#include "boundarylayer.hpp" #include #include #include "debugging.hpp" #include "global.hpp" #include "meshfunc.hpp" namespace netgen { struct Face { ArrayMem, 4> p; ArrayMem lam; }; struct SpecialPointException : public Exception { SpecialPointException() : Exception("") {} }; struct Intersection_ { bool is_intersecting = false; double lam0 = -1, lam1 = -1; Point<3> p; double bary[3]; operator bool() const { return is_intersecting; } }; std::tuple FindCloseVectors(FlatArray> ns, bool find_max = true) { int maxpos1; int maxpos2; double val = find_max ? -1e99 : 1e99; for (auto i : Range(ns)) for (auto j : Range(i + 1, ns.Size())) { double ip = ns[i] * ns[j]; if ((find_max && (ip > val)) || (!find_max && (ip < val))) { val = ip; maxpos1 = i; maxpos2 = j; } } return {maxpos1, maxpos2}; } Vec<3> CalcGrowthVector(FlatArray> ns) { if (ns.Size() == 0) return {0, 0, 0}; if (ns.Size() == 1) return ns[0]; if (ns.Size() == 2) { auto gw = ns[0]; auto n = ns[1]; auto npn = gw * n; auto npnp = gw * gw; auto nn = n * n; if (fabs(nn - npn * npn / npnp) < 1e-6) return n; gw += (nn - npn) / (nn - npn * npn / npnp) * (n - npn / npnp * gw); return gw; } if (ns.Size() == 3) { DenseMatrix mat(3, 3); for (auto i : Range(3)) for (auto j : Range(3)) mat(i, j) = ns[i][j]; if (fabs(mat.Det()) > 1e-6) { DenseMatrix mat(3, 3); for (auto i : Range(3)) for (auto j : Range(3)) mat(i, j) = ns[i] * ns[j]; Vector rhs(3); rhs = 1.; Vector res(3); DenseMatrix inv(3, ns.Size()); CalcInverse(mat, inv); inv.Mult(rhs, res); Vec<3> growth = 0.; for (auto i : Range(ns)) growth += res[i] * ns[i]; return growth; } } auto [maxpos1, maxpos2] = FindCloseVectors(ns); Array> new_normals; new_normals = ns; const auto dot = ns[maxpos1] * ns[maxpos2]; auto average = 0.5 * (ns[maxpos1] + ns[maxpos2]); average.Normalize(); new_normals[maxpos1] = average; new_normals.DeleteElement(maxpos2); auto gw = CalcGrowthVector(new_normals); for (auto n : ns) if (n * gw < 0) throw SpecialPointException(); return gw; } SpecialBoundaryPoint ::GrowthGroup ::GrowthGroup(FlatArray faces_, FlatArray> normals) { faces = faces_; growth_vector = CalcGrowthVector(normals); } SpecialBoundaryPoint ::SpecialBoundaryPoint( const std::map>& normals) { // find opposing face normals Array> ns; Array faces; for (auto [face, normal] : normals) { ns.Append(normal); faces.Append(face); } auto [minface1, minface2] = FindCloseVectors(ns, false); minface1 = faces[minface1]; minface2 = faces[minface2]; Array g1_faces; g1_faces.Append(minface1); Array g2_faces; g2_faces.Append(minface2); auto n1 = normals.at(minface1); auto n2 = normals.at(minface2); separating_direction = 0.5*( n2-n1 ); Array> normals1, normals2; for (auto [facei, normali] : normals) if (facei != minface1 && facei != minface2) { g1_faces.Append(facei); g2_faces.Append(facei); } for (auto fi : g1_faces) normals1.Append(normals.at(fi)); for (auto fi : g2_faces) normals2.Append(normals.at(fi)); growth_groups.Append(GrowthGroup(g1_faces, normals1)); growth_groups.Append(GrowthGroup(g2_faces, normals2)); } struct GrowthVectorLimiter { BoundaryLayerTool& tool; const BoundaryLayerParameters& params; Mesh& mesh; double height; FlatArray limits; FlatArray, PointIndex> growthvectors; BitArray changed_domains; unique_ptr> tree; Array map_from; ofstream debug; GrowthVectorLimiter(BoundaryLayerTool& tool_) : tool(tool_), params(tool_.params), mesh(tool_.mesh), height(tool_.total_height), limits(tool_.limits), growthvectors(tool_.growthvectors), map_from(mesh.Points().Size()), debug("debug.txt") { changed_domains = params.domains; if (!params.outside) changed_domains.Invert(); map_from = tool.mapfrom; } double GetLimit(PointIndex pi) { if (pi <= tool.np) return limits[pi]; return limits[map_from[pi]]; } bool SetLimit(PointIndex pi, double new_limit) { double & limit = (pi <= tool.np) ? limits[pi] : limits[map_from[pi]]; if(limit <= new_limit) return false; limit = new_limit; return true; } bool ScaleLimit(PointIndex pi, double factor) { double & limit = (pi <= tool.np) ? limits[pi] : limits[map_from[pi]]; return SetLimit(pi, limit * factor); } Point<3> GetPoint(PointIndex pi_to, double shift = 1., bool apply_limit = false) { if (tool.growth_vector_map.count(pi_to) == 0) return mesh[pi_to]; auto [gw, height] = tool.growth_vector_map[pi_to]; if(apply_limit) shift *= GetLimit(pi_to); return mesh[pi_to] + shift * height * (*gw); } Point<3> GetMappedPoint(PointIndex pi_from, double shift = 1.) { auto pi_to = tool.mapto[pi_from].Last(); return GetPoint(pi_to, shift); } std::array, 2> GetMappedSeg(PointIndex pi_from, double shift = 1.) { return {mesh[pi_from], GetMappedPoint(pi_from, shift)}; } std::array, 2> GetSeg(PointIndex pi_to, double shift = 1., bool apply_limit = false) { return {GetPoint(pi_to, 0), GetPoint(pi_to, shift, apply_limit)}; } auto GetTrig(SurfaceElementIndex sei, double shift = 0.0, bool apply_limit = false) { auto sel = mesh[sei]; std::array, 3> trig; for (auto i : Range(3)) trig[i] = GetPoint(sel[i], shift, apply_limit); return trig; } auto GetMappedTrig(SurfaceElementIndex sei, double shift = 0.0) { auto sel = mesh[sei]; std::array, 3> trig; for (auto i : Range(3)) trig[i] = GetMappedPoint(sel[i], shift); return trig; } auto GetSideTrig(SurfaceElementIndex sei, int index, double shift = 0.0, bool grow_first_vertex = true) { auto trig = GetMappedTrig(sei, 0.0); auto sel = mesh[sei]; auto index1 = (index + 1) % 3; if (!grow_first_vertex) index1 = (index + 2) % 3; trig[index] = GetMappedPoint(sel[index1], shift); return trig; } static constexpr double INTERSECTION_SAFETY = .9; bool LimitGrowthVector(PointIndex pi_to, SurfaceElementIndex sei, double trig_shift, double seg_shift, bool check_prism_sides = false) { auto pi_from = map_from[pi_to]; if (!pi_from.IsValid()) return false; auto seg = GetSeg(pi_to, seg_shift, true); for (auto pi : mesh[sei].PNums()) { if (pi == pi_from) return false; if (map_from[pi] == pi_from) return false; } if(check_prism_sides) { for(auto i : Range(3)) { auto side = GetSideTrig(sei, i, trig_shift, true); auto intersection = isIntersectingTrig(seg, side); if(intersection) return ScaleLimit(pi_to, intersection.lam0 *INTERSECTION_SAFETY); } return false; } else if (trig_shift > 0) { auto intersection = isIntersectingTrig(seg, GetTrig(sei, trig_shift, true)); if (!intersection) return false; double scaling_factor = 0.9; double s = 1.0; while(true) { s *= scaling_factor; auto reduced_intersection = isIntersectingTrig(GetSeg(pi_to, s*seg_shift, true), GetTrig(sei, s*trig_shift, true)); if(!reduced_intersection) break; } // cout << "Scale limits " << s << endl; bool result = false; result |= ScaleLimit(pi_to, s); for(auto pi : mesh[sei].PNums()) result |= ScaleLimit(pi, s); return result; double dshift = trig_shift; double lam0 = intersection.lam0*seg_shift*GetLimit(pi_from); while (dshift/trig_shift > lam0) { dshift *= 0.9; auto reduced_intersection = isIntersectingTrig(seg, GetTrig(sei, dshift, true)); if(!reduced_intersection) break; // cout << "still intersecting " << dshift*trig_shift << " > " << lam0 << endl; intersection = reduced_intersection; } lam0 = intersection.lam0*seg_shift; double max_trig_limit = 1e99; auto sel = mesh[sei]; for (auto i : Range(3)) max_trig_limit = min(max_trig_limit, GetLimit(sel[i])); double new_seg_limit = lam0*INTERSECTION_SAFETY; double new_trig_limit = dshift*trig_shift*INTERSECTION_SAFETY; if(new_trig_limit >= max_trig_limit && new_seg_limit >= GetLimit(pi_from) ) return false; // nothing to do result = false; result |= SetLimit(pi_from, new_seg_limit); for (auto pi : sel.PNums()) result |= SetLimit(pi, new_trig_limit); return result; } else { auto trig = GetTrig(sei, 0.0); auto intersection = isIntersectingTrig(seg, trig); // checking with original surface elements -> allow only half the distance auto new_seg_limit = 0.40 * intersection.lam0*seg_shift; if (intersection && new_seg_limit < GetLimit(pi_from)) { auto p0 = seg[0]; auto p1 = seg[1]; auto d = Dist(p0, p1); auto [gw, height] = tool.growth_vector_map[pi_to]; return SetLimit(pi_from, new_seg_limit); } return false; } } void LimitSelfIntersection() { // check for self-intersection within new elements (prisms/hexes) bool found_debug_element = false; auto isIntersecting = [&](SurfaceElementIndex sei, double shift) { // checks if surface element is self intersecting when growing with factor // shift // ignore new surface elements, side trigs are only built // from original surface elements if (sei >= tool.nse) return false; const auto sel = mesh[sei]; auto np = sel.GetNP(); for (auto i : Range(np)) { if (sel[i] > tool.np) return false; if (tool.mapto[sel[i]].Size() == 0) return false; } for (auto i : Range(np)) { auto seg = GetMappedSeg(sel[i], shift * limits[sel[i]]); for (auto fi : Range(np - 2)) { for (auto side : {true, false}) { auto trig = GetSideTrig(sei, i + fi, 1.0, side); if (isIntersectingPlane(seg, trig)) return true; } } } return false; }; auto equalizeLimits = [&](SurfaceElementIndex sei) { const auto sel = mesh[sei]; auto np = sel.GetNP(); double max_limit = 0; double min_limit = 1e99; for (auto i : Range(np)) { max_limit = max(max_limit, limits[sel[i]]); min_limit = min(min_limit, limits[sel[i]]); } // equalize if (max_limit / min_limit > 1.2) { max_limit = min_limit * 1.2; for (auto i : Range(np)) SetLimit(sel[i], min(limits[sel[i]], max_limit)); } }; for (SurfaceElementIndex sei : mesh.SurfaceElements().Range()) { auto sel = mesh[sei]; const auto& fd = mesh.GetFaceDescriptor(sel.GetIndex()); if (sei >= tool.nse) continue; if (sel.GetNP() == 4) continue; // if(sei >= tool.nse || (!changed_domains.Test(fd.DomainIn()) && // !changed_domains.Test(fd.DomainOut()))) // continue; auto np = sel.GetNP(); // ArrayMem ori_limits; // ori_limits.SetSize(np); // for(auto i : Range(np)) // ori_limits[i] = limits[sel[i]]; equalizeLimits(sei); double shift = 1.0; double safety = 1.4; const double step_factor = 0.9; while (isIntersecting(sei, shift * safety)) { shift *= step_factor; double max_limit = 0; for (auto i : Range(np)) max_limit = max(max_limit, limits[sel[i]]); for (auto i : Range(np)) if (max_limit == limits[sel[i]]) ScaleLimit(sel[i], step_factor); // if (max_limit < 0.01) break; } } } // checks if a segment is intersecting a plane, spanned by three points, lam // will be set s.t. p_intersect = seg[0] + lam * (seg[1]-seg[0]) Intersection_ isIntersectingPlane(std::array, 2> seg, std::array, 3> trig) { auto t1 = trig[1] - trig[0]; auto t2 = trig[2] - trig[0]; auto n = Cross(t1, t2); auto v0n = (seg[0] - trig[0]) * n; auto v1n = (seg[1] - trig[0]) * n; Intersection_ intersection; intersection.lam0 = -v0n / (v1n - v0n); intersection.p = seg[0] + intersection.lam0 * (seg[1] - seg[0]); intersection.is_intersecting = (v0n * v1n < 0) && (intersection.lam0 > -1e-8) && (intersection.lam0 < 1 + 1e-8); return intersection; } // Intersection_ isIntersectingPlane(PointIndex pi, PointIndex pi_to, // SurfaceElementIndex sei, // double shift = 0.0) { // return isIntersectingPlane(GetSeg(pi, pi_to), GetTrig(sei, shift)); // } Intersection_ isIntersectingTrig(std::array, 2> seg, std::array, 3> trig) { auto intersection = isIntersectingPlane(seg, trig); if (!intersection) return intersection; auto p = seg[0] + intersection.lam0 * (seg[1] - seg[0]) - trig[0]; Vec3d col1 = trig[1] - trig[0]; Vec3d col2 = trig[2] - trig[0]; Vec3d col3 = Cross(col1, col2); Vec3d rhs = p; Vec3d bary; SolveLinearSystem(col1, col2, col3, rhs, bary); intersection.lam1 = 0; double eps = 0.1; if (bary.X() >= -eps && bary.Y() >= -eps && bary.X() + bary.Y() <= 1 + eps) { intersection.bary[0] = bary.X(); intersection.bary[1] = bary.Y(); intersection.bary[2] = 1.0 - bary.X() - bary.Y(); } else intersection.is_intersecting = false; return intersection; } Intersection_ isIntersectingTrig(PointIndex pi_from, PointIndex pi_to, SurfaceElementIndex sei, double shift = 0.0) { return isIntersectingTrig(GetSeg(pi_from, pi_to), GetTrig(sei, shift)); } void BuildSearchTree(double trig_shift) { Box<3> bbox(Box<3>::EMPTY_BOX); for (PointIndex pi : mesh.Points().Range()) { bbox.Add(mesh[pi]); bbox.Add(GetPoint(pi, 1.1)); // if(tool.mapto[pi].Size() >0) // bbox.Add(mesh[tool.mapto[pi].Last()]); } tree = make_unique>(bbox); for (auto sei : mesh.SurfaceElements().Range()) { const auto& sel = mesh[sei]; auto sel_index = mesh[sei].GetIndex(); Box<3> box(Box<3>::EMPTY_BOX); for (auto pi : sel.PNums()) { box.Add(GetPoint(pi, 0.)); box.Add(GetPoint(pi, trig_shift*GetLimit(pi))); } tree->Insert(box, sei); } } template void FindTreeIntersections(double trig_shift, double seg_shift, TFunc f) { BuildSearchTree(trig_shift); auto np_new = mesh.Points().Size(); int counter = 0; for (auto i : IntRange(tool.np, np_new)) { PointIndex pi_to = i + PointIndex::BASE; PointIndex pi_from = map_from[pi_to]; if (!pi_from.IsValid()) throw Exception("Point not mapped"); // if(mesh[pi_to].Type() == INNERPOINT) // continue; // if(growthvectors[pi_to].Length2() == 