#include <mystdlib.h> #include <linalg.hpp> namespace netgen { QuadraticPolynomial1V :: QuadraticPolynomial1V (double ac, double acx, double acxx) { c = ac; cx = acx; cxx = acxx; } double QuadraticPolynomial1V :: Value (double x) { return c + cx * x + cxx * x * x; } double QuadraticPolynomial1V :: MaxUnitInterval () { // inner max if (cxx < 0 && cx > 0 && cx < -2 * cxx) { return c - 0.25 * cx * cx / cxx; } if (cx + cxx > 0) // right edge return c + cx + cxx; // left end return c; } LinearPolynomial2V :: LinearPolynomial2V (double ac, double acx, double acy) { c = ac; cx = acx; cy = acy; }; QuadraticPolynomial2V :: QuadraticPolynomial2V () { ; } QuadraticPolynomial2V :: QuadraticPolynomial2V (double ac, double acx, double acy, double acxx, double acxy, double acyy) { c = ac; cx = acx; cy = acy; cxx = acxx; cxy = acxy; cyy = acyy; } void QuadraticPolynomial2V :: Square (const LinearPolynomial2V & lp) { c = lp.c * lp.c; cx = 2 * lp.c * lp.cx; cy = 2 * lp.c * lp.cy; cxx = lp.cx * lp.cx; cxy = 2 * lp.cx * lp.cy; cyy = lp.cy * lp.cy; } void QuadraticPolynomial2V :: Add (double lam, const QuadraticPolynomial2V & qp2) { c += lam * qp2.c; cx += lam * qp2.cx; cy += lam * qp2.cy; cxx += lam * qp2.cxx; cxy += lam * qp2.cxy; cyy += lam * qp2.cyy; } double QuadraticPolynomial2V :: Value (double x, double y) { return c + cx * x + cy * y + cxx * x * x + cxy * x * y + cyy * y * y; } /* double QuadraticPolynomial2V :: MinUnitSquare () { double x, y; double minv = 1e8; double val; for (x = 0; x <= 1; x += 0.1) for (y = 0; y <= 1; y += 0.1) { val = Value (x, y); if (val < minv) minv = val; } return minv; }; */ double QuadraticPolynomial2V :: MaxUnitSquare () { // find critical point double maxv = c; double hv; double det, x0, y0; det = 4 * cxx * cyy - cxy * cxy; if (det > 0) { // definite surface x0 = (-2 * cyy * cx + cxy * cy) / det; y0 = (cxy * cx -2 * cxx * cy) / det; if (x0 >= 0 && x0 <= 1 && y0 >= 0 && y0 <= 1) { hv = Value (x0, y0); if (hv > maxv) maxv = hv; } } QuadraticPolynomial1V e1(c, cx, cxx); QuadraticPolynomial1V e2(c, cy, cyy); QuadraticPolynomial1V e3(c+cy+cyy, cx+cxy, cxx); QuadraticPolynomial1V e4(c+cx+cxx, cy+cxy, cyy); hv = e1.MaxUnitInterval(); if (hv > maxv) maxv = hv; hv = e2.MaxUnitInterval(); if (hv > maxv) maxv = hv; hv = e3.MaxUnitInterval(); if (hv > maxv) maxv = hv; hv = e4.MaxUnitInterval(); if (hv > maxv) maxv = hv; return maxv; }; double QuadraticPolynomial2V :: MaxUnitTriangle () { // find critical point double maxv = c; double hv; double det, x0, y0; det = 4 * cxx * cyy - cxy * cxy; if (cxx < 0 && det > 0) { // definite surface x0 = (-2 * cyy * cx + cxy * cy) / det; y0 = (cxy * cx -2 * cxx * cy) / det; if (x0 >= 0 && y0 >= 0 && x0+y0 <= 1) { return Value (x0, y0); } } QuadraticPolynomial1V e1(c, cx, cxx); QuadraticPolynomial1V e2(c, cy, cyy); QuadraticPolynomial1V e3(c+cy+cyy, cx-cy+cxy-2*cyy, cxx-cxy+cyy); hv = e1.MaxUnitInterval(); if (hv > maxv) maxv = hv; hv = e2.MaxUnitInterval(); if (hv > maxv) maxv = hv; hv = e3.MaxUnitInterval(); if (hv > maxv) maxv = hv; return maxv; } }