesCD(2) = nullptr; mesh.GetRegionNamesCD(1) = nullptr; mesh.GetRegionNamesCD(0) = nullptr; } void SetNames( Mesh & mesh ) { if(mesh.GetDimension() == 2) { for (auto i : Range(names_1d.Size())) mesh.SetBCName(first_index_1d + i, names_1d[i]); for (auto i : Range(names_2d.Size())) mesh.SetMaterial(first_index_2d + i +1, names_2d[i]); } else { for (auto i : Range(names_1d.Size())) mesh.SetCD2Name(first_index_1d + i +1, names_1d[i]); for (auto i : Range(names_2d.Size())) { mesh.SetBCName(first_index_2d + i, names_2d[i]); mesh.GetFaceDescriptor(first_index_2d + i +1).SetDomainIn(first_index_3d+1); } for (auto i : Range(names_3d.Size())) mesh.SetMaterial(first_index_3d + i +1, names_3d[i]); } } }; } namespace netgen { int ReadCGNSMesh (Mesh & mesh, const string & filename, Array> & zones) { mesh.SetDimension(3); static Timer tall("CGNS::ReadMesh"); RegionTimer rtall(tall); int fn; cg_open(filename.c_str(),CG_MODE_READ,&fn); int base = 1; int nzones; cg_nzones(fn, base, &nzones); int n_vertices = 0; for (auto zi : Range(1, nzones+1)) { int size[3]; char name[100]; cg_zone_read(fn,base,zi, name, size); n_vertices += size[0]; } cg::PointTable points(2*n_vertices); for (auto zi : Range(1, nzones+1)) { ZoneType_t zone_type; cg_zone_type(fn, base, zi, &zone_type); if(zone_type != Unstructured ) { PrintMessage(2, "skipping zone with type ", cg_ZoneTypeName(zone_type) ); continue; } auto zone = make_unique(fn, base, zi); zone->ReadMesh( mesh, points ); zones.Append(std::move(zone)); } if(mesh.GetNE() == 0) mesh.SetDimension(2); for (auto & zone : zones) zone->SetNames(mesh); mesh.UpdateTopology(); const auto & topo = mesh.GetTopology(); for (auto sei : Range(mesh.SurfaceElements())) { int ei0, ei1; topo.GetSurface2VolumeElement (sei+1, ei0, ei1); auto si = mesh.SurfaceElement(sei).GetIndex(); auto & fd = mesh.GetFaceDescriptor(si); if(ei0>0) { int i0 = mesh.VolumeElement(ei0).GetIndex(); if(fd.DomainIn()!=i0) fd.SetDomainOut(i0); } if(ei1>0) { int i1 = mesh.VolumeElement(ei1).GetIndex(); if(fd.DomainIn()!=i1) fd.SetDomainOut(i1); } } return fn; } void ReadCGNSMesh (Mesh & mesh, const string & filename) { Array> zones; int fn = ReadCGNSMesh(mesh, filename, zones); cg_close(fn); } // Reads mesh and solutions of .csns file tuple, vector, vector>, vector> ReadCGNSFile(string filename, int base) { static Timer tall("CGNS::ReadFile"); RegionTimer rtall(tall); auto mesh = make_shared(); Array> zones; int fn = ReadCGNSMesh(*mesh, filename, zones); std::vector names; std::vector> values; std::vector locations; for (auto & zone : zones) zone->ReadSolutions( mesh->GetDimension(), names, values, locations ); cg_close(fn); return std::make_tuple(mesh, names, values, locations); } void WriteCGNSMesh (const Mesh & mesh, int fn, int & base, int & zone) { int dim = mesh.GetDimension(); cg_base_write(fn, "mesh", dim, dim, &base); int nv = static_cast(mesh.GetNV()); int ne = mesh.GetNE(); Array x, y, z; for(auto & p : mesh.Points()) { x.Append(p[0]); y.Append(p[1]); z.Append(p[2]); } cgsize_t isize[3] = { nv, ne, 0 }; cg_zone_write(fn,base, "mesh", isize, Unstructured, &zone); int coord; cg_coord_write(fn,base,zone, RealDouble, "CoordinateX", &x[0], &coord); cg_coord_write(fn,base,zone, RealDouble, "CoordinateY", &y[0], &coord); cg_coord_write(fn,base,zone, RealDouble, "CoordinateZ", &z[0], &coord); int imax3 = 0; for(const auto & el : mesh.VolumeElements()) imax3 = max(imax3, el.GetIndex()); int imax2 = 0; for(const auto & el : mesh.SurfaceElements()) imax2 = max(imax2, el.GetIndex()); int imax1 = 0; for(const auto & el : mesh.LineSegments()) imax1 = max(imax1, el.si); int ne_written = 0; int meshdim = mesh.GetDimension(); for(const auto i : IntRange(imax3)) ne_written += cg::WriteCGNSRegion(mesh, 3, i+1, fn, base, zone, ne_written); for(const auto i : IntRange(imax2)) ne_written += cg::WriteCGNSRegion(mesh, 2, i+1, fn, base, zone, ne_written); for(const auto i : IntRange(imax1)) ne_written += cg::WriteCGNSRegion(mesh, 1, i+1, fn, base, zone, ne_written); } void WriteCGNSMesh (const Mesh & mesh, const string & filename) { static Timer tall("CGNS::WriteMesh"); RegionTimer rtall(tall); int fn, base, zone; cg_open(filename.c_str(),CG_MODE_WRITE,&fn); WriteCGNSMesh(mesh, fn, base, zone); cg_close(fn); } void WriteCGNSFile(shared_ptr mesh, string filename, vector fields, vector> values, vector locations) { static Timer tall("CGNS::WriteFile"); RegionTimer rtall(tall); int fn, base, zone; cg_open(filename.c_str(),CG_MODE_WRITE,&fn); WriteCGNSMesh(*mesh, fn, base, zone); for(auto i : IntRange(fields.size())) { int section, field; string name = "solution_" + ToString(i); cg_sol_write(fn, base, zone, name.c_str(), cg::getCGNodeType(locations[i]), §ion); cg_field_write(fn, base, zone, section, RealDouble, fields[i].c_str(), &values[i][0], &field); } cg_close(fn); } } #else // NG_CGNS namespace netgen { void ReadCGNSMesh (Mesh & mesh, const string & filename) { PrintMessage(1, "Could not import CGNS mesh: Netgen was built without CGNS support"); } tuple, vector, vector>, vector> ReadCGNSFile(string filename, int base) { throw Exception("Netgen was built without CGNS support"); } void WriteCGNSMesh (const Mesh & mesh, const string & filename) { PrintMessage(1, "Could not write CGNS mesh: Netgen was built without CGNS support"); } void WriteCGNSFile(shared_ptr mesh, string filename, vector fields, vector> values, vector locations) { throw Exception("Netgen was built without CGNS support"); } } #endif // NG_CGNS