0.0) // continue; Box<3> box(Box<3>::EMPTY_BOX); auto seg = GetSeg(pi_to, seg_shift); box.Add(GetPoint(pi_to, 0)); box.Add(GetPoint(pi_to, GetLimit(pi_from))); tree->GetFirstIntersecting(box.PMin(), box.PMax(), [&](SurfaceElementIndex sei) { const auto& sel = mesh[sei]; if (sel.PNums().Contains(pi_from)) return false; if (sel.PNums().Contains(pi_to)) return false; counter++; f(pi_to, sei); return false; }); } } }; Vec<3> BoundaryLayerTool ::getEdgeTangent(PointIndex pi, int edgenr) { Vec<3> tangent = 0.0; ArrayMem pts; for (auto segi : topo.GetVertexSegments(pi)) { auto& seg = mesh[segi]; if (seg.edgenr != edgenr + 1) continue; PointIndex other = seg[0] + seg[1] - pi; if (!pts.Contains(other)) pts.Append(other); } if (pts.Size() != 2) { cout << "getEdgeTangent pi = " << pi << ", edgenr = " << edgenr << endl; for (auto segi : topo.GetVertexSegments(pi)) cout << mesh[segi] << endl; throw Exception("Something went wrong in getEdgeTangent!"); } tangent = mesh[pts[1]] - mesh[pts[0]]; return tangent.Normalize(); } void BoundaryLayerTool ::LimitGrowthVectorLengths() { static Timer tall("BoundaryLayerTool::LimitGrowthVectorLengths"); RegionTimer rtall(tall); limits.SetSize(mesh.Points().Size()); limits = 1.0; GrowthVectorLimiter limiter( *this); //, mesh, params, limits, growthvectors, total_height); // limit to not intersect with other (original) surface elements double trig_shift = 0; double seg_shift = 2.1; limiter.FindTreeIntersections( trig_shift, seg_shift, [&](PointIndex pi_to, SurfaceElementIndex sei) { if (sei >= nse) return; // ignore new surface elements in first pass limiter.LimitGrowthVector(pi_to, sei, trig_shift, seg_shift); }); limiter.LimitSelfIntersection(); // for(auto i : Range(growthvectors)) // growthvectors[i] *= limits[i]; // limits = 1.0; // now limit again with shifted surface elements trig_shift = 1.1; seg_shift = 1.1; size_t limit_counter = 1; while(limit_counter) { limit_counter = 0; limiter.FindTreeIntersections( trig_shift, seg_shift, [&](PointIndex pi_to, SurfaceElementIndex sei) { if(limiter.LimitGrowthVector(pi_to, sei, trig_shift, seg_shift)) limit_counter++; auto sel = mesh[sei]; bool is_mapped = true; for(auto pi : sel.PNums()) { if (pi >= np) return; if (mapto[pi].Size() == 0) return; } if(limiter.LimitGrowthVector(pi_to, sei, trig_shift, seg_shift, true)) limit_counter++; }); } // check if surface trigs are intersecting each other { Point3d pmin, pmax; mesh.GetBox (pmin, pmax); BoxTree<3, SurfaceElementIndex> setree(pmin, pmax); for (auto sei : mesh.SurfaceElements().Range()) { const Element2d & tri = mesh[sei]; Box<3> box(Box<3>::EMPTY_BOX); for (PointIndex pi : tri.PNums()) box.Add (limiter.GetPoint(pi, 1.0, true)); box.Increase(1e-3*box.Diam()); setree.Insert (box, sei); } for (auto sei : mesh.SurfaceElements().Range()) { const Element2d & tri = mesh[sei]; Box<3> box(Box<3>::EMPTY_BOX); for (PointIndex pi : tri.PNums()) box.Add (limiter.GetPoint(pi, 1.0, true)); setree.GetFirstIntersecting (box.PMin(), box.PMax(), [&] (SurfaceElementIndex sej) { const Element2d & tri2 = mesh[sej]; if ( mesh[tri[0]].GetLayer() != mesh[tri2[0]].GetLayer()) return false; netgen::Point<3> tri1_points[3], tri2_points[3]; const netgen::Point<3> *trip1[3], *trip2[3]; for (int k = 0; k < 3; k++) { trip1[k] = &tri1_points[k]; trip2[k] = &tri2_points[k]; } auto set_points = [&] () { for (int k = 0; k < 3; k++) { tri1_points[k] = limiter.GetPoint(tri[k], 1.0, true); tri2_points[k] = limiter.GetPoint(tri2[k], 1.0, true); } }; set_points(); int counter = 0; while(IntersectTriangleTriangle (&trip1[0], &trip2[0])) { PointIndex pi_max_limit = PointIndex::INVALID; for(PointIndex pi : {tri[0], tri[1], tri[2], tri2[0], tri2[1], tri2[2]}) if( pi > np && (!pi_max_limit.IsValid() || limits[mapfrom[pi]] > limits[pi_max_limit])) pi_max_limit = mapfrom[pi]; if(!pi_max_limit.IsValid()) break; limits[pi_max_limit] *= 0.9; set_points(); counter++; if(counter > 20 ) { cerr << "Limit intersecting sourface elements: too many limitation steps" << endl; break; } } return false; }); } } // for (auto [pi_to, data] : growth_vector_map) { // auto pi_from = limiter.map_from[pi_to]; // if(pi_from.IsValid()) // limits[pi_from] = min(limits[pi_from], limits[pi_to]); // } for (auto i : Range(growthvectors)) growthvectors[i] *= limits[i]; for (auto& [special_pi, special_point] : special_boundary_points) { for(auto & group : special_point.growth_groups) { group.growth_vector *= limits[special_pi]; } } } // depending on the geometry type, the mesh contains segments multiple times // (once for each face) bool HaveSingleSegments(const Mesh& mesh) { auto& topo = mesh.GetTopology(); NgArray surf_els; for (auto segi : Range(mesh.LineSegments())) { mesh.GetTopology().GetSegmentSurfaceElements(segi + 1, surf_els); if (surf_els.Size() < 2) continue; auto seg = mesh[segi]; auto pi0 = min(seg[0], seg[1]); auto pi1 = max(seg[0], seg[1]); auto p0_segs = topo.GetVertexSegments(seg[0]); for (auto segi_other : p0_segs) { if (segi_other == segi) continue; auto seg_other = mesh[segi_other]; auto pi0_other = min(seg_other[0], seg_other[1]); auto pi1_other = max(seg_other[0], seg_other[1]); if (pi0_other == pi0 && pi1_other == pi1) return false; } // found segment with multiple adjacent surface elements but no other // segments with same points -> have single segments return true; } return true; } // duplicates segments (and sets seg.si accordingly) to have a unified data // structure for all geometry types Array BuildSegments(Mesh& mesh) { Array segments; // auto& topo = mesh.GetTopology(); NgArray surf_els; for (auto segi : Range(mesh.LineSegments())) { auto seg = mesh[segi]; mesh.GetTopology().GetSegmentSurfaceElements(segi + 1, surf_els); for (auto seli : surf_els) { const auto& sel = mesh[seli]; seg.si = sel.GetIndex(); auto np = sel.GetNP(); for (auto i : Range(np)) { if (sel[i] == seg[0]) { if (sel[(i + 1) % np] != seg[1]) swap(seg[0], seg[1]); break; } } segments.Append(seg); } } return segments; } void MergeAndAddSegments(Mesh& mesh, FlatArray segments, FlatArray new_segments) { INDEX_2_HASHTABLE already_added(segments.Size() + 2 * new_segments.Size()); mesh.LineSegments().SetSize0(); auto addSegment = [&](const auto& seg) { INDEX_2 i2(seg[0], seg[1]); i2.Sort(); if (!already_added.Used(i2)) { mesh.AddSegment(seg); already_added.Set(i2, true); } }; for (const auto& seg : segments) addSegment(seg); for (const auto& seg : new_segments) addSegment(seg); } // TODO: Hack, move this to the header or restructure the whole