#include #include "meshing.hpp" #include namespace netgen { class trionedge { public: SurfaceElementIndex tnr; int sidenr; trionedge () { tnr = 0; sidenr = 0; } trionedge (SurfaceElementIndex atnr, int asidenr) { tnr = atnr; sidenr = asidenr; } }; bool MeshOptimize2d :: EdgeSwapping (const int usemetric, Array &neighbors, Array &swapped, const SurfaceElementIndex t1, const int o1, const int t, Array &pdef, const bool check_only) { bool should; bool do_swap = false; SurfaceElementIndex t2 = neighbors[t1].GetNr (o1); int o2 = neighbors[t1].GetOrientation (o1); if (t2 == -1) return false; if (swapped[t1] || swapped[t2]) return false; const int faceindex = mesh[t1].GetIndex(); const int surfnr = mesh.GetFaceDescriptor (faceindex).SurfNr(); PointIndex pi1 = mesh[t1].PNumMod(o1+1+1); PointIndex pi2 = mesh[t1].PNumMod(o1+1+2); PointIndex pi3 = mesh[t1].PNumMod(o1+1); PointIndex pi4 = mesh[t2].PNumMod(o2+1); PointGeomInfo gi1 = mesh[t1].GeomInfoPiMod(o1+1+1); PointGeomInfo gi2 = mesh[t1].GeomInfoPiMod(o1+1+2); PointGeomInfo gi3 = mesh[t1].GeomInfoPiMod(o1+1); PointGeomInfo gi4 = mesh[t2].GeomInfoPiMod(o2+1); bool allowswap = true; Vec<3> auxvec1 = mesh[pi3]-mesh[pi4]; Vec<3> auxvec2 = mesh[pi1]-mesh[pi4]; allowswap = allowswap && fabs(1.-(auxvec1*auxvec2)/(auxvec1.Length()*auxvec2.Length())) > 1e-4; if(!allowswap) return false; // normal of new Vec<3> nv1 = Cross (auxvec1, auxvec2); auxvec1 = mesh.Point(pi4)-mesh.Point(pi3); auxvec2 = mesh.Point(pi2)-mesh.Point(pi3); allowswap = allowswap && fabs(1.-(auxvec1*auxvec2)/(auxvec1.Length()*auxvec2.Length())) > 1e-4; if(!allowswap) return false; Vec<3> nv2 = Cross (auxvec1, auxvec2); // normals of original Vec<3> nv3 = Cross (mesh[pi1]-mesh[pi4], mesh[pi2]-mesh[pi4]); Vec<3> nv4 = Cross (mesh[pi2]-mesh[pi3], mesh[pi1]-mesh[pi3]); nv3 *= -1; nv4 *= -1; nv3.Normalize(); nv4.Normalize(); nv1.Normalize(); nv2.Normalize(); auto nvp3 = geo.GetNormal (surfnr, mesh.Point(pi3), &gi3); nvp3.Normalize(); auto nvp4 = geo.GetNormal (surfnr, mesh.Point(pi4), &gi4); nvp4.Normalize(); double critval = cos (M_PI / 6); // 30 degree allowswap = allowswap && (nv1 * nvp3 > critval) && (nv1 * nvp4 > critval) && (nv2 * nvp3 > critval) && (nv2 * nvp4 > critval) && (nvp3 * nv3 > critval) && (nvp4 * nv4 > critval); double horder = Dist (mesh[pi1], mesh[pi2]); if ( // nv1 * nv2 >= 0 && nv1.Length() > 1e-3 * horder * horder && nv2.Length() > 1e-3 * horder * horder && allowswap ) { if (!usemetric) { int e = pdef[pi1] + pdef[pi2] - pdef[pi3] - pdef[pi4]; double d = Dist2 (mesh[pi1], mesh[pi2]) - Dist2 (mesh[pi3], mesh[pi4]); should = e >= t && (e > 2 || d > 0); } else { double loch = mesh.GetH(mesh[pi1]); should = CalcTriangleBadness (mesh[pi4], mesh[pi3], mesh[pi1], metricweight, loch) + CalcTriangleBadness (mesh[pi3], mesh[pi4], mesh[pi2], metricweight, loch) < CalcTriangleBadness (mesh[pi1], mesh[pi2], mesh[pi3], metricweight, loch) + CalcTriangleBadness (mesh[pi2], mesh[pi1], mesh[pi4], metricweight, loch); } if (allowswap) { Element2d sw1 (pi4, pi3, pi1); Element2d sw2 (pi3, pi4, pi2); int legal1 = mesh.LegalTrig (mesh[t1]) + mesh.LegalTrig (mesh[t2]); int legal2 = mesh.LegalTrig (sw1) + mesh.LegalTrig (sw2); if (legal1 < legal2) should = true; if (legal2 < legal1) should = false; } do_swap = should; if (should && !check_only) { // do swapping ! mesh[t1] = { { pi1, gi1 }, { pi4, gi4 }, { pi3, gi3 } }; mesh[t2] = { { pi2, gi2 }, { pi3, gi3 }, { pi4, gi4 } }; pdef[pi1]--; pdef[pi2]--; pdef[pi3]++; pdef[pi4]++; swapped[t1] = true; swapped[t2] = true; } } return do_swap; } void MeshOptimize2d :: EdgeSwapping (int usemetric) { static Timer timer("EdgeSwapping (2D)"); RegionTimer reg(timer); static Timer timer_nb("EdgeSwapping-Find neighbors"); if (usemetric) PrintMessage (3, "Edgeswapping, metric"); else PrintMessage (3, "Edgeswapping, topological"); static Timer timerstart("EdgeSwapping 2D start"); timerstart.Start(); Array seia; bool mixed = false; if(faceindex==0) { seia.SetSize(mesh.GetNSE()); ParallelFor( Range(seia), [&] (auto i) NETGEN_LAMBDA_INLINE { SurfaceElementIndex sei(i); seia[i] = sei; if (mesh[sei].GetNP() != 3) { const auto & sel = mesh[sei]; for(auto i : Range(sel.GetNP())) if(mesh[sel[i]].Type() == INNERPOINT) mixed = true; } }); } else { mesh.GetSurfaceElementsOfFace (faceindex, seia); for (SurfaceElementIndex sei : seia) if (mesh[sei].GetNP() != 3) mixed = true; } if(mixed) return GenericImprove(); Array neighbors(mesh.GetNSE()); auto elements_on_node = mesh.CreatePoint2SurfaceElementTable(faceindex); Array swapped(mesh.GetNSE()); Array pdef(mesh.GetNP()); Array pangle(mesh.GetNP()); static const double minangle[] = { 0, 1.481, 2.565, 3.627, 4.683, 5.736, 7, 9 }; if(faceindex == 0) { ParallelFor( Range(pangle), [&] (auto i) NETGEN_LAMBDA_INLINE { pangle[i] = 0.0; }); } else { ParallelFor( Range(seia), [&] (auto i) NETGEN_LAMBDA_INLINE { const Element2d & sel = mesh[seia[i]]; for (int j = 0; j < 3; j++) pangle[sel[j]] = 0.0; }); } ParallelFor( Range(seia), [&] (auto i) NETGEN_LAMBDA_INLINE { const Element2d & sel = mesh[seia[i]]; for (int j = 0; j < 3; j++) { POINTTYPE typ = mesh[sel[j]].Type(); if (typ == FIXEDPOINT || typ == EDGEPOINT) { AtomicAdd(pangle[sel[j]], Angle (mesh[sel[(j+1)%3]] - mesh[sel[j]], mesh[sel[(j+2)%3]] - mesh[sel[j]])); } } }); ParallelFor( Range(seia), [&] (auto i) NETGEN_LAMBDA_INLINE { const Element2d & sel = mesh[seia[i]]; for (int j = 0; j < 3; j++) { PointIndex pi = sel[j]; if (mesh[pi].Type() == INNERPOINT || mesh[pi].Type() == SURFACEPOINT) pdef[pi] = -6; else for (int j = 0; j < 8; j++) if (pangle[pi] >= minangle[j]) pdef[pi] = -1-j; } }); ParallelFor( Range(seia), [this, &pdef, &neighbors, &seia, &elements_on_node] (auto i) NETGEN_LAMBDA_INLINE { auto sei = seia[i]; for (PointIndex pi : mesh[sei].template PNums<3>()) AsAtomic(pdef[pi])++; for (int j = 