#ifdef OCCGEOMETRY #include <mystdlib.h> #include <occgeom.hpp> #include <meshing.hpp> namespace netgen { #include "occmeshsurf.hpp" #define TCL_OK 0 #define TCL_ERROR 1 #define DIVIDEEDGESECTIONS 1000 #define IGNORECURVELENGTH 1e-4 #define VSMALL 1e-10 DLL_HEADER bool merge_solids = 1; // can you please explain what you intend to compute here (JS) !!! double Line :: Dist (Line l) { Vec<3> n = p1-p0; Vec<3> q = l.p1-l.p0; double nq = n*q; Point<3> p = p0 + 0.5*n; double lambda = (p-l.p0)*n / (nq + VSMALL); if (lambda >= 0 && lambda <= 1) { double d = (p-l.p0-lambda*q).Length(); // if (d < 1e-3) d = 1e99; return d; } else return 1e99; } double Line :: Length () { return (p1-p0).Length(); } inline Point<3> occ2ng (const gp_Pnt & p) { return Point<3> (p.X(), p.Y(), p.Z()); } double ComputeH (double kappa) { double hret; kappa *= mparam.curvaturesafety; if (mparam.maxh * kappa < 1) hret = mparam.maxh; else hret = 1 / (kappa + VSMALL); if (mparam.maxh < hret) hret = mparam.maxh; return (hret); } void RestrictHTriangle (gp_Pnt2d & par0, gp_Pnt2d & par1, gp_Pnt2d & par2, BRepLProp_SLProps * prop, Mesh & mesh, int depth, double h = 0) { int ls = -1; gp_Pnt pnt0,pnt1,pnt2; prop->SetParameters (par0.X(), par0.Y()); pnt0 = prop->Value(); prop->SetParameters (par1.X(), par1.Y()); pnt1 = prop->Value(); prop->SetParameters (par2.X(), par2.Y()); pnt2 = prop->Value(); double aux; double maxside = pnt0.Distance(pnt1); ls = 2; aux = pnt1.Distance(pnt2); if(aux > maxside) { maxside = aux; ls = 0; } aux = pnt2.Distance(pnt0); if(aux > maxside) { maxside = aux; ls = 1; } gp_Pnt2d parmid; parmid.SetX( (par0.X()+par1.X()+par2.X()) / 3 ); parmid.SetY( (par0.Y()+par1.Y()+par2.Y()) / 3 ); if (depth%3 == 0) { double curvature = 0; prop->SetParameters (parmid.X(), parmid.Y()); if (!prop->IsCurvatureDefined()) { (*testout) << "curvature not defined!" << endl; return; } curvature = max(fabs(prop->MinCurvature()), fabs(prop->MaxCurvature())); prop->SetParameters (par0.X(), par0.Y()); if (!prop->IsCurvatureDefined()) { (*testout) << "curvature not defined!" << endl; return; } curvature = max(curvature,max(fabs(prop->MinCurvature()), fabs(prop->MaxCurvature()))); prop->SetParameters (par1.X(), par1.Y()); if (!prop->IsCurvatureDefined()) { (*testout) << "curvature not defined!" << endl; return; } curvature = max(curvature,max(fabs(prop->MinCurvature()), fabs(prop->MaxCurvature()))); prop->SetParameters (par2.X(), par2.Y()); if (!prop->IsCurvatureDefined()) { (*testout) << "curvature not defined!" << endl; return; } curvature = max(curvature,max(fabs(prop->MinCurvature()), fabs(prop->MaxCurvature()))); //(*testout) << "curvature " << curvature << endl; if (curvature < 1e-3) { //(*testout) << "curvature too small (" << curvature << ")!" << endl; return; // return war bis 10.2.05 auskommentiert } h = ComputeH (curvature+1e-10); if(h < 1e-4*maxside) return; if (h > 30) return; } if (h < maxside && depth < 10) { //cout << "\r h " << h << flush; gp_Pnt2d pm; //cout << "h " << h << " maxside " << maxside << " depth " << depth << endl; //cout << "par0 " << par0.X() << " " << par0.Y() //<< " par1 " << par1.X() << " " << par1.Y() // << " par2 " << par2.X() << " " << par2.Y()<< endl; if(ls == 0) { pm.SetX(0.5*(par1.X()+par2.X())); pm.SetY(0.5*(par1.Y()+par2.Y())); RestrictHTriangle(pm, par2, par0, prop, mesh, depth+1, h); RestrictHTriangle(pm, par0, par1, prop, mesh, depth+1, h); } else if(ls == 1) { pm.SetX(0.5*(par0.X()+par2.X())); pm.SetY(0.5*(par0.Y()+par2.Y())); RestrictHTriangle(pm, par1, par2, prop, mesh, depth+1, h); RestrictHTriangle(pm, par0, par1, prop, mesh, depth+1, h); } else if(ls == 2) { pm.SetX(0.5*(par0.X()+par1.X())); pm.SetY(0.5*(par0.Y()+par1.Y())); RestrictHTriangle(pm, par1, par2, prop, mesh, depth+1, h); RestrictHTriangle(pm, par2, par0, prop, mesh, depth+1, h); } } else { gp_Pnt pnt; Point3d p3d; prop->SetParameters (parmid.X(), parmid.Y()); pnt = prop->Value(); p3d = Point3d(pnt.X(), pnt.Y(), pnt.Z()); mesh.RestrictLocalH (p3d, h); p3d = Point3d(pnt0.X(), pnt0.Y(), pnt0.Z()); mesh.RestrictLocalH (p3d, h); p3d = Point3d(pnt1.X(), pnt1.Y(), pnt1.Z()); mesh.RestrictLocalH (p3d, h); p3d = Point3d(pnt2.X(), pnt2.Y(), pnt2.Z()); mesh.RestrictLocalH (p3d, h); //(*testout) << "p = " << p3d << ", h = " << h << ", maxside = " << maxside << endl; } } void DivideEdge (TopoDS_Edge & edge, Array<MeshPoint> & ps, Array<double> & params, Mesh & mesh) { double s0, s1; double maxh = mparam.maxh; int nsubedges = 1; gp_Pnt pnt, oldpnt; double svalue[DIVIDEEDGESECTIONS]; GProp_GProps system; BRepGProp::LinearProperties(edge, system); double L = system.Mass(); Handle(Geom_Curve) c = BRep_Tool::Curve(edge, s0, s1); double hvalue[DIVIDEEDGESECTIONS+1]; hvalue[0] = 0; pnt = c->Value(s0); double olddist = 0; double dist = 0; int tmpVal = (int)(DIVIDEEDGESECTIONS); for (int i = 1; i <= tmpVal; i++) { oldpnt = pnt; pnt = c->Value(s0+(i/double(DIVIDEEDGESECTIONS))*(s1-s0)); hvalue[i] = hvalue[i-1] + 1.0/mesh.GetH(Point3d(pnt.X(), pnt.Y(), pnt.Z()))* pnt.Distance(oldpnt); //(*testout) << "mesh.GetH(Point3d(pnt.X(), pnt.Y(), pnt.Z())) " << mesh.GetH(Point3d(pnt.X(), pnt.Y(), pnt.Z())) // << " pnt.Distance(oldpnt) " << pnt.Distance(oldpnt) << endl; olddist = dist; dist = pnt.Distance(oldpnt); } // nsubedges = int(ceil(hvalue[DIVIDEEDGESECTIONS])); nsubedges = max (1, int(floor(hvalue[DIVIDEEDGESECTIONS]+0.5))); ps.SetSize(nsubedges-1); params.SetSize(nsubedges+1); int i = 1; int i1 = 0; do { if (hvalue[i1]/hvalue[DIVIDEEDGESECTIONS]*nsubedges >= i) { params[i] = s0+(i1/double(DIVIDEEDGESECTIONS))*(s1-s0); pnt = c->Value(params[i]); ps[i-1] = MeshPoint (Point3d(pnt.X(), pnt.Y(), pnt.Z())); i++; } i1++; if (i1 > DIVIDEEDGESECTIONS) { nsubedges = i; ps.SetSize(nsubedges-1); params.SetSize(nsubedges+1); cout << "divide edge: local h too small" << endl; } } while (i < nsubedges); params[0] = s0; params[nsubedges] = s1; if (params[nsubedges] <= params[nsubedges-1]) { cout << "CORRECTED" << endl; ps.SetSize (nsubedges-2); params.SetSize (nsubedges); params[nsubedges] = s1; } } void OCCFindEdges (OCCGeometry & geom, Mesh & mesh) { const char * savetask = multithread.task; multithread.task = "Edge meshing"; (*testout) << "edge meshing" << endl; int nvertices = geom.vmap.Extent(); int nedges = geom.emap.Extent(); (*testout) << "nvertices = " << nvertices << endl; (*testout) << "nedges = " << nedges << endl; double eps = 1e-6 * geom.GetBoundingBox().Diam(); for (int i = 1; i <= nvertices; i++) { gp_Pnt pnt = BRep_Tool::Pnt (TopoDS::Vertex(geom.vmap(i))); MeshPoint mp( Point<3>(pnt.X(), pnt.Y(), pnt.Z()) ); bool exists = 0; if (merge_solids) for (PointIndex pi = 1; pi <= mesh.GetNP(); pi++) if ( Dist2 (mesh[pi], Point<3>(mp)) < eps*eps) { exists = 1; break; } if (!exists) mesh.AddPoint (mp); } (*testout) << "different vertices = " << mesh.GetNP() << endl; int first_ep = mesh.GetNP()+1; Array<int> face2solid[2]; for (int i = 0; i<2; i++) { face2solid[i].SetSize (geom.fmap.Extent()); face2solid[i] = 0; } int solidnr = 0; for (TopExp_Explorer exp0(geom.shape, TopAbs_SOLID); exp0.More(); exp0.Next()) { solidnr++; for (TopExp_Explorer exp1(exp0.Current(), TopAbs_FACE); exp1.More(); exp1.Next()) { TopoDS_Face face = TopoDS::Face(exp1.Current()); int facenr = geom.fmap.FindIndex(face); if (face2solid[0][facenr-1] == 0) face2solid[0][facenr-1] = solidnr; else face2solid[1][facenr-1] = solidnr; } } int total = 0; for (int i3 = 1; i3 <= geom.fmap.Extent(); i3++) for (TopExp_Explorer exp2(geom.fmap(i3), TopAbs_WIRE); exp2.More(); exp2.Next()) for (TopExp_Explorer exp3(exp2.Current(), TopAbs_EDGE); exp3.More(); exp3.Next()) total++; int facenr = 0; int edgenr = 0; (*testout) << "faces = " << geom.fmap.Extent() << endl; int curr = 0; for (int i3 = 1; i3 <= geom.fmap.Extent(); i3++) { TopoDS_Face face = TopoDS::Face(geom.fmap(i3)); facenr = geom.fmap.FindIndex (face); // sollte doch immer == i3 sein ??? JS int solidnr0 = face2solid[0][i3-1]; int solidnr1 = face2solid[1][i3-1]; /* auskommentiert am 3.3.05 von robert for (exp2.Init (geom.somap(solidnr0), TopAbs_FACE); exp2.More(); exp2.Next()) { TopoDS_Face face2 = TopoDS::Face(exp2.Current()); if (geom.fmap.FindIndex(face2) == facenr) { // if (face.Orientation() != face2.Orientation()) swap (solidnr0, solidnr1); } } */ mesh.AddFaceDescriptor (FaceDescriptor(facenr, solidnr0, solidnr1, 0)); // Philippose - 06/07/2009 // Add the face colour to the mesh data Quantity_Color face_colour; if(!