#include #include "boundarylayer.hpp" #include "meshing2.hpp" #include "../geom2d/csg2d.hpp" namespace netgen { void InsertVirtualBoundaryLayer (Mesh & mesh) { cout << "Insert virt. b.l." << endl; int surfid; cout << "Boundary Nr:"; cin >> surfid; int i; int np = mesh.GetNP(); cout << "Old NP: " << mesh.GetNP() << endl; cout << "Trigs: " << mesh.GetNSE() << endl; NgBitArray bndnodes(np); NgArray mapto(np); bndnodes.Clear(); for (i = 1; i <= mesh.GetNSeg(); i++) { int snr = mesh.LineSegment(i).edgenr; cout << "snr = " << snr << endl; if (snr == surfid) { bndnodes.Set (mesh.LineSegment(i)[0]); bndnodes.Set (mesh.LineSegment(i)[1]); } } for (i = 1; i <= mesh.GetNSeg(); i++) { int snr = mesh.LineSegment(i).edgenr; if (snr != surfid) { bndnodes.Clear (mesh.LineSegment(i)[0]); bndnodes.Clear (mesh.LineSegment(i)[1]); } } for (i = 1; i <= np; i++) { if (bndnodes.Test(i)) mapto.Elem(i) = mesh.AddPoint (mesh.Point (i)); else mapto.Elem(i) = 0; } for (i = 1; i <= mesh.GetNSE(); i++) { Element2d & el = mesh.SurfaceElement(i); for (int j = 1; j <= el.GetNP(); j++) if (mapto.Get(el.PNum(j))) el.PNum(j) = mapto.Get(el.PNum(j)); } int nq = 0; for (i = 1; i <= mesh.GetNSeg(); i++) { int snr = mesh.LineSegment(i).edgenr; if (snr == surfid) { int p1 = mesh.LineSegment(i)[0]; int p2 = mesh.LineSegment(i)[1]; int p3 = mapto.Get (p1); if (!p3) p3 = p1; int p4 = mapto.Get (p2); if (!p4) p4 = p2; Element2d el(QUAD); el.PNum(1) = p1; el.PNum(2) = p2; el.PNum(3) = p3; el.PNum(4) = p4; el.SetIndex (2); mesh.AddSurfaceElement (el); nq++; } } cout << "New NP: " << mesh.GetNP() << endl; cout << "Quads: " << nq << endl; } void AddDirection( Vec<3> & a, Vec<3> b ) { if(a.Length2()==0.) { a = b; return; } if(b.Length2()==0.) return; auto ab = a * b; if(fabs(ab)>1-1e-8) return; Mat<2> m; m(0,0) = a[0]; m(0,1) = a[1]; m(1,0) = b[0]; m(1,1) = b[1]; Vec<2> lam; Vec<2> rhs; rhs[0] = a[0]-b[0]; rhs[1] = a[1]-b[1]; const auto Dot = [](Vec<3> a, Vec<3> b) { return a[0]*b[0] + a[1]*b[1] + a[2]*b[2]; }; rhs[0] = Dot(a,a); rhs[1] = Dot(b,b); m.Solve(rhs, lam); a[0] = lam[0]; a[1] = lam[1]; a[2] = 0.0; return; } static void Generate2dMesh( Mesh & mesh, int domain ) { Box<3> box{Box<3>::EMPTY_BOX}; for(const auto & seg : mesh.LineSegments()) if (seg.domin == domain || seg.domout == domain) for (auto pi : {seg[0], seg[1]}) box.Add(mesh[pi]); MeshingParameters mp; Meshing2 meshing (*mesh.GetGeometry(), mp, box); Array compress(mesh.GetNP()); compress = PointIndex::INVALID; PointIndex cnt = PointIndex::BASE; auto p2sel = mesh.CreatePoint2SurfaceElementTable(); PointGeomInfo gi; gi.u = 0.0; gi.v = 0.0; gi.trignum = domain; for(auto seg : mesh.LineSegments()) { if(seg.domin == domain || seg.domout == domain) for (auto pi : {seg[0], seg[1]}) if (compress[pi]==PointIndex{PointIndex::INVALID}) { meshing.AddPoint(mesh[pi], pi); compress[pi] = cnt++; } if(seg.domin == domain) meshing.AddBoundaryElement (compress[seg[0]], compress[seg[1]], gi, gi); if(seg.domout == domain) meshing.AddBoundaryElement (compress[seg[1]], compress[seg[0]], gi, gi); } auto oldnf = mesh.GetNSE(); // auto res = meshing.GenerateMesh (mesh, mp, mp.maxh, domain); for (SurfaceElementIndex sei : Range(oldnf, mesh.GetNSE())) mesh[sei].SetIndex (domain); // int hsteps = mp.optsteps2d; const char * optstr = mp.optimize2d.c_str(); MeshOptimize2d meshopt(mesh); meshopt.SetFaceIndex(domain); meshopt.SetMetricWeight (mp.elsizeweight); for (size_t j = 1; j <= strlen(optstr); j++) { switch (optstr[j-1]) { case 's': { // topological swap meshopt.EdgeSwapping (0); break; } case 'S': { // metric swap meshopt.EdgeSwapping (1); break; } case 'm': { meshopt.ImproveMesh(mp); break; } case 'c': { meshopt.CombineImprove(); break; } default: cerr << "Optimization code " << optstr[j-1] << " not defined" << endl; } } mesh.Compress(); mesh.CalcSurfacesOfNode(); mesh.OrderElements(); mesh.SetNextMajorTimeStamp(); } int GenerateBoundaryLayer2 (Mesh & mesh, int domain, const Array & thicknesses, bool should_make_new_domain, const Array & boundaries) { mesh.GetTopology().SetBuildVertex2Element(true); mesh.UpdateTopology(); const auto & line_segments = mesh.LineSegments(); SegmentIndex first_new_seg = mesh.LineSegments().Range().Next(); int np = mesh.GetNP(); int nseg = line_segments.Size(); // int ne = mesh.GetNSE(); mesh.UpdateTopology(); double total_thickness = 0.0; for(auto thickness : thicknesses) total_thickness += thickness; Array, PointIndex> mapto(np); // Bit array to keep track of segments already processed BitArray segs_done(nseg); segs_done.Clear(); // moved segments Array moved_segs; Array, PointIndex> growthvectors(np); growthvectors = 0.; auto & meshtopo = mesh.GetTopology(); Array segments; // surface index map Array si_map(mesh.GetNFD()+2); si_map = -1; // int fd_old = mesh.GetNFD(); int max_edge_nr = -1; int max_domain = -1; for(const auto& seg : line_segments) { if(seg.epgeominfo[0].edgenr > max_edge_nr) max_edge_nr = seg.epgeominfo[0].edgenr; if(seg.domin > max_domain) max_domain = seg.domin; if(seg.domout > max_domain) max_domain = seg.domout; } int new_domain = max_domain+1; BitArray active_boundaries(max_edge_nr+1); BitArray active_segments(nseg); active_boundaries.Clear(); active_segments.Clear(); if(boundaries.Size() == 0) active_boundaries.Set(); else for(auto edgenr : boundaries) active_boundaries.SetBit(edgenr); for(auto segi : Range(line_segments)) { const auto seg = line_segments[segi]; if(active_boundaries.Test(seg.epgeominfo[0].edgenr) && (seg.domin==domain || seg.domout==domain)) active_segments.SetBit(segi); } { FaceDescriptor new_fd(0, 0, 0, -1); new_fd.SetBCProperty(new_domain); // int new_fd_index = mesh.AddFaceDescriptor(new_fd); if(should_make_new_domain) mesh.SetBCName(new_domain-1, "mapped_" + mesh.GetBCName(domain-1)); } for(auto segi : Range(line_segments)) { if(segs_done[segi]) continue; segs_done.SetBit(segi); const auto& seg = line_segments[segi]; if(seg.domin != domain && seg.domout != domain) continue; if(!active_boundaries.Test(seg.epgeominfo[0].edgenr)) continue; moved_segs.Append(segi); } // calculate growth vectors (average normal vectors of adjacent segments at each point) for (auto si : moved_segs) { auto & seg = line_segments[si]; auto n = mesh[seg[1]] - mesh[seg[0]]; n = {-n[1], n[0], 0}; n.Normalize(); if(seg.domout == domain) n = -n; AddDirection(growthvectors[seg[0]], n); AddDirection(growthvectors[seg[1]], n); } ////////////////////////////////////////////////////////////////////////// // average growthvectors along straight lines to avoid overlaps in corners BitArray points_done(np+1); points_done.Clear(); for(auto si : moved_segs) { auto current_seg = line_segments[si]; auto current_si = si; auto first = current_seg[0]; PointIndex current(PointIndex::INVALID); auto next = current_seg[1]; if(points_done.Test(first)) continue; Array chain; chain.Append(first); // first find closed loops of segments while(next != current && next != first) { current = next; points_done.SetBit(current); chain.Append(current); for(auto sj : meshtopo.GetVertexSegments( current )) { if(!active_segments.Test(sj)) continue; if(sj!=current_si) { current_si = sj; current_seg = mesh[sj]; next = current_seg[0]-current + current_seg[1]; break; } } } auto ifirst = 0; auto n = chain.Size(); // angle of adjacent segments at points a[i-1], a[i], a[i+1] auto getAngle = [&mesh, &growthvectors] (FlatArray a, size_t i) { auto n = a.Size(); auto v0 = growthvectors[a[(i+n-1)%n]]; auto v1 = growthvectors[a[i]]; auto v2 = growthvectors[a[(i+1)%n]]; auto p0 = mesh[a[(i+n-1)%n]]; auto p1 = mesh[a[i]]; auto p2 = mesh[a[(i+1)%n]]; v0 = p1-p0; v1 = p2-p1; auto angle = abs(atan2(v1[0], v1[1]) - atan2(v0[0], v0[1])); if(angle>M_PI) angle = 2*M_PI-angle; return angle; }; // find first corner point while(getAngle(chain, ifirst) < 1e-5 ) ifirst = (ifirst+1)%n; // Copy points of closed loop in correct order, starting with a corner Array pis(n+1); pis.Range(0, n-ifirst) = chain.Range(ifirst, n); pis.Range(n-ifirst, n) = chain.Range(0, n-ifirst); pis[n] = pis[0]; Array lengths(n); for(auto i : Range(n)) lengths[i] = (mesh[pis[(i+1)%n]] - mesh[pis[i]]).Length(); auto averageGrowthVectors = [&] (size_t first, size_t last) { if(first+1 >= last) return; double total_len = 0.0; for(auto l : lengths.Range(first, last)) total_len += l; double len = lengths[first]; auto v0 = growthvectors[pis[first]]; auto v1 = growthvectors[pis[last]]; for(auto i : Range(first+1, last)) { auto pi = pis[i]; growthvectors[pi] = (len/total_len)*v1 + (1.0-len/total_len)*v0; len += lengths[i]; } }; auto icurrent = 0; while(icurrent average growth vectors between end points if(icurrent!=ilast) averageGrowthVectors(icurrent, ilast); icurrent = ilast; } } ////////////////////////////////////////////////////////////////////// // reduce growthvectors where necessary to avoid overlaps/slim regions const auto getSegmentBox = [&] (SegmentIndex segi) { PointIndex pi0=mesh[segi][0], pi1=mesh[segi][1]; Box<3> box( mesh[pi0], mesh[pi1] ); box.Add( mesh[pi0]+growthvectors[pi0] ); box.Add( mesh[pi1]+growthvectors[pi1] ); return box; }; Array growth(np); growth = 1.0; const auto Dot = [](auto a, auto b) { return a[0]*b[0] + a[1]*b[1] + a[2]*b[2]; }; const auto restrictGrowthVectors = [&] (SegmentIndex segi0, SegmentIndex segi1) { if(!active_segments.Test(segi0)) return; const auto & seg0 = mesh[segi0]; const auto & seg1 = mesh[segi1]; if( (seg0.domin != domain && seg0.domout != domain) || (seg1.domin != domain && seg1.domout != domain) ) return; if(segi0 == segi1) return; if(seg0[0]==seg1[0] || seg0[0]==seg1[1] || seg0[1]==seg1[0] || seg0[1] == seg1[1]) return; auto n = mesh[seg0[0]] - mesh[seg0[1]]; n = {-n[1], n[0], 0}; n.Normalize(); if(Dot(n, growthvectors[seg0[0]])<0) n = -n; if(Dot(n, growthvectors[seg0[1]])<0) n = -n; auto n1 = mesh[seg1[0]] - mesh[seg1[1]]; n1 = {-n1[1], n1[0], 0}; n1.Normalize(); if(Dot(n1, growthvectors[seg1[0]])<0) n1 = -n; if(Dot(n1, growthvectors[seg1[1]])<0) n1 = -n; auto p10 = mesh[seg1[0]]; auto p11 = mesh[seg1[1]]; for ( auto pi : {seg0[0], seg0[1]} ) { if(growthvectors[pi].Length2() == 0.0) continue; PointIndex pi1 = seg0[0] - pi + seg0[1]; auto p1 = mesh[pi1]; auto p = mesh[pi]; Point<3> points[] = { p10, p11, p10+total_thickness*growthvectors[seg1[0]], p11+total_thickness*growthvectors[seg1[1]], p1+total_thickness*growthvectors[pi1] }; Vec<3> gn{ growthvectors[pi][1], -growthvectors[pi][0], 0.0 }; if(Dot(gn, p1-p) < 0) gn = -gn; double d0 = Dot(gn, p); double d1 = Dot(gn, p1); if(d0>d1) Swap(d0,d1); bool all_left=true, all_right=true; for (auto i: Range(4)) { auto p_other = points[i]; auto dot = Dot(gn,p_other); if(dot>d0) all_left = false; if(dot points[] = { p10, p10+t*growthvectors[seg1[0]], p11, p11+t*growthvectors[seg1[1]] }; auto p0 = mesh[pi]; auto p1 = p0 + t*growthvectors[pi]; auto P2 = [](Point<3> p) { return Point<2>{p[0], p[1]}; }; ArrayMem, 4> intersections; double alpha, beta; auto checkIntersection = [] (Point<2> p0, Point<2> p1, Point<2> q0, Point<2> q1, double & alpha, double & beta) { auto intersection_type = intersect( p0, p1, q0, q1, alpha, beta ); return intersection_type == X_INTERSECTION || intersection_type == T_INTERSECTION_P || intersection_type == T_INTERSECTION_Q; }; if(checkIntersection( P2(p0), P2(p1), P2(points[0]), P2(points[2]), alpha, beta )) intersections.Append({alpha, 0.0}); if(checkIntersection( P2(p0), P2(p1), P2(points[1]), P2(points[3]), alpha, beta )) intersections.Append({alpha, 1.0}); if(checkIntersection( P2(p0), P2(p1), P2(points[0]), P2(points[1]), alpha, beta )) intersections.Append({alpha, beta}); if(checkIntersection( P2(p0), P2(p1), P2(points[2]), P2(points[3]), alpha, beta )) intersections.Append({alpha, beta}); QuickSort(intersections); for(auto [alpha,beta] : intersections) { if(!active_segments.Test(segi1)) growth[pi] = min(growth[pi], alpha); else { double mean = 0.5*(alpha+beta); growth[pi] = min(growth[pi], mean); growth[seg1[0]] = min(growth[seg1[0]], mean); growth[seg1[1]] = min(growth[seg1[1]], mean); } } } } }; Box<3> box(Box<3>::EMPTY_BOX); for (auto segi : Range(mesh.LineSegments())) { auto segbox = getSegmentBox( segi ); box.Add(segbox.PMin()); box.Add(segbox.PMax()); } BoxTree<3> segtree(box); for (auto segi : Range(mesh.LineSegments())) { auto p2 = [](Point<3> p) { return Point<2>{p[0], p[1]}; }; auto seg = line_segments[segi]; double alpha,beta; intersect( p2(mesh[seg[0]]), p2(mesh[seg[0]]+total_thickness*growthvectors[seg[0]]), p2(mesh[seg[1]]), p2(mesh[seg[1]]+total_thickness*growthvectors[seg[1]]), alpha, beta ); if(beta>0 && alpha>0 && alpha<1.1) growth[seg[0]] = min(growth[seg[0]], 0.8*alpha); if(alpha>0 && beta>0 && beta<1.1) growth[seg[1]] = min(growth[seg[1]], 0.8*beta); for (auto segj : Range(mesh.LineSegments())) if(segi!