#ifdef OCCGEOMETRY #include #include #include "occgeom.hpp" #include "occ_face.hpp" #include "occmeshsurf.hpp" #include #include #include #include #include #include #include #include #include #include #include #include namespace netgen { #define TCL_OK 0 #define TCL_ERROR 1 #define DIVIDEEDGESECTIONS 10000 // better solution to come soon #define IGNORECURVELENGTH 0 #define VSMALL 1e-10 DLL_HEADER bool merge_solids = false; // can you please explain what you intend to compute here (JS) !!! double Line :: Dist (Line l) { Vec<3> n = p1-p0; Vec<3> q = l.p1-l.p0; double nq = n*q; Point<3> p = p0 + 0.5*n; double lambda = (p-l.p0)*n / (nq + VSMALL); if (lambda >= 0 && lambda <= 1) { double d = (p-l.p0-lambda*q).Length(); // if (d < 1e-3) d = 1e99; return d; } else return 1e99; } double ComputeH (double kappa, const MeshingParameters & mparam) { kappa *= mparam.curvaturesafety; /* double hret; if (mparam.maxh * kappa < 1) hret = mparam.maxh; else hret = 1 / (kappa + VSMALL); if (mparam.maxh < hret) hret = mparam.maxh; return hret; */ // return min(mparam.maxh, 1/kappa); return (mparam.maxh*kappa < 1) ? mparam.maxh : 1/kappa; } void RestrictHTriangle (gp_Pnt2d & par0, gp_Pnt2d & par1, gp_Pnt2d & par2, BRepLProp_SLProps * prop, BRepLProp_SLProps * prop2, Mesh & mesh, int depth, double h, int layer, const MeshingParameters & mparam) { int ls = -1; gp_Pnt pnt0,pnt1,pnt2; prop->SetParameters (par0.X(), par0.Y()); pnt0 = prop->Value(); prop->SetParameters (par1.X(), par1.Y()); pnt1 = prop->Value(); prop->SetParameters (par2.X(), par2.Y()); pnt2 = prop->Value(); double aux; double maxside = pnt0.Distance(pnt1); ls = 2; aux = pnt1.Distance(pnt2); if(aux > maxside) { maxside = aux; ls = 0; } aux = pnt2.Distance(pnt0); if(aux > maxside) { maxside = aux; ls = 1; } gp_Pnt2d parmid; parmid.SetX( (par0.X()+par1.X()+par2.X()) / 3 ); parmid.SetY( (par0.Y()+par1.Y()+par2.Y()) / 3 ); if (depth%3 == 0) { double curvature = 0; prop2->SetParameters (parmid.X(), parmid.Y()); if (!prop2->IsCurvatureDefined()) { (*testout) << "curvature not defined!" << endl; return; } curvature = max(fabs(prop2->MinCurvature()), fabs(prop2->MaxCurvature())); prop2->SetParameters (par0.X(), par0.Y()); if (!prop2->IsCurvatureDefined()) { (*testout) << "curvature not defined!" << endl; return; } curvature = max(curvature,max(fabs(prop2->MinCurvature()), fabs(prop2->MaxCurvature()))); prop2->SetParameters (par1.X(), par1.Y()); if (!prop2->IsCurvatureDefined()) { (*testout) << "curvature not defined!" << endl; return; } curvature = max(curvature,max(fabs(prop2->MinCurvature()), fabs(prop2->MaxCurvature()))); prop2->SetParameters (par2.X(), par2.Y()); if (!prop2->IsCurvatureDefined()) { (*testout) << "curvature not defined!" << endl; return; } curvature = max(curvature,max(fabs(prop2->MinCurvature()), fabs(prop2->MaxCurvature()))); //(*testout) << "curvature " << curvature << endl; if (curvature < 1e-3) { //(*testout) << "curvature too small (" << curvature << ")!" << endl; return; // return war bis 10.2.05 auskommentiert } h = ComputeH (curvature+1e-10, mparam); if(h < 1e-4*maxside) return; // if (h > 30) return; } if (h < maxside && depth < 10) { //cout << "\r h " << h << flush; gp_Pnt2d pm; //cout << "h " << h << " maxside " << maxside << " depth " << depth << endl; //cout << "par0 " << par0.X() << " " << par0.Y() //<< " par1 " << par1.X() << " " << par1.Y() // << " par2 " << par2.X() << " " << par2.Y()<< endl; if(ls == 0) { pm.SetX(0.5*(par1.X()+par2.X())); pm.SetY(0.5*(par1.Y()+par2.Y())); RestrictHTriangle(pm, par2, par0, prop, prop2, mesh, depth+1, h, layer, mparam); RestrictHTriangle(pm, par0, par1, prop, prop2, mesh, depth+1, h, layer, mparam); } else if(ls == 1) { pm.SetX(0.5*(par0.X()+par2.X())); pm.SetY(0.5*(par0.Y()+par2.Y())); RestrictHTriangle(pm, par1, par2, prop, prop2, mesh, depth+1, h, layer, mparam); RestrictHTriangle(pm, par0, par1, prop, prop2, mesh, depth+1, h, layer, mparam); } else if(ls == 2) { pm.SetX(0.5*(par0.X()+par1.X())); pm.SetY(0.5*(par0.Y()+par1.Y())); RestrictHTriangle(pm, par1, par2, prop, prop2, mesh, depth+1, h, layer, mparam); RestrictHTriangle(pm, par2, par0, prop, prop2, mesh, depth+1, h, layer, mparam); } } else { gp_Pnt pnt; Point3d p3d; prop->SetParameters (parmid.X(), parmid.Y()); pnt = prop->Value(); p3d = Point3d(pnt.X(), pnt.Y(), pnt.Z()); mesh.RestrictLocalH (p3d, h, layer); p3d = Point3d(pnt0.X(), pnt0.Y(), pnt0.Z()); mesh.RestrictLocalH (p3d, h, layer); p3d = Point3d(pnt1.X(), pnt1.Y(), pnt1.Z()); mesh.RestrictLocalH (p3d, h, layer); p3d = Point3d(pnt2.X(), pnt2.Y(), pnt2.Z()); mesh.RestrictLocalH (p3d, h, layer); //(*testout) << "p = " << p3d << ", h = " << h << ", maxside = " << maxside << endl; } } bool OCCMeshFace (const OCCGeometry & geom, Mesh & mesh, FlatArray glob2loc, const MeshingParameters & mparam, int nr, int projecttype, bool delete_on_failure) { auto k = nr+1; if(1==0 && !geom.fvispar[k-1].IsDrawable()) { (*testout) << "ignoring face " << k << endl; cout << "ignoring face " << k << endl; return true; } // if(master_faces[k]!=k) // continue; (*testout) << "mesh face " << k << endl; multithread.percent = 100 * k / (mesh.GetNFD() + VSMALL); geom.facemeshstatus[k-1] = -1; FaceDescriptor & fd = mesh.GetFaceDescriptor(k); auto face = TopoDS::Face(geom.fmap(k)); const auto& occface = dynamic_cast(geom.GetFace(k-1)); int oldnf = mesh.GetNSE(); Box<3> bb = geom.GetBoundingBox(); // int projecttype = PLANESPACE; // int projecttype = PARAMETERSPACE; static Timer tinit("init"); tinit.Start(); Meshing2OCCSurfaces meshing(geom, face, bb, projecttype, mparam); tinit.Stop(); static Timer tprint("print"); tprint.Start(); if (meshing.GetProjectionType() == PLANESPACE) PrintMessage (2, "Face ", k, " / ", geom.GetNFaces(), " (plane space projection)"); else PrintMessage (2, "Face ", k, " / ", geom.GetNFaces(), " (parameter space projection)"); tprint.Stop(); // Meshing2OCCSurfaces meshing(f2, bb); // meshing.SetStartTime (starttime); //(*testout) << "Face " << k << endl << endl; auto segments = geom.GetFace(k-1).GetBoundary(mesh); if (meshing.GetProjectionType() == PLANESPACE) { static Timer t("MeshSurface: Find edges and points - Physical"); RegionTimer r(t); int cntp = 0; glob2loc = 0; for (Segment & seg : segments) // if (seg.si == k) for (int j = 0; j < 2; j++) { PointIndex pi = seg[j]; if (glob2loc[pi] == 0) { meshing.AddPoint (mesh.Point(pi), pi); cntp++; glob2loc[pi] = cntp; } } for(const auto& vert : geom.GetFaceVertices(geom.GetFace(k-1))) { PointIndex pi = vert->nr + 1; if(glob2loc[pi] == 0) { auto gi = occface.Project(mesh[pi]); MultiPointGeomInfo mgi; mgi.AddPointGeomInfo(gi); meshing.AddPoint(mesh[pi], pi, &mgi); cntp++; glob2loc[pi] = cntp; } } /* for (int i = 1; i <= mesh.GetNSeg(); i++) { Segment & seg = mesh.LineSegment(i); */ // for (Segment & seg : mesh.LineSegments()) for (Segment & seg : segments) //if (seg.si == k) { PointGeomInfo gi0, gi1; gi0.trignum = gi1.trignum = k; gi0.u = seg.epgeominfo[0].u; gi0.v = seg.epgeominfo[0].v; gi1.u = seg.epgeominfo[1].u; gi1.v = seg.epgeominfo[1].v; //if(orientation & 1) meshing.AddBoundaryElement (glob2loc[seg[0]], glob2loc[seg[1]], gi0, gi1); } } else { static Timer t("MeshSurface: Find edges and points - Parameter"); RegionTimer r(t); Array gis(2*segments.Size()); gis.SetSize (0); glob2loc = 0; int cntpt = 0; Box<2> uv_box(Box<2>::EMPTY_BOX); for(auto & seg : segments) for(auto i : Range(2)) uv_box.Add( {seg.epgeominfo[i].u, seg.epgeominfo[i].v } ); BoxTree<2> uv_tree(uv_box); double tol = 1e99; for(auto& seg : segments) { Point<2> p1 = { seg.epgeominfo[0].u, seg.epgeominfo[0].v }; Point<2> p2 = { seg.epgeominfo[1].u, seg.epgeominfo[1].v }; tol = min2(tol, Dist(p1, p2)); } uv_tree.SetTolerance(0.9 * tol); Array found_points; for(auto & seg : segments) { PointGeomInfo gi[2]; gi[0].trignum = gi[1].trignum = k; gi[0].u = seg.epgeominfo[0].u; gi[0].v = seg.epgeominfo[0].v; gi[1].u = seg.epgeominfo[1].u; gi[1].v = seg.epgeominfo[1].v; int locpnum[2] = {0, 0}; for (int j = 0; j < 2; j++) { Point<2> uv = {gi[j].u, gi[j].v}; uv_tree.GetIntersecting(uv, uv, found_points); bool found = false; for(auto& fp : found_points) { if(meshing.GetGlobalIndex(fp - 1) == seg[j]) { locpnum[j] = fp; found = true; } } if(!found) { PointIndex pi = seg[j]; locpnum[j] = meshing.AddPoint (mesh.Point(pi), pi) + 1; glob2loc[pi] = locpnum[j]; gis.Append (gi[j]); uv_tree.Insert(uv, locpnum[j]); } } meshing.AddBoundaryElement (locpnum[0], locpnum[1], gi[0], gi[1]); } for(const auto& vert : geom.GetFaceVertices(geom.GetFace(k-1))) { PointIndex pi = vert->nr + 1; if(glob2loc[pi] == 0) { auto gi = occface.Project(mesh[pi]); MultiPointGeomInfo mgi; mgi.AddPointGeomInfo(gi); glob2loc[pi] = meshing.AddPoint(mesh[pi], pi, &mgi) + 1; gis.Append(gi); Point<2> uv = { gi.u, gi.v }; uv_tree.Insert(uv, glob2loc[pi]); } } } // Philippose - 15/01/2009 auto& props = OCCGeometry::GetProperties(geom.fmap(k)); double maxh = min2(geom.face_maxh[k-1], props.maxh); //double maxh = mparam.maxh; // int noldpoints = mesh->GetNP(); int noldsurfel = mesh.GetNSE(); int layer = props.layer; static Timer tsurfprop("surfprop"); tsurfprop.Start(); GProp_GProps sprops; BRepGProp::SurfaceProperties(TopoDS::Face(geom.fmap(k)),sprops); tsurfprop.Stop(); meshing.SetMaxArea(2.*sprops.Mass()); MESHING2_RESULT res; // TODO: check overlap not correctly working here MeshingParameters mparam_without_overlap = mparam; mparam_without_overlap.checkoverlap = false; try { static Timer t("GenerateMesh"); RegionTimer reg(t); res = meshing.GenerateMesh (mesh, mparam_without_overlap, maxh, k, layer); } catch (SingularMatrixException) { // (*myerr) << "Singular Matrix" << endl; res = MESHING2_GIVEUP; } catch (UVBoundsException) { // (*myerr) << "UV bounds exceeded" << endl; res = MESHING2_GIVEUP; } static Timer t1("rest of loop"); RegionTimer reg1(t1); bool meshing_failed = res != MESHING2_OK; if(meshing_failed && delete_on_failure) { for (SurfaceElementIndex sei = noldsurfel; sei < mesh.GetNSE(); sei++) mesh.Delete(sei); mesh.Compress(); } for (SurfaceElementIndex sei = oldnf; sei < mesh.GetNSE(); sei++) mesh[sei].SetIndex (k); auto n_illegal_trigs = mesh.FindIllegalTrigs(); PrintMessage (3, n_illegal_trigs, " illegal triangles"); return meshing_failed; } void OCCSetLocalMeshSize(const OCCGeometry & geom, Mesh & mesh, const MeshingParameters & mparam, const OCCParameters& occparam) { static Timer t1("OCCSetLocalMeshSize"); RegionTimer regt(t1); mesh.SetGlobalH (mparam.maxh); mesh.SetMinimalH (mparam.minh); NgArray maxhdom; maxhdom.SetSize (geom.NrSolids()); maxhdom = mparam.maxh; int maxlayer = 1; int dom = 0; for(const auto& s : GetSolids(geom.GetShape())) { if(!OCCGeometry::HaveProperties(s)) continue; auto& props = OCCGeometry::GetProperties(s); maxhdom[dom] = min2(maxhdom[dom], props.maxh); maxlayer = max2(maxlayer, props.layer); dom++; } for(const auto& f : GetFaces(geom.GetShape())) if(OCCGeometry::HaveProperties(f)) maxlayer = max2(maxlayer, OCCGeometry::GetProperties(f).layer); for(const auto& e : GetEdges(geom.GetShape())) if(OCCGeometry::HaveProperties(e)) maxlayer = max2(maxlayer, OCCGeometry::GetProperties(e).layer); mesh.SetMaxHDomain (maxhdom); Box<3> bb = geom.GetBoundingBox(); bb.Increase (bb.Diam()/10); if (mparam.uselocalh) { const char * savetask = multithread.task; multithread.percent = 0; for(auto layer : Range(1, maxlayer+1)) mesh.SetLocalH (bb.PMin(), bb.PMax(), mparam.grading, layer); for(const auto& v : GetVertices(geom.GetShape())) { if(OCCGeometry::HaveProperties(v)) { auto& props = OCCGeometry::GetProperties(v); if(props.maxh < 1e99) mesh.GetLocalH(props.layer)->SetH(occ2ng(BRep_Tool::Pnt(TopoDS::Vertex(v))), props.maxh); } } int nedges = geom.emap.Extent(); double mincurvelength = IGNORECURVELENGTH; double maxedgelen = 0; double minedgelen = 1e99; if(occparam.resthminedgelenenable) { mincurvelength = occparam.resthminedgelen; if(mincurvelength < IGNORECURVELENGTH) mincurvelength = IGNORECURVELENGTH; } multithread.task = "Setting local mesh size (elements per edge)"; // Philippose - 23/01/2009 // Find all the parent faces of a given edge // and limit the mesh size of the edge based on the // mesh size limit of the face TopTools_IndexedDataMapOfShapeListOfShape edge_face_map; edge_face_map.Clear(); TopExp::MapShapesAndAncestors(geom.shape, TopAbs_EDGE, TopAbs_FACE, edge_face_map); // setting elements per edge for (int i = 1; i <= nedges && !multithread.terminate; i++) { TopoDS_Edge e = TopoDS::Edge (geom.emap(i)); int layer = OCCGeometry::GetProperties(e).layer; multithread.percent = 100 * (i-1)/double(nedges); if (BRep_Tool::Degenerated(e)) continue; double len = Mass(e); if (len < mincurvelength) { (*testout) << "ignored" << endl; continue; } bool is_identified_edge = false; // TODO: change to use hash value const auto& gedge = geom.GetEdge(e); auto& v0 = gedge.GetStartVertex(); auto& v1 = gedge.GetEndVertex(); for(auto & ident : v0.identifications) { auto other = ident.from == &v0 ? ident.to : ident.from; if(other->nr == v1.nr && ident.type == Identifications::CLOSESURFACES) { is_identified_edge = true; break; } } if(is_identified_edge) continue; double localh = len/mparam.segmentsperedge; double s0, s1; const TopTools_ListOfShape& parent_faces = edge_face_map.FindFromKey(e); TopTools_ListIteratorOfListOfShape