(geom.face_colours.IsNull()) && (geom.face_colours->GetColor(face,XCAFDoc_ColorSurf,face_colour))) { mesh.GetFaceDescriptor(facenr).SetSurfColour(Vec3d(face_colour.Red(),face_colour.Green(),face_colour.Blue())); } else { mesh.GetFaceDescriptor(facenr).SetSurfColour(Vec3d(0.0,1.0,0.0)); } if(geom.fnames.Size()>=facenr) mesh.GetFaceDescriptor(facenr).SetBCName(&geom.fnames[facenr-1]); mesh.GetFaceDescriptor(facenr).SetBCProperty(facenr); // ACHTUNG! STIMMT NICHT ALLGEMEIN (RG) Handle(Geom_Surface) occface = BRep_Tool::Surface(face); for (TopExp_Explorer exp2 (face, TopAbs_WIRE); exp2.More(); exp2.Next()) { TopoDS_Shape wire = exp2.Current(); for (TopExp_Explorer exp3 (wire, TopAbs_EDGE); exp3.More(); exp3.Next()) { curr++; (*testout) << "edge nr " << curr << endl; multithread.percent = 100 * curr / double (total); if (multithread.terminate) return; TopoDS_Edge edge = TopoDS::Edge (exp3.Current()); if (BRep_Tool::Degenerated(edge)) { //(*testout) << "ignoring degenerated edge" << endl; continue; } if (geom.vmap.FindIndex(TopExp::FirstVertex (edge)) == geom.vmap.FindIndex(TopExp::LastVertex (edge))) { GProp_GProps system; BRepGProp::LinearProperties(edge, system); if (system.Mass() < eps) { cout << "ignoring edge " << geom.emap.FindIndex (edge) << ". closed edge with length < " << eps << endl; continue; } } Handle(Geom2d_Curve) cof; double s0, s1; cof = BRep_Tool::CurveOnSurface (edge, face, s0, s1); int geomedgenr = geom.emap.FindIndex(edge); Array <MeshPoint> mp; Array <double> params; DivideEdge (edge, mp, params, mesh); Array <int> pnums; pnums.SetSize (mp.Size()+2); if (!merge_solids) { pnums[0] = geom.vmap.FindIndex (TopExp::FirstVertex (edge)); pnums[pnums.Size()-1] = geom.vmap.FindIndex (TopExp::LastVertex (edge)); } else { Point<3> fp = occ2ng (BRep_Tool::Pnt (TopExp::FirstVertex (edge))); Point<3> lp = occ2ng (BRep_Tool::Pnt (TopExp::LastVertex (edge))); pnums[0] = -1; pnums.Last() = -1; for (PointIndex pi = 1; pi < first_ep; pi++) { if (Dist2 (mesh[pi], fp) < eps*eps) pnums[0] = pi; if (Dist2 (mesh[pi], lp) < eps*eps) pnums.Last() = pi; } } for (int i = 1; i <= mp.Size(); i++) { bool exists = 0; int j; for (j = first_ep; j <= mesh.GetNP(); j++) if ((mesh.Point(j)-Point<3>(mp[i-1])).Length() < eps) { exists = 1; break; } if (exists) pnums[i] = j; else { mesh.AddPoint (mp[i-1]); (*testout) << "add meshpoint " << mp[i-1] << endl; pnums[i] = mesh.GetNP(); } } (*testout) << "NP = " << mesh.GetNP() << endl; //(*testout) << pnums[pnums.Size()-1] << endl; for (int i = 1; i <= mp.Size()+1; i++) { edgenr++; Segment seg; seg[0] = pnums[i-1]; seg[1] = pnums[i]; seg.edgenr = edgenr; seg.si = facenr; seg.epgeominfo[0].dist = params[i-1]; seg.epgeominfo[1].dist = params[i]; seg.epgeominfo[0].edgenr = geomedgenr; seg.epgeominfo[1].edgenr = geomedgenr; gp_Pnt2d p2d; p2d = cof->Value(params[i-1]); // if (i == 1) p2d = cof->Value(s0); seg.epgeominfo[0].u = p2d.X(); seg.epgeominfo[0].v = p2d.Y(); p2d = cof->Value(params[i]); // if (i == mp.Size()+1) p2d = cof -> Value(s1); seg.epgeominfo[1].u = p2d.X(); seg.epgeominfo[1].v = p2d.Y(); /* if (occface->IsUPeriodic()) { cout << "U Periodic" << endl; if (fabs(seg.epgeominfo[1].u-seg.epgeominfo[0].u) > fabs(seg.epgeominfo[1].u- (seg.epgeominfo[0].u-occface->UPeriod()))) seg.epgeominfo[0].u = p2d.X()+occface->UPeriod(); if (fabs(seg.epgeominfo[1].u-seg.epgeominfo[0].u) > fabs(seg.epgeominfo[1].u- (seg.epgeominfo[0].u+occface->UPeriod()))) seg.epgeominfo[0].u = p2d.X()-occface->UPeriod(); } if (occface->IsVPeriodic()) { cout << "V Periodic" << endl; if (fabs(seg.epgeominfo[1].v-seg.epgeominfo[0].v) > fabs(seg.epgeominfo[1].v- (seg.epgeominfo[0].v-occface->VPeriod()))) seg.epgeominfo[0].v = p2d.Y()+occface->VPeriod(); if (fabs(seg.epgeominfo[1].v-seg.epgeominfo[0].v) > fabs(seg.epgeominfo[1].v- (seg.epgeominfo[0].v+occface->VPeriod()))) seg.epgeominfo[0].v = p2d.Y()-occface->VPeriod(); } */ if (edge.Orientation() == TopAbs_REVERSED) { swap (seg[0], seg[1]); swap (seg.epgeominfo[0].dist, seg.epgeominfo[1].dist); swap (seg.epgeominfo[0].u, seg.epgeominfo[1].u); swap (seg.epgeominfo[0].v, seg.epgeominfo[1].v); } mesh.AddSegment (seg); //edgesegments[geomedgenr-1]->Append(mesh.GetNSeg()); } } } } // for(i=1; i<=mesh.GetNSeg(); i++) // (*testout) << "edge " << mesh.LineSegment(i).edgenr << " face " << mesh.LineSegment(i).si // << " p1 " << mesh.LineSegment(i)[0] << " p2 " << mesh.LineSegment(i)[1] << endl; // exit(10); mesh.CalcSurfacesOfNode(); multithread.task = savetask; } void OCCMeshSurface (OCCGeometry & geom, Mesh & mesh, int perfstepsend) { int i, j, k; int changed; const char * savetask = multithread.task; multithread.task = "Surface meshing"; geom.facemeshstatus = 0; int noldp = mesh.GetNP(); double starttime = GetTime(); Array<int> glob2loc(noldp); //int projecttype = PARAMETERSPACE; int projecttype = PARAMETERSPACE; int notrys = 1; int surfmesherror = 0; for (k = 1; k <= mesh.GetNFD(); k++) { if(1==0 && !geom.fvispar[k-1].IsDrawable()) { (*testout) << "ignoring face " << k << endl; cout << "ignoring face " << k << endl; continue; } (*testout) << "mesh face " << k << endl; multithread.percent = 100 * k / (mesh.GetNFD() + VSMALL); geom.facemeshstatus[k-1] = -1; /* if (k != 42) { cout << "skipped" << endl; continue; } */ FaceDescriptor & fd = mesh.GetFaceDescriptor(k); int oldnf = mesh.GetNSE(); Box<3> bb = geom.GetBoundingBox(); // int projecttype = PLANESPACE; Meshing2OCCSurfaces meshing(TopoDS::Face(geom.fmap(k)), bb, projecttype); if (meshing.GetProjectionType() == PLANESPACE) PrintMessage (2, "Face ", k, " / ", mesh.GetNFD(), " (plane space projection)"); else PrintMessage (2, "Face ", k, " / ", mesh.GetNFD(), " (parameter space projection)"); if (surfmesherror) cout << "Surface meshing error occurred before (in " << surfmesherror << " faces)" << endl; // Meshing2OCCSurfaces meshing(f2, bb); meshing.SetStartTime (starttime); //(*testout) << "Face " << k << endl << endl; if (meshing.GetProjectionType() == PLANESPACE) { int cntp = 0; glob2loc = 0; for (i = 1; i <= mesh.GetNSeg(); i++) { Segment & seg = mesh.LineSegment(i); if (seg.si == k) { for (j = 1; j <= 2; j++) { int pi = (j == 1) ? seg[0] : seg[1]; if (!glob2loc.Get(pi)) { meshing.AddPoint (mesh.Point(pi), pi); cntp++; glob2loc.Elem(pi) = cntp; } } } } for (i = 1; i <= mesh.GetNSeg(); i++) { Segment & seg = mesh.LineSegment(i); if (seg.si == k) { PointGeomInfo gi0, gi1; gi0.trignum = gi1.trignum = k; gi0.u = seg.epgeominfo[0].u; gi0.v = seg.epgeominfo[0].v; gi1.u = seg.epgeominfo[1].u; gi1.v = seg.epgeominfo[1].v; meshing.AddBoundaryElement (glob2loc.Get(seg[0]), glob2loc.Get(seg[1]), gi0, gi1); //(*testout) << gi0.u << " " << gi0.v << endl; //(*testout) << gi1.u << " " << gi1.v << endl; } } } else { int cntp = 0; for (i = 1; i <= mesh.GetNSeg(); i++) if (mesh.LineSegment(i).si == k) cntp+=2; Array< PointGeomInfo > gis; gis.SetAllocSize (cntp); gis.SetSize (0); for (i = 1; i <= mesh.GetNSeg(); i++) { Segment & seg = mesh.LineSegment(i); if (seg.si == k) { PointGeomInfo gi0, gi1; gi0.trignum = gi1.trignum = k; gi0.u = seg.epgeominfo[0].u; gi0.v = seg.epgeominfo[0].v; gi1.u = seg.epgeominfo[1].u; gi1.v = seg.epgeominfo[1].v; int locpnum[2] = {0, 0}; for (j = 0; j < 2; j++) { PointGeomInfo gi = (j == 0) ? gi0 : gi1; int l; for (l = 0; l < gis.Size() && locpnum[j] == 0; l++) { double dist = sqr (gis[l].u-gi.u)+sqr(gis[l].v-gi.v); if (dist < 1e-10) locpnum[j] = l+1; } if (locpnum[j] == 0) { int pi = (j == 0) ? seg[0] : seg[1]; meshing.AddPoint (mesh.Point(pi), pi); gis.SetSize (gis.Size()+1); gis[l] = gi; locpnum[j] = l+1; } } meshing.AddBoundaryElement (locpnum[0], locpnum[1], gi0, gi1); //(*testout) << gi0.u << " " << gi0.v << endl; //(*testout) << gi1.u << " " << gi1.v << endl; } } } // Philippose - 15/01/2009 double maxh = geom.face_maxh[k-1]; //double maxh = mparam.maxh; mparam.checkoverlap = 0; // int noldpoints = mesh->GetNP(); int noldsurfel = mesh.GetNSE(); GProp_GProps sprops; BRepGProp::SurfaceProperties(TopoDS::Face(geom.fmap(k)),sprops); meshing.SetMaxArea(2.