growth_vectors storage static std::map> non_bl_growth_vectors; void BoundaryLayerTool ::InterpolateSurfaceGrowthVectors() { static Timer tall("InterpolateSurfaceGrowthVectors"); RegionTimer rtall(tall); static Timer tsmooth("InterpolateSurfaceGrowthVectors-Smoothing"); auto np_old = this->np; auto np = mesh.GetNP(); non_bl_growth_vectors.clear(); auto getGW = [&](PointIndex pi) -> Vec<3> { if (growth_vector_map.count(pi) == 0) { non_bl_growth_vectors[pi] = .0; growth_vector_map[pi] = {&non_bl_growth_vectors[pi], 1.0}; } auto [gw, height] = growth_vector_map[pi]; return height * (*gw); }; auto addGW = [&](PointIndex pi, Vec<3> vec) { if (growth_vector_map.count(pi) == 0) { non_bl_growth_vectors[pi] = .0; growth_vector_map[pi] = {&non_bl_growth_vectors[pi], 1.0}; } auto [gw, height] = growth_vector_map[pi]; *gw += 1.0 / height * vec; }; Array, PointIndex> normals(np); for (auto pi = np_old; pi < np; pi++) { normals[pi + PointIndex::BASE] = getGW(pi + PointIndex::BASE); } auto hasMoved = [&](PointIndex pi) { return (pi - PointIndex::BASE >= np_old) || mapto[pi].Size() > 0 || special_boundary_points.count(pi); }; std::set points_set; ParallelForRange(mesh.SurfaceElements().Range(), [&](auto myrange) { for (SurfaceElementIndex sei : myrange) { for (auto pi : mesh[sei].PNums()) { auto pi_from = mapfrom[pi]; if((pi_from.IsValid() && mesh[pi_from].Type() == SURFACEPOINT) || (!pi_from.IsValid() && mapto[pi].Size()==0 && mesh[pi].Type() == SURFACEPOINT)) points_set.insert(pi); } } }); Array has_moved_points(max_edge_nr + 1); has_moved_points = false; std::set moved_edge_points; for (auto seg : segments) { if (hasMoved(seg[0]) != hasMoved(seg[1])) has_moved_points[seg.edgenr] = true; } for (auto seg : segments) if (has_moved_points[seg.edgenr]) for (auto pi : seg.PNums()) if (mesh[pi].Type() == EDGEPOINT) points_set.insert(pi); Array points; for (auto pi : points_set) points.Append(pi); QuickSort(points); auto p2sel = mesh.CreatePoint2SurfaceElementTable(); // smooth tangential part of growth vectors from edges to surface elements Array, PointIndex> corrections(mesh.GetNP()); corrections = 0.0; RegionTimer rtsmooth(tsmooth); for ([[maybe_unused]] auto i : Range(10)) { for (auto pi : points) { auto sels = p2sel[pi]; auto & correction = corrections[pi]; std::set suround; suround.insert(pi); // average only tangent component on new bl points, average whole growth vector otherwise bool do_average_tangent = mapfrom[pi].IsValid(); correction = 0.0; for (auto sei : sels) { const auto& sel = mesh[sei]; for (auto pi1 : sel.PNums()) { if (suround.count(pi1)) continue; suround.insert(pi1); auto gw_other = getGW(pi1)+corrections[pi1]; if(do_average_tangent) { auto normal_other = getNormal(mesh[sei]); auto tangent_part = gw_other - (gw_other * normal_other) * normal_other; correction += tangent_part; } else { correction += gw_other; } } } correction *= 1.0 / suround.size(); if(!do_average_tangent) correction -= getGW(pi); } } for(auto pi: points) addGW(pi, corrections[pi]); } BoundaryLayerTool::BoundaryLayerTool(Mesh& mesh_, const BoundaryLayerParameters& params_) : mesh(mesh_), topo(mesh_.GetTopology()), params(params_) { static Timer timer("BoundaryLayerTool::ctor"); RegionTimer regt(timer); // for(auto & seg : mesh.LineSegments()) // seg.edgenr = seg.epgeominfo[1].edgenr; total_height = 0.0; for (auto h : params.heights) total_height += h; max_edge_nr = -1; for (const auto& seg : mesh.LineSegments()) if (seg.edgenr > max_edge_nr) max_edge_nr = seg.edgenr; int ndom = mesh.GetNDomains(); ndom_old = ndom; new_mat_nrs.SetSize(mesh.FaceDescriptors().Size() + 1); new_mat_nrs = -1; for (auto [bcname, matname] : params.new_mat) { mesh.SetMaterial(++ndom, matname); regex pattern(bcname); for (auto i : Range(1, mesh.GetNFD() + 1)) { auto& fd = mesh.GetFaceDescriptor(i); if (regex_match(fd.GetBCName(), pattern)) new_mat_nrs[i] = ndom; } } domains = params.domains; if (!params.outside) domains.Invert(); topo.SetBuildVertex2Element(true); mesh.UpdateTopology(); have_single_segments = HaveSingleSegments(mesh); if (have_single_segments) segments = BuildSegments(mesh); else segments = mesh.LineSegments(); np = mesh.GetNP(); ne = mesh.GetNE(); nse = mesh.GetNSE(); nseg = segments.Size(); p2sel = mesh.CreatePoint2SurfaceElementTable(); nfd_old = mesh.GetNFD(); moved_surfaces.SetSize(nfd_old + 1); moved_surfaces.Clear(); si_map.SetSize(nfd_old + 1); for (auto i : Range(nfd_old + 1)) si_map[i] = i; } void BoundaryLayerTool ::CreateNewFaceDescriptors() { surfacefacs.SetSize(nfd_old + 1); surfacefacs = 0.0; // create new FaceDescriptors for (auto i : Range(1, nfd_old + 1)) { const auto& fd = mesh.GetFaceDescriptor(i); string name = fd.GetBCName(); if (params.surfid.Contains(i)) { if (auto isIn = domains.Test(fd.DomainIn()); isIn != domains.Test(fd.DomainOut())) { int new_si = mesh.GetNFD() + 1; surfacefacs[i] = isIn ? 1. : -1.; // -1 surf nr is so that curving does not do anything FaceDescriptor new_fd(-1, isIn ? new_mat_nrs[i] : fd.DomainIn(), isIn ? fd.DomainOut() : new_mat_nrs[i], -1); new_fd.SetBCProperty(new_si); new_fd.SetSurfColour(fd.SurfColour()); mesh.AddFaceDescriptor(new_fd); si_map[i] = new_si; moved_surfaces.SetBit(i); mesh.SetBCName(new_si - 1, "mapped_" + name); } // curving of surfaces with boundary layers will often // result in pushed through elements, since we do not (yet) // curvature through layers. // Therefore we disable curving for these surfaces. if (!params.keep_surfaceindex) mesh.GetFaceDescriptor(i).SetSurfNr(-1); } } for (auto si : params.surfid) if (surfacefacs[si] == 0.0) throw Exception("Surface " + to_string(si) + " is not a boundary of the domain to be grown into!"); } void BoundaryLayerTool ::CreateFaceDescriptorsSides() { BitArray face_done(mesh.GetNFD() + 1); face_done.Clear(); for (const auto& sel : mesh.SurfaceElements()) { auto facei = sel.GetIndex(); if (face_done.Test(facei)) continue; bool point_moved = false; // bool point_fixed = false; for (auto pi : sel.PNums()) { if (growthvectors[pi].Length() > 0) point_moved = true; /* else point_fixed = true; */ } if (point_moved && !moved_surfaces.Test(facei)) { int new_si = mesh.GetNFD() + 1; const auto& fd = mesh.GetFaceDescriptor(facei); // auto isIn = domains.Test(fd.DomainIn()); // auto isOut = domains.Test(fd.DomainOut()); int si = params.sides_keep_surfaceindex ? facei : -1; // domin and domout can only be set later FaceDescriptor new_fd(si, -1, -1, si); new_fd.SetBCProperty(new_si); mesh.AddFaceDescriptor(new_fd); si_map[facei] = new_si; mesh.SetBCName(new_si - 1, fd.GetBCName()); face_done.SetBit(facei); } } } void BoundaryLayerTool ::CalculateGrowthVectors() { growthvectors.SetSize(np); growthvectors = 0.; for (auto pi : mesh.Points().Range()) { const auto& p = mesh[pi]; if (p.Type() == INNERPOINT) continue; std::map> normals; // calculate one normal vector per face (average with angles as weights for // multiple surface elements within a face) for (auto sei : p2sel[pi]) { const auto& sel = mesh[sei]; auto facei = sel.GetIndex(); if (!params.surfid.Contains(facei)) continue; auto n = surfacefacs[sel.GetIndex()] * getNormal(sel); int itrig = sel.PNums().Pos(pi); itrig += sel.GetNP(); auto v0 = (mesh[sel.PNumMod(itrig + 1)] - mesh[pi]).Normalize(); auto v1 = (mesh[sel.PNumMod(itrig - 1)] - mesh[pi]).Normalize(); if (normals.count(facei) == 0) normals[facei] = {0., 0., 0.