parent_face_list; for(parent_face_list.Initialize(parent_faces); parent_face_list.More(); parent_face_list.Next()) { TopoDS_Face parent_face = TopoDS::Face(parent_face_list.Value()); int face_index = geom.fmap.FindIndex(parent_face); if(face_index >= 1) localh = min(localh,geom.face_maxh[face_index - 1]); localh = min2(localh, OCCGeometry::GetProperties(parent_face).maxh); } Handle(Geom_Curve) c = BRep_Tool::Curve(e, s0, s1); localh = min2(localh, OCCGeometry::GetProperties(e).maxh); maxedgelen = max (maxedgelen, len); minedgelen = min (minedgelen, len); int maxj = max((int) ceil(len/localh)*2, 2); for (int j = 0; j <= maxj; j++) { gp_Pnt pnt = c->Value (s0+double(j)/maxj*(s1-s0)); mesh.RestrictLocalH (Point3d(pnt.X(), pnt.Y(), pnt.Z()), localh, layer); } } multithread.task = "Setting local mesh size (edge curvature)"; // setting edge curvature int nsections = 20; for (int i = 1; i <= nedges && !multithread.terminate; i++) { double maxcur = 0; multithread.percent = 100 * (i-1)/double(nedges); TopoDS_Edge edge = TopoDS::Edge (geom.emap(i)); int layer = OCCGeometry::GetProperties(edge).layer; if (BRep_Tool::Degenerated(edge)) continue; double s0, s1; Handle(Geom_Curve) c = BRep_Tool::Curve(edge, s0, s1); BRepAdaptor_Curve brepc(edge); BRepLProp_CLProps prop(brepc, 2, 1e-5); for (int j = 1; j <= nsections; j++) { double s = s0 + j/(double) nsections * (s1-s0); prop.SetParameter (s); double curvature = 0; if(prop.IsTangentDefined()) curvature = prop.Curvature(); if(curvature> maxcur) maxcur = curvature; if (curvature >= 1e99) continue; gp_Pnt pnt = c->Value (s); mesh.RestrictLocalH (Point3d(pnt.X(), pnt.Y(), pnt.Z()), ComputeH (fabs(curvature), mparam), layer); } } multithread.task = "Setting local mesh size (face curvature)"; // setting face curvature int nfaces = geom.fmap.Extent(); for (int i = 1; i <= nfaces && !multithread.terminate; i++) { multithread.percent = 100 * (i-1)/double(nfaces); TopoDS_Face face = TopoDS::Face(geom.fmap(i)); int layer = OCCGeometry::GetProperties(face).layer; TopLoc_Location loc; Handle(Geom_Surface) surf = BRep_Tool::Surface (face); Handle(Poly_Triangulation) triangulation = BRep_Tool::Triangulation (face, loc); if (triangulation.IsNull()) { BRepTools::Clean (geom.shape); BRepMesh_IncrementalMesh (geom.shape, 0.01, true); triangulation = BRep_Tool::Triangulation (face, loc); } BRepAdaptor_Surface sf(face, Standard_True); // one prop for evaluating and one for derivatives BRepLProp_SLProps prop(sf, 0, 1e-5); BRepLProp_SLProps prop2(sf, 2, 1e-5); int ntriangles = triangulation -> NbTriangles(); for (int j = 1; j <= ntriangles; j++) { gp_Pnt p[3]; gp_Pnt2d par[3]; for (int k = 1; k <=3; k++) { // int n = triangulation->Triangles()(j)(k); // p[k-1] = triangulation->Nodes()(n).Transformed(loc); // par[k-1] = triangulation->UVNodes()(n); // fix for OCC7.6.0-dev int n = triangulation->Triangle(j)(k); p[k-1] = triangulation->Node(n).Transformed(loc); par[k-1] = triangulation->UVNode(n); } //double maxside = 0; //maxside = max (maxside, p[0].Distance(p[1])); //maxside = max (maxside, p[0].Distance(p[2])); //maxside = max (maxside, p[1].Distance(p[2])); //cout << "\rFace " << i << " pos11 ntriangles " << ntriangles << " maxside " << maxside << flush; RestrictHTriangle (par[0], par[1], par[2], &prop, &prop2, mesh, 0, 0, layer, mparam); //cout << "\rFace " << i << " pos12 