*sprops.Mass()); MESHING2_RESULT res; try { res = meshing.GenerateMesh (mesh, mparam, maxh, k); } catch (SingularMatrixException) { (*myerr) << "Singular Matrix" << endl; res = MESHING2_GIVEUP; } catch (UVBoundsException) { (*myerr) << "UV bounds exceeded" << endl; res = MESHING2_GIVEUP; } projecttype = PARAMETERSPACE; if (res != MESHING2_OK) { if (notrys == 1) { for (int i = noldsurfel+1; i <= mesh.GetNSE(); i++) mesh.DeleteSurfaceElement (i); mesh.Compress(); cout << "retry Surface " << k << endl; k--; projecttype*=-1; notrys++; continue; } else { geom.facemeshstatus[k-1] = -1; PrintError ("Problem in Surface mesh generation"); surfmesherror++; // throw NgException ("Problem in Surface mesh generation"); } } else { geom.facemeshstatus[k-1] = 1; } notrys = 1; for (i = oldnf+1; i <= mesh.GetNSE(); i++) mesh.SurfaceElement(i).SetIndex (k); } // ofstream problemfile("occmesh.rep"); // problemfile << "SURFACEMESHING" << endl << endl; if (surfmesherror) { cout << "WARNING! NOT ALL FACES HAVE BEEN MESHED" << endl; cout << "SURFACE MESHING ERROR OCCURRED IN " << surfmesherror << " FACES:" << endl; for (int i = 1; i <= geom.fmap.Extent(); i++) if (geom.facemeshstatus[i-1] == -1) { cout << "Face " << i << endl; // problemfile << "problem with face " << i << endl; // problemfile << "vertices: " << endl; TopExp_Explorer exp0,exp1,exp2; for ( exp0.Init(TopoDS::Face (geom.fmap(i)), TopAbs_WIRE); exp0.More(); exp0.Next() ) { TopoDS_Wire wire = TopoDS::Wire(exp0.Current()); for ( exp1.Init(wire,TopAbs_EDGE); exp1.More(); exp1.Next() ) { TopoDS_Edge edge = TopoDS::Edge(exp1.Current()); for ( exp2.Init(edge,TopAbs_VERTEX); exp2.More(); exp2.Next() ) { TopoDS_Vertex vertex = TopoDS::Vertex(exp2.Current()); gp_Pnt point = BRep_Tool::Pnt(vertex); // problemfile << point.X() << " " << point.Y() << " " << point.Z() << endl; } } } // problemfile << endl; } cout << endl << endl; cout << "for more information open IGES/STEP Topology Explorer" << endl; // problemfile.close(); throw NgException ("Problem in Surface mesh generation"); } else { // problemfile << "OK" << endl << endl; // problemfile.close(); } if (multithread.terminate || perfstepsend < MESHCONST_OPTSURFACE) return; multithread.task = "Optimizing surface"; static int timer_opt2d = NgProfiler::CreateTimer ("Optimization 2D"); NgProfiler::StartTimer (timer_opt2d); for (k = 1; k <= mesh.GetNFD(); k++) { // if (k != 42) continue; // if (k != 36) continue; // (*testout) << "optimize face " << k << endl; multithread.percent = 100 * k / (mesh.GetNFD() + VSMALL); FaceDescriptor & fd = mesh.GetFaceDescriptor(k); PrintMessage (1, "Optimize Surface ", k); for (i = 1; i <= mparam.optsteps2d; i++) { // (*testout) << "optstep " << i << endl; if (multithread.terminate) return; { MeshOptimize2dOCCSurfaces meshopt(geom); meshopt.SetFaceIndex (k); meshopt.SetImproveEdges (0); meshopt.SetMetricWeight (mparam.elsizeweight); //meshopt.SetMetricWeight (0.2); meshopt.SetWriteStatus (0); // (*testout) << "EdgeSwapping (mesh, (i > mparam.optsteps2d/2))" << endl; meshopt.EdgeSwapping (mesh, (i > mparam.optsteps2d/2)); } if (multithread.terminate) return; { MeshOptimize2dOCCSurfaces meshopt(geom); meshopt.SetFaceIndex (k); meshopt.SetImproveEdges (0); //meshopt.SetMetricWeight (0.2); meshopt.SetMetricWeight (mparam.elsizeweight); meshopt.SetWriteStatus (0); // (*testout) << "ImproveMesh (mesh)" << endl; meshopt.ImproveMesh (mesh, mparam); } { MeshOptimize2dOCCSurfaces meshopt(geom); meshopt.SetFaceIndex (k); meshopt.SetImproveEdges (0); //meshopt.SetMetricWeight (0.2); meshopt.SetMetricWeight (mparam.elsizeweight); meshopt.SetWriteStatus (0); // (*testout) << "CombineImprove (mesh)" << endl; meshopt.CombineImprove (mesh); } if (multithread.terminate) return; { MeshOptimize2dOCCSurfaces meshopt(geom); meshopt.SetFaceIndex (k); meshopt.SetImproveEdges (0); //meshopt.SetMetricWeight (0.2); meshopt.SetMetricWeight (mparam.elsizeweight); meshopt.SetWriteStatus (0); // (*testout) << "ImproveMesh (mesh)" << endl; meshopt.ImproveMesh (mesh, mparam); } } } mesh.CalcSurfacesOfNode(); mesh.Compress(); NgProfiler::StopTimer (timer_opt2d); multithread.task = savetask; // Gerhard BEGIN for(int i = 0; i<mesh.GetNFD();i++) mesh.SetBCName(i,mesh.GetFaceDescriptor(i+1).GetBCName()); // for(int i = 0; i<mesh.GetNDomains();i++) // mesh.SetMaterial(i,geom.snames[i]); // Gerhard END } void OCCSetLocalMeshSize(OCCGeometry & geom, Mesh & mesh) { mesh.SetGlobalH (mparam.maxh); mesh.SetMinimalH (mparam.minh); Array<double> maxhdom; maxhdom.SetSize (geom.NrSolids()); maxhdom = mparam.maxh; mesh.SetMaxHDomain (maxhdom); Box<3> bb = geom.GetBoundingBox(); bb.Increase (bb.Diam()/10); mesh.SetLocalH (bb.PMin(), bb.PMax(), 0.5); if (mparam.uselocalh) { const char * savetask = multithread.task; multithread.percent = 0; mesh.SetLocalH (bb.PMin(), bb.PMax(), mparam.grading); int nedges = geom.emap.Extent(); double mincurvelength = IGNORECURVELENGTH; double maxedgelen = 0; double minedgelen = 1e99; if(occparam.resthminedgelenenable) { mincurvelength = occparam.resthminedgelen; if(mincurvelength < IGNORECURVELENGTH) mincurvelength = IGNORECURVELENGTH; } multithread.task = "Setting local mesh size (elements per edge)"; // setting elements per edge for (int i = 1; i <= nedges && !multithread.terminate; i++) { TopoDS_Edge e = TopoDS::Edge (geom.emap(i)); multithread.percent = 100 * (i-1)/double(nedges); if (BRep_Tool::Degenerated(e)) continue; GProp_GProps system; BRepGProp::LinearProperties(e, system); double len = system.Mass(); if (len < mincurvelength) { (*testout) << "ignored" << endl; continue; } double localh = len/mparam.segmentsperedge; double s0, s1; // Philippose - 23/01/2009 // Find all the parent faces of a given edge // and limit the mesh size of the edge based on the // mesh size limit of the face TopTools_IndexedDataMapOfShapeListOfShape edge_face_map; edge_face_map.Clear(); TopExp::MapShapesAndAncestors(geom.shape, TopAbs_EDGE, TopAbs_FACE, edge_face_map); const TopTools_ListOfShape& parent_faces = edge_face_map.FindFromKey(e); TopTools_ListIteratorOfListOfShape parent_face_list; for(parent_face_list.Initialize(parent_faces); parent_face_list.More(); parent_face_list.Next()) { TopoDS_Face parent_face = TopoDS::Face(parent_face_list.Value()); int face_index = geom.fmap.FindIndex(parent_face); if(face_index >= 1) localh = min(localh,geom.face_maxh[face_index - 1]); } Handle(Geom_Curve) c = BRep_Tool::Curve(e, s0, s1); maxedgelen = max (maxedgelen, len); minedgelen = min (minedgelen, len); // Philippose - 23/01/2009 // Modified the calculation of maxj, because the // method used so far always results in maxj = 2, // which causes the localh to be set only at the // starting, mid and end of the edge. // Old Algorithm: // int maxj = 2 * (int) ceil (localh/len); int maxj = max((int) ceil(len/localh), 2); for (int j = 0; j <= maxj; j++) { gp_Pnt pnt = c->Value (s0+double(j)/maxj*(s1-s0)); mesh.RestrictLocalH (Point3d(pnt.X(), pnt.Y(), pnt.Z()), localh); } } multithread.task = "Setting local mesh size (edge curvature)"; // setting edge curvature int nsections = 20; for (int i = 1; i <= nedges && !multithread.terminate; i++) { double maxcur = 0; multithread.percent = 100 * (i-1)/double(nedges); TopoDS_Edge edge = TopoDS::Edge (geom.emap(i)); if (BRep_Tool::Degenerated(edge)) continue; double s0, s1; Handle(Geom_Curve) c = BRep_Tool::Curve(edge, s0, s1); BRepAdaptor_Curve brepc(edge); BRepLProp_CLProps prop(brepc, 2, 1e-5); for (int j = 1; j <= nsections; j++) { double s = s0 + j/(double) nsections * (s1-s0); prop.SetParameter (s); double curvature = prop.Curvature(); if(curvature> maxcur) maxcur = curvature; if (curvature >= 1e99) continue; gp_Pnt pnt = c->Value (s); mesh.RestrictLocalH (Point3d(pnt.X(), pnt.Y(), pnt.Z()), ComputeH (fabs(curvature))); } // (*testout) << "edge " << i << " max. curvature: " << maxcur << endl; } multithread.task = "Setting local mesh size (face curvature)"; // setting face curvature int nfaces = geom.fmap.Extent(); for (int i = 1; i <= nfaces && !multithread.terminate; i++) { multithread.percent = 100 * (i-1)/double(nfaces); TopoDS_Face face = TopoDS::Face(geom.fmap(i)); TopLoc_Location loc; Handle(Geom_Surface) surf = BRep_Tool::Surface (face); Handle(Poly_Triangulation) triangulation = BRep_Tool::Triangulation (face, loc); if (triangulation.IsNull()) { BRepTools::Clean (geom.shape); BRepMesh_IncrementalMesh (geom.shape, 0.01, true); triangulation = BRep_Tool::Triangulation (face, loc); } BRepAdaptor_Surface sf(face, Standard_True); BRepLProp_SLProps prop(sf, 2, 1e-5); int ntriangles = triangulation -> NbTriangles(); for (int j = 1; j <= ntriangles; j++) { gp_Pnt p[3]; gp_Pnt2d par[3]; for (int k = 1; k <=3; k++) { int n = triangulation->Triangles()(j)(k); p[k-1] = triangulation->Nodes()(n).Transformed(loc); par[k-1] = triangulation->UVNodes()(n); } //double maxside = 0; //maxside = max (maxside, p[0].Distance(p[1])); //maxside = max (maxside, p[0].Distance(p[2])); //maxside = max (maxside, p[1].Distance(p[2])); //cout << "\rFace " << i << " pos11 ntriangles " << ntriangles << " maxside " << maxside << flush; RestrictHTriangle (par[0], par[1], par[2], &prop, mesh, 0); //cout << "\rFace " << i << " pos12 ntriangles " << ntriangles << flush; } } // setting close edges if (occparam.resthcloseedgeenable) { multithread.task = "Setting local mesh size (close edges)"; int sections = 100; Array<Line> lines(sections*nedges); BoxTree<3> * searchtree = new BoxTree<3> (bb.PMin(), bb.PMax()); int nlines = 0; for (int i = 1; i <= nedges && !multithread.terminate; i++) { TopoDS_Edge edge = TopoDS::Edge (geom.emap(i)); if (BRep_Tool::Degenerated(edge)) continue; double s0, s1; Handle(Geom_Curve) c = BRep_Tool::Curve(edge, s0, s1); BRepAdaptor_Curve brepc(edge); BRepLProp_CLProps prop(brepc, 1, 1e-5); prop.SetParameter (s0); gp_Vec d0 = prop.D1().Normalized(); double s_start = s0; int count = 0; for (int j = 1; j <= sections; j++) { double s = s0 + (s1-s0)*(double)j/(double)sections; prop.SetParameter (s); gp_Vec d1 = prop.D1().Normalized(); double cosalpha = fabs(d0*d1); if ((j == sections) || (cosalpha < cos(10.0/180.0*M_PI))) { count++; gp_Pnt p0 = c->Value (s_start); gp_Pnt p1 = c->Value (s); lines[nlines].p0 = Point<3> (p0.X(), p0.Y(), p0.Z()); lines[nlines].p1 = Point<3> (p1.X(), p1.Y(), p1.Z()); Box3d box; box.SetPoint (Point3d(lines[nlines].p0)); box.AddPoint (Point3d(lines[nlines].p1)); searchtree->Insert (box.PMin(), box.PMax(), nlines+1); nlines++; s_start = s; d0 = d1; } } } Array<int> linenums; for (int i = 0; i < nlines; i++) { multithread.percent = (100*i)/double(nlines); Line & line = lines[i]; Box3d box; box.SetPoint (Point3d(line.p0)); box.AddPoint (Point3d(line.p1)); double maxhline = max (mesh.GetH(box.PMin()), mesh.GetH(box.PMax())); box.Increase(maxhline); double mindist = 1e99; linenums.SetSize(0); searchtree->GetIntersecting(box.PMin(),box.PMax(),linenums); for (int j = 0; j < linenums.Size(); j++) { int num = linenums[j]-1; if (i == num) continue; if ((line.p0-lines[num].p0).Length2() < 1e-15) continue; if ((line.p0-lines[num].p1).Length2() < 1e-15) continue; if ((line.p1-lines[num].p0).Length2() < 1e-15) continue; if ((line.p1-lines[num].p1).Length2() < 1e-15) continue; mindist = min (mindist, line.Dist(lines[num])); } mindist /= (occparam.resthcloseedgefac + VSMALL); if (mindist < 1e-3) { (*testout) << "extremely small local h: " << mindist << " --> setting to 1e-3" << endl; (*testout) << "somewhere near " << line.p0 << " - " << line.p1 << endl; mindist = 1e-3; } mesh.RestrictLocalHLine(line.p0, line.p1, mindist); } } multithread.task = savetask; } // Philippose - 09/03/2009 // Added the capability to load the mesh size from a // file also for OpenCascade Geometry // Note: // ** If the "uselocalh" option is ticked in // the "mesh options...insider" menu, the mesh // size will be further modified by the topology // analysis routines. // ** To use the mesh size file as the sole source // for defining the mesh size, uncheck the "uselocalh" // option. mesh.LoadLocalMeshSize (mparam.meshsizefilename); } int OCCGenerateMesh (OCCGeometry & geom, shared_ptr<Mesh> & mesh, MeshingParameters & mparam) { multithread.percent = 0; if (mparam.perfstepsstart <= MESHCONST_ANALYSE) { if(mesh.get() == nullptr) mesh = make_shared<Mesh>(); mesh->geomtype = Mesh::GEOM_OCC; OCCSetLocalMeshSize(geom,*mesh); } if (multithread.terminate || mparam.perfstepsend <= MESHCONST_ANALYSE) return TCL_OK; if (mparam.perfstepsstart <= MESHCONST_MESHEDGES) { OCCFindEdges (geom, *mesh); /* cout << "Removing redundant points" << endl; int i, j; int np = mesh->GetNP(); Array<int> equalto; equalto.SetSize (np); equalto = 0; for (i = 1; i <= np; i++) { for (j = i+1; j <= np; j++) { if (!equalto[j-1] && (Dist2 (mesh->Point(i), mesh->Point(j)) < 1e-12)) equalto[j-1] = i; } } for (i = 1; i <= np; i++) if (equalto[i-1]) { cout << "Point " << i << " is equal to Point " << equalto[i-1] << endl; for (j = 1; j <= mesh->GetNSeg(); j++) { Segment & seg = mesh->LineSegment(j); if (seg[0] == i) seg[0] = equalto[i-1]; if (seg[1] == i) seg[1] = equalto[i-1]; } } cout << "Removing degenerated segments" << endl; for (j = 1; j <= mesh->GetNSeg(); j++) { Segment & seg = mesh->LineSegment(j); if (seg[0] == seg[1]) { mesh->DeleteSegment(j); cout << "Deleting Segment " << j << endl; } } mesh->Compress(); */ /* for (int i = 1; i <= geom.fmap.Extent(); i++) { Handle(Geom_Surface) hf1 = BRep_Tool::Surface(TopoDS::Face(geom.fmap(i))); for (int j = i+1; j <= geom.fmap.Extent(); j++) { Handle(Geom_Surface) hf2 = BRep_Tool::Surface(TopoDS::Face(geom.fmap(j))); if (hf1 == hf2) cout << "face " << i << " and face " << j << " lie on same surface" << endl; } } */ #ifdef LOG_STREAM (*logout) << "Edges meshed" << endl << "time = " << GetTime() << " sec" << endl << "points: " << mesh->GetNP() << endl; #endif } if (multithread.terminate || mparam.perfstepsend <= MESHCONST_MESHEDGES) return TCL_OK; if (mparam.perfstepsstart <= MESHCONST_MESHSURFACE) { OCCMeshSurface (geom, *mesh, mparam.perfstepsend); if (multithread.terminate) return TCL_OK; #ifdef LOG_STREAM (*logout) << "Surfaces meshed" << endl << "time = " << GetTime() << " sec" << endl << "points: " << mesh->GetNP() << endl; #endif #ifdef STAT_STREAM (*statout) << mesh->GetNSeg() << " & " << mesh->GetNSE() << " & - &" << GetTime() << " & " << endl; #endif // MeshQuality2d (*mesh); mesh->CalcSurfacesOfNode(); } if (multithread.terminate || mparam.perfstepsend <= MESHCONST_OPTSURFACE) return TCL_OK; if (mparam.perfstepsstart <= MESHCONST_MESHVOLUME) { multithread.task = "Volume meshing"; MESHING3_RESULT res = MeshVolume (mparam, *mesh); /* ofstream problemfile("occmesh.rep",ios_base::app); problemfile << "VOLUMEMESHING" << endl << endl; if(res != MESHING3_OK) problemfile << "ERROR" << endl << endl; else problemfile << "OK" << endl << mesh->GetNE() << " elements" << endl << endl; problemfile.close(); */ if (res != MESHING3_OK) return TCL_ERROR; if (multithread.terminate) return TCL_OK; RemoveIllegalElements (*mesh); if (multithread.terminate) return TCL_OK; MeshQuality3d (*mesh); #ifdef STAT_STREAM (*statout) << GetTime() << " & "; #endif #ifdef LOG_STREAM (*logout) << "Volume meshed" << endl << "time = " << GetTime() << " sec" << endl << "points: " << mesh->GetNP() << endl; #endif } if (multithread.terminate || mparam.perfstepsend <= MESHCONST_MESHVOLUME) return TCL_OK; if (mparam.perfstepsstart <= MESHCONST_OPTVOLUME) { multithread.task = "Volume optimization"; OptimizeVolume (mparam, *mesh); if (multithread.terminate) return TCL_OK; #ifdef STAT_STREAM (*statout) << GetTime() << " & " << mesh->GetNE() << " & " << mesh->GetNP() << " " << '\\' << '\\' << " \\" << "hline" << endl; #endif #ifdef LOG_STREAM (*logout) << "Volume optimized" << endl << "time = " << GetTime() << " sec" << endl << "points: " << mesh->GetNP() << endl; #endif // cout << "Optimization complete" << endl; } (*testout) << "NP: " << mesh->GetNP() << endl; for (int i = 1; i <= mesh->GetNP(); i++) (*testout) << mesh->Point(i) << endl; (*testout) << endl << "NSegments: " << mesh->GetNSeg() << endl; for (int i = 1; i <= mesh->GetNSeg(); i++) (*testout) << mesh->LineSegment(i) << endl; for (int i = 0; i < mesh->GetNDomains(); i++) if(geom.snames.Size()) mesh->SetMaterial( i+1, geom.snames[i] ); return TCL_OK; } } #endif