=segj) restrictGrowthVectors(segi, segj); } for( auto pi : Range(growthvectors)) growthvectors[pi] *= growth[pi]; // insert new points for(PointIndex pi : Range(mesh.Points())) if(growthvectors[pi].Length2()!=0) { auto & pnew = mapto[pi]; auto dist = 0.0; for(auto t : thicknesses) { dist+=t; pnew.Append( mesh.AddPoint( mesh[pi] + dist*growthvectors[pi] ) ); mesh[pnew.Last()].SetType(FIXEDPOINT); } } map, int> seg2edge; // insert new elements ( and move old ones ) for(auto si : moved_segs) { auto seg = line_segments[si]; bool swap = false; auto & pm0 = mapto[seg[0]]; auto & pm1 = mapto[seg[1]]; // auto newindex = si_map[domain]; Segment s = seg; s.geominfo[0] = {}; s.geominfo[1] = {}; s[0] = pm0.Last(); s[1] = pm1.Last(); s[2] = PointIndex::INVALID; auto pair = s[0] < s[1] ? make_pair(s[0], s[1]) : make_pair(s[1], s[0]); if(seg2edge.find(pair) == seg2edge.end()) seg2edge[pair] = ++max_edge_nr; s.edgenr = seg2edge[pair]; s.si = seg.si; mesh.AddSegment(s); for ( auto i : Range(thicknesses)) { PointIndex pi0, pi1, pi2, pi3; if(i==0) { pi0 = seg[0]; pi1 = seg[1]; } else { pi0 = pm0[i-1]; pi1 = pm1[i-1]; } pi2 = pm1[i]; pi3 = pm0[i]; if(i==0) { auto p0 = mesh[pi0]; auto p1 = mesh[pi1]; auto q0 = mesh[pi2]; // auto q1 = mesh[pi3]; Vec<2> n = {-p1[1]+p0[1], p1[0]-p0[0]}; Vec<2> v = { q0[0]-p0[0], q0[1]-p0[1]}; if(n[0]*v[0]+n[1]*v[1]<0) swap = true; } Element2d newel; newel.SetType(QUAD); newel[0] = pi0; newel[1] = pi1; newel[2] = pi2; newel[3] = pi3; newel.SetIndex(new_domain); newel.GeomInfo() = PointGeomInfo{}; if(swap) { Swap(newel[0], newel[1]); Swap(newel[2], newel[3]); } for(auto i : Range(4)) { newel.GeomInfo()[i].u = 0.0; newel.GeomInfo()[i].v = 0.0; } mesh.AddSurfaceElement(newel); } // segment now adjacent to new 2d-domain! if(line_segments[si].domin == domain) line_segments[si].domin = new_domain; if(line_segments[si].domout == domain) line_segments[si].domout = new_domain; } for(auto pi : Range(mapto)) { if(mapto[pi].Size() == 0) continue; auto pnew = mapto[pi].Last(); for(auto old_sei : meshtopo.GetVertexSurfaceElements( pi )) { if(mesh[old_sei].GetIndex() == domain) { auto & old_el = mesh[old_sei]; for(auto i : IntRange(old_el.GetNP())) if(old_el[i]==pi) old_el[i] = pnew; } } } for(auto & sel : mesh.SurfaceElements()) if(sel.GetIndex() == domain) sel.Delete(); mesh.Compress(); mesh.CalcSurfacesOfNode(); Generate2dMesh(mesh, domain); // even without new domain, we need temporarily a new domain to mesh the remaining area, without confusing the meshes with quads -> add segments temporarily and reset domain number and segments afterwards if(!should_make_new_domain) { // map new domain back to old one for(auto & sel : mesh.SurfaceElements()) if(sel.GetIndex()==new_domain) sel.SetIndex(domain); // remove (temporary) inner segments for(auto segi : Range(first_new_seg, mesh.LineSegments().Range().Next())) { mesh[segi][0].Invalidate(); mesh[segi][1].Invalidate(); } for(auto segi : moved_segs) { if(mesh[segi].domin == new_domain) mesh[segi].domin = domain; if(mesh[segi].domout == new_domain) mesh[segi].domout = domain; } mesh.Compress(); mesh.CalcSurfacesOfNode(); } return new_domain; } } // namespace netgen