ntriangles " << ntriangles << flush; } } // setting close edges if (mparam.closeedgefac.has_value()) { multithread.task = "Setting local mesh size (close edges)"; int sections = 100; NgArray lines(sections*nedges); /* BoxTree<3> * searchtree = new BoxTree<3> (bb.PMin(), bb.PMax()); */ BoxTree<3> searchtree(bb.PMin(), bb.PMax()); int nlines = 0; Array edgenumber; for (int i = 1; i <= nedges && !multithread.terminate; i++) { TopoDS_Edge edge = TopoDS::Edge (geom.emap(i)); int layer = OCCGeometry::GetProperties(edge).layer; if (BRep_Tool::Degenerated(edge)) continue; double s0, s1; Handle(Geom_Curve) c = BRep_Tool::Curve(edge, s0, s1); BRepAdaptor_Curve brepc(edge); BRepLProp_CLProps prop(brepc, 1, 1e-5); prop.SetParameter (s0); gp_Vec d0 = prop.D1().Normalized(); double s_start = s0; int count = 0; for (int j = 1; j <= sections; j++) { double s = s0 + (s1-s0)*(double)j/(double)sections; prop.SetParameter (s); gp_Vec d1 = prop.D1().Normalized(); double cosalpha = fabs(d0*d1); if ((j == sections) || (cosalpha < cos(10.0/180.0*M_PI))) { count++; gp_Pnt p0 = c->Value (s_start); gp_Pnt p1 = c->Value (s); lines[nlines].p0 = Point<3> (p0.X(), p0.Y(), p0.Z()); lines[nlines].p1 = Point<3> (p1.X(), p1.Y(), p1.Z()); lines[nlines].layer = layer; Box3d box; box.SetPoint (Point3d(lines[nlines].p0)); box.AddPoint (Point3d(lines[nlines].p1)); searchtree.Insert (box.PMin(), box.PMax(), nlines+1); nlines++; edgenumber.Append(i); s_start = s; d0 = d1; } } } NgArray linenums; auto is_identified_edge = [&](int e0, int e1) { const auto& edge0 = geom.GetEdge(e0-1); const auto& edge1 = geom.GetEdge(e1-1); if(edge0.primary == edge1.primary) return true; Array v0 = { &edge0.GetStartVertex(), &edge0.GetEndVertex() }; Array v1 = { &edge1.GetStartVertex(), &edge1.GetEndVertex() }; for(auto i : Range(2)) for(auto j : Range(2)) if(v0[i]->primary == v1[j]->primary) return true; return false; }; for (int i = 0; i < nlines; i++) { multithread.percent = (100*i)/double(nlines); Line & line = lines[i]; Box3d box; box.SetPoint (Point3d(line.p0)); box.AddPoint (Point3d(line.p1)); double maxhline = max (mesh.GetH(box.PMin(), line.layer), mesh.GetH(box.PMax(), line.layer)); box.Increase(maxhline); double mindist = 1e99; linenums.SetSize(0); searchtree.GetIntersecting(box.PMin(),box.PMax(),linenums); for (int j = 0; j < linenums.Size(); j++) { int num = linenums[j]-1; if (i == num) continue; if (line.layer != lines[num].layer) continue; if( is_identified_edge(edgenumber[i], edgenumber[num]) ) continue; if ((line.p0-lines[num].p0).Length2() < 1e-15) continue; if ((line.p0-lines[num].p1).Length2() < 1e-15) continue; if ((line.p1-lines[num].p0).Length2() < 1e-15) continue; if ((line.p1-lines[num].p1).Length2() < 1e-15) continue; mindist = min (mindist, line.Dist(lines[num])); } mindist /= (*mparam.closeedgefac + VSMALL); if (mindist < 1e-3 * bb.Diam()) { (*testout) << "extremely small local h: " << mindist << " --> setting to " << 1e-3 * bb.Diam() << endl; (*testout) << "somewhere near " << line.p0 << " - " << line.p1 << endl; mindist = 1e-3 * bb.Diam(); } mesh.RestrictLocalHLine(line.p0, line.p1, mindist, line.layer); } } for (auto mspnt : mparam.meshsize_points) mesh.RestrictLocalH(mspnt.pnt, mspnt.h, mspnt.layer); multithread.task = savetask; } mesh.LoadLocalMeshSize (mparam.meshsizefilename); } } #endif