}; normals[facei] += acos(v0 * v1) * n; } for (auto& [facei, n] : normals) n *= 1.0 / n.Length(); // combine normal vectors for each face to keep uniform distances ArrayMem, 5> ns; for (auto& [facei, n] : normals) { ns.Append(n); } try { growthvectors[pi] = CalcGrowthVector(ns); } catch (const SpecialPointException& e) { special_boundary_points.emplace(pi, normals); growthvectors[pi] = special_boundary_points[pi].growth_groups[0].growth_vector; } } } Array>, SegmentIndex> BoundaryLayerTool ::BuildSegMap() { // Bit array to keep track of segments already processed BitArray segs_done(nseg + 1); segs_done.Clear(); // map for all segments with same points // points to pair of SegmentIndex, int // int is type of other segment, either: // 0 == adjacent surface grows layer // 1 == adjacent surface doesn't grow layer, but layer ends on it // 2 == adjacent surface is interior surface that ends on layer // 3 == adjacent surface is exterior surface that ends on layer (not allowed // yet) Array>, SegmentIndex> segmap(segments.Size()); // moved segments is_edge_moved.SetSize(max_edge_nr + 1); is_edge_moved = false; // boundaries to project endings to is_boundary_projected.SetSize(nfd_old + 1); is_boundary_projected.Clear(); is_boundary_moved.SetSize(nfd_old + 1); is_boundary_moved.Clear(); for (auto si : Range(segments)) { if (segs_done[si]) continue; const auto& segi = segments[si]; if (!moved_surfaces.Test(segi.si)) continue; segs_done.SetBit(si); segmap[si].Append(make_pair(si, 0)); moved_segs.Append(si); is_edge_moved.SetBit(segi.edgenr); for (auto sj : Range(segments)) { if (segs_done.Test(sj)) continue; const auto& segj = segments[sj]; if ((segi[0] == segj[0] && segi[1] == segj[1]) || (segi[0] == segj[1] && segi[1] == segj[0])) { segs_done.SetBit(sj); int type; if (moved_surfaces.Test(segj.si)) { type = 0; moved_segs.Append(sj); } else if (const auto& fd = mesh.GetFaceDescriptor(segj.si); domains.Test(fd.DomainIn()) && domains.Test(fd.DomainOut())) { type = 2; if (fd.DomainIn() == 0 || fd.DomainOut() == 0) is_boundary_projected.SetBit(segj.si); } else if (const auto& fd = mesh.GetFaceDescriptor(segj.si); !domains.Test(fd.DomainIn()) && !domains.Test(fd.DomainOut())) { type = 3; is_boundary_moved.SetBit(segj.si); } else { type = 1; // in case 1 we project the growthvector onto the surface is_boundary_projected.SetBit(segj.si); } segmap[si].Append(make_pair(sj, type)); } } } return segmap; } BitArray BoundaryLayerTool ::ProjectGrowthVectorsOnSurface() { BitArray in_surface_direction(nfd_old + 1); in_surface_direction.Clear(); // project growthvector on surface for inner angles if (params.grow_edges) { for (const auto& sel : mesh.SurfaceElements()) if (is_boundary_projected.Test(sel.GetIndex())) { auto n = getNormal(sel); for (auto i : Range(sel.PNums())) { auto pi = sel.PNums()[i]; if (growthvectors[pi].Length2() == 0.) continue; auto next = sel.PNums()[(i + 1) % sel.GetNV()]; auto prev = sel.PNums()[i == 0 ? sel.GetNV() - 1 : i - 1]; auto v1 = (mesh[next] - mesh[pi]).Normalize(); auto v2 = (mesh[prev] - mesh[pi]).Normalize(); auto v3 = growthvectors[pi]; v3.Normalize(); auto tol = v1.Length() * 1e-12; if ((v1 * v3 > -tol) && (v2 * v3 > -tol)) in_surface_direction.SetBit(sel.GetIndex()); else continue; if (!params.project_boundaries.Contains(sel.GetIndex())) continue; auto& g = growthvectors[pi]; auto ng = n * g; auto gg = g * g; auto nn = n * n; // if(fabs(ng*ng-nn*gg) < 1e-12 || fabs(ng) < 1e-12) continue; auto a = -ng * ng / (ng * ng - nn * gg); auto b = ng * gg / (ng * ng - nn * gg); g += a * g + b * n; } } } else { for (const auto& seg : segments) { int count = 0; for (const auto& seg2 : segments) if (((seg[0] == seg2[0] && seg[1] == seg2[1]) || (seg[0] == seg2[1] && seg[1] == seg2[0])) && params.surfid.Contains(seg2.si)) count++; if (count == 1) { growthvectors[seg[0]] = {0., 0., 0.}; growthvectors[seg[1]] = {0., 0., 0.}; } } } return in_surface_direction; } void BoundaryLayerTool ::InterpolateGrowthVectors() { int new_max_edge_nr = max_edge_nr; for (const auto& seg : segments) if (seg.edgenr > new_max_edge_nr) new_max_edge_nr = seg.edgenr; for (const auto& seg : new_segments) if (seg.edgenr > new_max_edge_nr) new_max_edge_nr = seg.edgenr; auto getGW = [&](PointIndex pi) -> Vec<3> { if (growth_vector_map.count(pi) == 0) growth_vector_map[pi] = {&growthvectors[pi], total_height}; auto [gw, height] = growth_vector_map[pi]; return height * (*gw); }; auto addGW = [&](PointIndex pi, Vec<3> vec) { if (growth_vector_map.count(pi) == 0) growth_vector_map[pi] = {&growthvectors[pi], total_height}; auto [gw, height] = growth_vector_map[pi]; *gw += 1.0 / height * vec; }; // interpolate tangential component of growth vector along edge if(max_edge_nr < new_max_edge_nr) for (auto edgenr : Range(max_edge_nr + 1, new_max_edge_nr)) { // cout << "SEARCH EDGE " << edgenr +1 << endl; // if(!is_edge_moved[edgenr+1]) continue; // build sorted list of edge Array points; // find first vertex on edge double edge_len = 0.; auto is_end_point = [&](PointIndex pi) { // if(mesh[pi].Type() == FIXEDPOINT) // return true; // return false; auto segs = topo.GetVertexSegments(pi); if (segs.Size() == 1) return true; auto first_edgenr = mesh[segs[0]].edgenr; for (auto segi : segs) if (mesh[segi].edgenr != first_edgenr) return true; return false; }; bool any_grows = false; for (const auto& seg : segments) { if (seg.edgenr - 1 == edgenr) { if (getGW(seg[0]).Length2() != 0 || getGW(seg[1]).Length2() != 0) any_grows = true; if (points.Size() == 0 && (is_end_point(seg[0]) || is_end_point(seg[1]))) { PointIndex seg0 = seg[0], seg1 = seg[1]; if (is_end_point(seg[1])) Swap(seg0, seg1); points.Append(seg0); points.Append(seg1); edge_len += (mesh[seg[1]] - mesh[seg[0]]).Length(); } } } if (!any_grows) { // cout << "skip edge " << edgenr+1 << endl; continue; } if (!points.Size()) throw Exception("Could not find startpoint for edge " + ToString(edgenr)); while (true) { bool point_found = false; for (auto si : topo.GetVertexSegments(points.Last())) { const auto& seg = mesh[si]; if (seg.edgenr - 1 != edgenr) continue; if (seg[0] == points.Last() && points[points.Size() - 2] != seg[1]) { edge_len += (mesh[points.Last()] - mesh[seg[1]]).Length(); points.Append(seg[1]); point_found = true; break; } else if (seg[1] == points.Last() && points[points.Size() - 2] != seg[0]) { edge_len += (mesh[points.Last()] - mesh[seg[0]]).Length(); points.Append(seg[0]); point_found = true; break; } } if (is_end_point(points.Last())) break; if (!point_found) { throw Exception( string("Could not find connected list of line segments for edge ") + edgenr); } } if (getGW(points[0]).Length2() == 0 && getGW(points.Last()).Length2() == 0) continue; // cout << "Points to average " << endl << points << endl; // tangential part of growth vectors auto t1 = (mesh[points[1]] - mesh[points[0]]).Normalize(); auto gt1 = getGW(points[0]) * t1 * t1; auto t2 = (mesh[points.Last()] - mesh[points[points.Size() - 2]]).Normalize(); auto gt2 = getGW(points.Last()) * t2 * t2; // if(!is_edge_moved[edgenr+1]) // { // if(getGW(points[0]) * (mesh[points[1]] - mesh[points[0]]) < 0) // gt1 = 0.; // if(getGW(points.Last()) * (mesh[points[points.Size()-2]] - // mesh[points.Last()]) < 0) // gt2 = 0.; // } double len = 0.; for (auto i : IntRange(1, points.Size() - 1)) { auto pi = points[i]; len += (mesh[pi] - mesh[points[i - 1]]).Length(); auto t = getEdgeTangent(pi, edgenr); auto lam = len / edge_len; auto interpol = (1 - lam) * (gt1 * t) * t + lam * (gt2 * t) * t; addGW(pi, interpol); } } InterpolateSurfaceGrowthVectors(); } void BoundaryLayerTool ::InsertNewElements( FlatArray>, SegmentIndex> segmap, const BitArray& in_surface_direction) { static Timer timer("BoundaryLayerTool::InsertNewElements"); RegionTimer rt(timer); mapto.SetSize(0); mapto.SetSize(np); mapfrom.SetSize(mesh.GetNP()); mapfrom = PointIndex::INVALID; auto changed_domains = domains; if (!params.outside) changed_domains.Invert(); auto& identifications = mesh.GetIdentifications(); const int identnr = identifications.GetNr("boundarylayer"); auto add_points = [&](PointIndex pi, Vec<3>& growth_vector, Array& new_points) { Point<3> p = mesh[pi]; PointIndex pi_last = pi; double height = 0.0; for (auto i : Range(params.heights)) { height += params.heights[i]; auto pi_new = mesh.AddPoint(p); mapfrom.Append(pi); new_points.Append(pi_new); growth_vector_map[pi_new] = {&growth_vector, height}; if (special_boundary_points.count(pi) > 0) mesh.AddLockedPoint(pi_new); pi_last = pi_new; } }; // insert new points for (PointIndex pi = 1; pi <= np; pi++) { if (growthvectors[pi].Length2() != 0) { if (special_boundary_points.count(pi)) { for (auto& group : special_boundary_points[pi].growth_groups) add_points(pi, group.growth_vector, group.new_points); } else add_points(pi, growthvectors[pi], mapto[pi]); } } // get point from mapto (or the group if point is mapped to multiple new // points) layer = -1 means last point (top of boundary layer) auto newPoint = [&](PointIndex pi, int layer = -1, int group = 0) { if (layer == -1) layer = params.heights.Size() - 1; if (special_boundary_points.count(pi)) return special_boundary_points[pi].growth_groups[group].new_points[layer]; else return mapto[pi][layer]; }; auto hasMoved = [&](PointIndex pi) { return mapto[pi].Size() > 0 || special_boundary_points.count(pi); }; auto numGroups = [&](PointIndex pi) -> size_t { if (special_boundary_points.count(pi)) return special_boundary_points[pi].growth_groups.Size(); else return 1; }; auto getGroups = [&](PointIndex pi, int face_index) -> Array { auto n = numGroups(pi); Array groups; if (n == 1) { groups.Append(0); return groups; } const auto& all_groups = special_boundary_points[pi].growth_groups; for (auto i : Range(n)) if (all_groups[i].faces.Contains(face_index)) groups.Append(i); // cout << "groups " << pi << ", " << face_index << endl << groups; return groups; }; // add 2d quads on required surfaces map, int> seg2edge; map edge_map; int edge_nr = max_edge_nr; auto getEdgeNr = [&](int ei) { if (edge_map.count(ei) == 0) edge_map[ei] = ++edge_nr; return edge_map[ei]; }; if (params.grow_edges) { for (auto sei : moved_segs) { // copy here since we will add segments and this would // invalidate a reference! // auto segi = segments[sei]; for (auto [sej, type] : segmap[sei]) { auto segj = segments[sej]; if (type == 0) { auto addSegment = [&](PointIndex p0, PointIndex p1, bool extra_edge_nr = false) { Segment s; s[0] = p0; s[1] = p1; s[2] = PointIndex::INVALID; auto pair = s[0] < s[1] ? make_pair(s[0], s[1]) : make_pair(s[1], s[0]); if (extra_edge_nr) s.edgenr = ++edge_nr; else s.edgenr = getEdgeNr(segj.edgenr); s.si = si_map[segj.si]; new_segments.Append(s); // cout << __LINE__ <<"\t" << s << endl; return s; }; auto p0 = segj[0], p1 = segj[1]; auto g0 = getGroups(p0, segj.si); auto g1 = getGroups(p1, segj.si); if (g0.Size() == 1 && g1.Size() == 1) auto s = addSegment(newPoint(p0, -1, g0[0]), newPoint(p1, -1, g1[0])); else { if (g0.Size() == 2) addSegment(newPoint(p0, -1, g0[0]), newPoint(p0, -1, g0[1])); if (g1.Size() == 2) addSegment(newPoint(p1, -1, g1[0]), newPoint(p1, -1, g1[1])); } } // here we need to grow the quad elements else if (type == 1) { PointIndex pp1 = segj[1]; PointIndex pp2 = segj[0]; if (in_surface_direction.Test(segj.si)) { Swap(pp1, pp2); is_boundary_moved.SetBit(segj.si); } PointIndex p1 = pp1; PointIndex p2 = pp2; PointIndex p3, p4; Segment s0; s0[0] = p1; s0[1] = p2; s0[2] = PointIndex::INVALID; s0.edgenr = segj.edgenr; s0.si = segj.si; new_segments.Append(s0); for (auto i : Range(params.heights)) { Element2d sel(QUAD); p3 = newPoint(pp2, i); p4 = newPoint(pp1, i); sel[0] = p1; sel[1] = p2; sel[2] = p3; sel[3] = p4; for (auto i : Range(4)) { sel.GeomInfo()[i].u = 0.0; sel.GeomInfo()[i].v = 0.0; } sel.SetIndex(si_map[segj.si]); mesh.AddSurfaceElement(sel); // TODO: Too many, would be enough to only add outermost ones Segment s1; s1[0] = p2; s1[1] = p3; s1[2] = PointIndex::INVALID; auto pair = make_pair(p2, p3); s1.edgenr = getEdgeNr(segj.edgenr); s1.si = segj.si; // new_segments.Append(s1); Segment s2; s2[0] = p4; s2[1] = p1; s2[2] = PointIndex::INVALID; pair = make_pair(p1, p4); s2.edgenr = getEdgeNr(segj.edgenr); s2.si = segj.si; // new_segments.Append(s2); p1 = p4; p2 = p3; } Segment s3; s3[0] = p3; s3[1] = p4; s3[2] = PointIndex::INVALID; auto pair = p3 < p4 ? make_pair(p3, p4) : make_pair(p4, p3); s3.edgenr = getEdgeNr(segj.edgenr); s3.si = segj.si; new_segments.Append(s3); } } } } auto getClosestGroup = [&](PointIndex pi, SurfaceElementIndex sei) { auto n = numGroups(pi); if (n == 1) return 0; const auto& sel = mesh[sei]; auto groups = getGroups(pi, sel.GetIndex()); if (groups.Size() == 1) return groups[0]; auto & growth_groups = special_boundary_points[pi].growth_groups; auto vdir = Center(mesh[sel[0]], mesh[sel[1]], mesh[sel[2]]) - mesh[pi]; auto dot = vdir * special_boundary_points[pi].separating_direction; return dot > 0 ? 1 : 0; }; BitArray fixed_points(np + 1); fixed_points.Clear(); BitArray moveboundarypoint(np + 1); moveboundarypoint.Clear(); auto p2el = mesh.CreatePoint2ElementTable(); for (SurfaceElementIndex si = 0; si < nse; si++) { // copy because surfaceels array will be resized! const auto sel = mesh[si]; if (moved_surfaces.Test(sel.GetIndex())) { Array points(sel.PNums()); if (surfacefacs[sel.GetIndex()] > 0) Swap(points[0], points[2]); ArrayMem groups(points.Size()); for (auto i : Range(points)) groups[i] = getClosestGroup(sel[i], si); bool add_volume_element = true; for (auto pi : sel.PNums()) if (numGroups(pi) > 1) add_volume_element = false; for (auto j : Range(params.heights)) { auto eltype = points.Size() == 3 ? PRISM : HEX; Element el(eltype); for (auto i : Range(points)) el[i] = points[i]; for (auto i : Range(points)) points[i] = newPoint(sel.PNums()[i], j, groups[i]); if (surfacefacs[sel.GetIndex()] > 0) Swap(points[0], points[2]); for (auto i : Range(points)) el[sel.PNums().Size() + i] = points[i]; auto new_index = new_mat_nrs[sel.GetIndex()]; if (new_index == -1) throw Exception("Boundary " + ToString(sel.GetIndex()) + " with name " + mesh.GetBCName(sel.GetIndex() - 1) + " extruded, but no new material specified for it!"); el.SetIndex(new_mat_nrs[sel.GetIndex()]); if (add_volume_element) mesh.AddVolumeElement(el); else { // Let the volume mesher fill the hole with pyramids/tets // To insert pyramids, we need close surface identifications on open // quads for (auto i : Range(points)) if (numGroups(sel[i]) == 1) identifications.Add(el[i], el[i + points.Size()], identnr); } } Element2d newel = sel; for (auto i : Range(points)) newel[i] = newPoint(sel[i], -1, groups[i]); newel.SetIndex(si_map[sel.GetIndex()]); mesh.AddSurfaceElement(newel); // also move volume element adjacent to this surface element accordingly ElementIndex ei = -1; // if(groups[0] || groups[1] || groups[2]) // for(auto ei_ : p2el[sel.PNums()[0]]) // { // const auto & el = mesh[ei_]; // // if(!domains.Test(el.GetIndex())) continue; // cout << "check " << ei_ << "\t" << el << "\t" << sel << endl; // auto pnums = el.PNums(); // if(pnums.Contains(sel[1]) && pnums.Contains(sel[2])) { // ei = ei_; // break; // } // } if (ei != -1) { auto& el = mesh[ei]; for (auto i : Range(el.GetNP())) for (auto j : Range(3)) { if (groups[j] && el[i] == sel[j]) { el[i] = newel[j]; break; } } } } else { bool has_moved = false; for (auto p : sel.PNums()) has_moved |= hasMoved(p); if (has_moved) for (auto p : sel.PNums()) { if (hasMoved(p)) { fixed_points.SetBit(p); if (is_boundary_moved.Test(sel.GetIndex())) moveboundarypoint.SetBit(p); } } } if (is_boundary_moved.Test(sel.GetIndex())) { for (auto& p : mesh[si].PNums()) if (hasMoved(p)) p = newPoint(p); } } for (SegmentIndex sei = 0; sei < nseg; sei++) { auto& seg = segments[sei]; if (is_boundary_moved.Test(seg.si)) for (auto& p : seg.PNums()) if (hasMoved(p)) p = newPoint(p); // else if(hasMoved(seg[0]) || hasMoved(seg[1])) // { // auto tangent = mesh[seg[1]] - mesh[seg[0]]; // if(hasMoved(seg[0]) && growthvectors[seg[0]] * tangent > 0) // seg[0] = newPoint(seg[0]); // if(hasMoved(seg[1]) && growthvectors[seg[1]] * tangent < 0) // seg[1] = newPoint(seg[1]); // } } // fill holes in surface mesh at special boundary points (i.e. points with >=4 adjacent // boundary faces) auto p2sel = mesh.CreatePoint2SurfaceElementTable(); for (auto& [special_pi, special_point] : special_boundary_points) { if (special_point.growth_groups.Size() != 2) throw Exception("special_point.growth_groups.Size() != 2"); // Special points are split into two new points, when mapping a surface element, we choose the closer one to the center. // Now, find points which are mapped to both new points (for different surface elements they belong to). // At exactly these points we need to insert new surface elements to fill the hole. std::map, 2>> close_group; for (auto sei : p2sel[special_pi]) { const auto & sel = mesh[sei]; for (auto p : sel.PNums()) if (p != special_pi) close_group[sel.GetIndex()][getClosestGroup(special_pi, sei)].insert(p); } for( auto [fi, groups] : close_group ) { const auto mapped_fi = si_map[fi]; std::set common_points; for (auto pi : groups[0]) if(groups[1].count(pi) == 1) common_points.insert(pi); if(common_points.size()>0) { auto pi_common = mapto[*common_points.begin()].Last(); auto new_special_pi0 = special_point.growth_groups[0].new_points.Last(); auto new_special_pi1 = special_point.growth_groups[1].new_points.Last(); for (auto sei : p2sel[pi_common]) { if(mesh[sei].GetIndex() == mapped_fi && mesh[sei].PNums().Contains(new_special_pi0)) { auto sel = mesh[sei]; sel.Invert(); for (auto & pi : sel.PNums()) if(pi != pi_common && pi != new_special_pi0) pi = new_special_pi1; mesh.AddSurfaceElement(sel); } } } } } for (auto& [pi, special_point] : special_boundary_points) { if (special_point.growth_groups.Size() != 2) throw Exception("special_point.growth_groups.Size() != 2"); for (auto igroup : Range(2)) { auto& group = special_point.growth_groups[igroup]; std::set faces; for (auto face : group.faces) faces.insert(si_map[face]); auto pi_new = group.new_points.Last(); auto pi_new_other = special_point.growth_groups[1 - igroup].new_points.Last(); for (auto sei : p2sel[pi_new]) faces.erase(mesh[sei].GetIndex()); for (auto face : faces) for (auto seg : new_segments) { if ( // seg.si == face (seg[0] == pi_new || seg[1] == pi_new) && (seg[0] != pi_new_other && seg[1] != pi_new_other)) { bool is_correct_face = false; auto pi_other = seg[0] == pi_new ? seg[1] : seg[0]; for (auto sei : p2sel[pi_other]) { if (mesh[sei].GetIndex() == face) { is_correct_face = true; break; } } if (is_correct_face) { Element2d sel; sel[0] = seg[1]; sel[1] = seg[0]; sel[2] = pi_new_other; sel.SetIndex(face); mesh.AddSurfaceElement(sel); } } } } } for (ElementIndex ei = 0; ei < ne; ei++) { auto el = mesh[ei]; ArrayMem fixed; ArrayMem moved; bool moved_bnd = false; for (const auto& p : el.PNums()) { if (fixed_points.Test(p)) fixed.Append(p); if (hasMoved(p)) moved.Append(p); if (moveboundarypoint.Test(p)) moved_bnd = true; } bool do_move, do_insert; if (changed_domains.Test(el.GetIndex())) { do_move = fixed.Size() && moved_bnd; do_insert = do_move; } else { do_move = !fixed.Size() || moved_bnd; do_insert = !do_move; } // if (do_move) { // for (auto& p : mesh[ei].PNums()) // if (hasMoved(p)) { // if (special_boundary_points.count(p)) { // auto& special_point = special_boundary_points[p]; // auto& group = special_point.growth_groups[0]; // p = group.new_points.Last(); // } else // p = newPoint(p); // } // } if (do_insert) { if (el.GetType() == TET) { if (moved.Size() == 3) // inner corner { PointIndex p1 = moved[0]; PointIndex p2 = moved[1]; PointIndex p3 = moved[2]; auto v1 = mesh[p1]; auto n = Cross(mesh[p2] - v1, mesh[p3] - v1); auto d = mesh[newPoint(p1, 0)] - v1; if (n * d > 0) Swap(p2, p3); PointIndex p4 = p1; PointIndex p5 = p2; PointIndex p6 = p3; for (auto i : Range(params.heights)) { Element nel(PRISM); nel[0] = p4; nel[1] = p5; nel[2] = p6; p4 = newPoint(p1, i); p5 = newPoint(p2, i); p6 = newPoint(p3, i); nel[3] = p4; nel[4] = p5; nel[5] = p6; nel.SetIndex(el.GetIndex()); mesh.AddVolumeElement(nel); } } if (moved.Size() == 2) { if (fixed.Size() == 1) { PointIndex p1 = moved[0]; PointIndex p2 = moved[1]; for (auto i : Range(params.heights)) { PointIndex p3 = newPoint(moved[1], i); PointIndex p4 = newPoint(moved[0], i); Element nel(PYRAMID); nel[0] = p1; nel[1] = p2; nel[2] = p3; nel[3] = p4; nel[4] = el[0] + el[1] + el[2] + el[3] - fixed[0] - moved[0] - moved[1]; if (Cross(mesh[p2] - mesh[p1], mesh[p4] - mesh[p1]) * (mesh[nel[4]] - mesh[nel[1]]) > 0) Swap(nel[1], nel[3]); nel.SetIndex(el.GetIndex()); mesh.AddVolumeElement(nel); p1 = p4; p2 = p3; } } } if (moved.Size() == 1 && fixed.Size() == 1) { PointIndex p1 = moved[0]; for (auto i : Range(params.heights)) { Element nel = el; PointIndex p2 = newPoint(moved[0], i); for (auto& p : nel.PNums()) { if (p == moved[0]) p = p1; else if (p == fixed[0]) p = p2; } p1 = p2; mesh.AddVolumeElement(nel); } } } else if (el.GetType() == PYRAMID) { if (moved.Size() == 2) { if (fixed.Size() != 2) throw Exception("This case is not implemented yet! Fixed size = " + ToString(fixed.Size())); PointIndex p1 = moved[0]; PointIndex p2 = moved[1]; for (auto i : Range(params.heights)) { PointIndex p3 = newPoint(moved[1], i); PointIndex p4 = newPoint(moved[0], i); Element nel(PYRAMID); nel[0] = p1; nel[1] = p2; nel[2] = p3; nel[3] = p4; nel[4] = el[0] + el[1] + el[2] + el[3] + el[4] - fixed[0] - fixed[1] - moved[0] - moved[1]; if (Cross(mesh[p2] - mesh[p1], mesh[p4] - mesh[p1]) * (mesh[nel[4]] - mesh[nel[1]]) > 0) Swap(nel[1], nel[3]); nel.SetIndex(el.GetIndex()); mesh.AddVolumeElement(nel); p1 = p4; p2 = p3; } } else if (moved.Size() == 1) throw Exception("This case is not implemented yet!"); } else if (do_move) { throw Exception( "Boundarylayer only implemented for tets and pyramids outside " "yet!"); } } } } void BoundaryLayerTool ::SetDomInOut() { for (auto i : Range(1, nfd_old + 1)) if (moved_surfaces.Test(i)) { if (auto dom = mesh.GetFaceDescriptor(si_map[i]).DomainIn(); dom > ndom_old) mesh.GetFaceDescriptor(i).SetDomainOut(dom); else mesh.GetFaceDescriptor(i).SetDomainIn( mesh.GetFaceDescriptor(si_map[i]).DomainOut()); } } void BoundaryLayerTool ::SetDomInOutSides() { BitArray done(mesh.GetNFD() + 1); done.Clear(); for (auto sei : Range(mesh.SurfaceElements())) { auto& sel = mesh[sei]; auto index = sel.GetIndex(); if (done.Test(index)) continue; done.SetBit(index); auto& fd = mesh.GetFaceDescriptor(index); if (fd.DomainIn() != -1) continue; int e1, e2; mesh.GetTopology().GetSurface2VolumeElement(sei + 1, e1, e2); if (e1 == 0) fd.SetDomainIn(0); else fd.SetDomainIn(mesh.VolumeElement(e1).GetIndex()); if (e2 == 0) fd.SetDomainOut(0); else fd.SetDomainOut(mesh.VolumeElement(e2).GetIndex()); } } void BoundaryLayerTool ::AddSegments() { if (have_single_segments) MergeAndAddSegments(mesh, segments, new_segments); else { mesh.LineSegments() = segments; for (auto& seg : new_segments) mesh.AddSegment(seg); } } void BoundaryLayerTool ::FixVolumeElements() { static Timer timer("BoundaryLayerTool::FixVolumeElements"); RegionTimer rt(timer); BitArray is_inner_point(mesh.GetNP() + 1); is_inner_point.Clear(); auto changed_domains = domains; if (!params.outside) changed_domains.Invert(); for (ElementIndex ei : Range(ne)) if (changed_domains.Test(mesh[ei].GetIndex())) for (auto pi : mesh[ei].PNums()) if (mesh[pi].Type() == INNERPOINT) is_inner_point.SetBit(pi); Array points; for (auto pi : mesh.Points().Range()) if (is_inner_point.Test(pi)) points.Append(pi); auto p2el = mesh.CreatePoint2ElementTable(is_inner_point); // smooth growth vectors to shift additional element layers to the inside and // fix flipped tets for ([[maybe_unused]] auto step : Range(0)) { for (auto pi : points) { Vec<3> average_gw = 0.0; auto& els = p2el[pi]; size_t cnt = 0; for (auto ei : els) if (ei < ne) for (auto pi1 : mesh[ei].PNums()) if (pi1 <= np) { average_gw += growthvectors[pi1]; cnt++; } growthvectors[pi] = 1.0 / cnt * average_gw; } } } void BoundaryLayerTool ::Perform() { CreateNewFaceDescriptors(); CalculateGrowthVectors(); CreateFaceDescriptorsSides(); auto segmap = BuildSegMap(); auto in_surface_direction = ProjectGrowthVectorsOnSurface(); InsertNewElements(segmap, in_surface_direction); SetDomInOut(); AddSegments(); mesh.CalcSurfacesOfNode(); topo.SetBuildVertex2Element(true); mesh.UpdateTopology(); InterpolateGrowthVectors(); if (params.limit_growth_vectors) LimitGrowthVectorLengths(); for (auto [pi, data] : growth_vector_map) { auto [gw, height] = data; mesh[pi] += height * (*gw); } mesh.GetTopology().ClearEdges(); mesh.SetNextMajorTimeStamp(); mesh.UpdateTopology(); SetDomInOutSides(); MeshingParameters mp; mp.optimize3d = "m"; mp.optsteps3d = 4; OptimizeVolume(mp, mesh); } void GenerateBoundaryLayer(Mesh& mesh, const BoundaryLayerParameters& blp) { static Timer timer("Create Boundarylayers"); RegionTimer regt(timer); BoundaryLayerTool tool(mesh, blp); tool.Perform(); } } // namespace netgen