0; j < 3; j++) { neighbors[sei].SetNr (j, -1); neighbors[sei].SetOrientation (j, 0); } const auto sel = mesh[sei]; for (int j = 0; j < 3; j++) { PointIndex pi1 = sel.PNumMod(j+2); PointIndex pi2 = sel.PNumMod(j+3); for (auto sei_other : elements_on_node[pi1]) { if(sei_other==sei) continue; const auto & other = mesh[sei_other]; int pi1_other = -1; int pi2_other = -1; bool common_edge = false; for (int k = 0; k < 3; k++) { if(other[k] == pi1) pi1_other = k; if(other[k] == pi2) { pi2_other = k; common_edge = true; } } if(common_edge) { neighbors[sei].SetNr (j, sei_other); neighbors[sei].SetOrientation (j, 3-pi1_other-pi2_other); } } } }); for (SurfaceElementIndex sei : seia) swapped[sei] = false; timerstart.Stop(); Array> improvement_candidates(3*seia.Size()); atomic cnt(0); int t = 4; bool done = false; while (!done && t >= 2) { cnt = 0; ParallelFor( Range(seia), [&] (auto i) NETGEN_LAMBDA_INLINE { SurfaceElementIndex t1 = seia[i]; if (mesh[t1].IsDeleted()) return; if (mesh[t1].GetIndex() != faceindex) return; if (multithread.terminate) throw NgException ("Meshing stopped"); for (int o1 = 0; o1 < 3; o1++) if(EdgeSwapping(usemetric, neighbors, swapped, t1, o1, t, pdef, true)) improvement_candidates[cnt++]= std::make_pair(t1,o1); }); auto elements_with_improvement = improvement_candidates.Range(cnt.load()); QuickSort(elements_with_improvement); for (auto [t1,o1] : elements_with_improvement) done |= EdgeSwapping(usemetric, neighbors, swapped, t1, o1, t, pdef, false); t--; } mesh.SetNextTimeStamp(); } double CombineImproveEdge( Mesh & mesh, const Table & elementsonnode, Array, PointIndex> & normals, Array & fixed, PointIndex pi1, PointIndex pi2, bool check_only = true) { Vec<3> nv; ArrayMem hasonepi, hasbothpi; if (!pi1.IsValid() || !pi2.IsValid()) return 0.0; bool debugflag = 0; if (debugflag) { (*testout) << "Combineimprove " << "pi1 = " << pi1 << " pi2 = " << pi2 << endl; } /* // save version: if (fixed.Get(pi1) || fixed.Get(pi2)) return 0.0; if (pi2 < pi1) swap (pi1, pi2); */ // more general if (fixed[pi2]) Swap (pi1, pi2); if (fixed[pi2]) return 0.0; double loch = mesh.GetH (mesh[pi1]); for (SurfaceElementIndex sei2 : elementsonnode[pi1]) { const Element2d & el2 = mesh[sei2]; if (el2.IsDeleted()) continue; if (el2[0] == pi2 || el2[1] == pi2 || el2[2] == pi2) { hasbothpi.Append (sei2); nv = Cross (Vec3d (mesh[el2[0]], mesh[el2[1]]), Vec3d (mesh[el2[0]], mesh[el2[2]])); } else { hasonepi.Append (sei2); } } if(hasbothpi.Size()==0) return 0.0; nv = normals[pi1]; for (SurfaceElementIndex sei2 : elementsonnode[pi2]) { const Element2d & el2 = mesh[sei2]; if (el2.IsDeleted()) continue; if (!el2.PNums<3>().Contains (pi1)) hasonepi.Append (sei2); } double bad1 = 0; int illegal1 = 0, illegal2 = 0; /* for (SurfaceElementIndex sei : hasonepi) { const Element2d & el = mesh[sei]; bad1 += CalcTriangleBadness (mesh[el[0]], mesh[el[1]], mesh[el[2]], nv, -1, loch); illegal1 += 1-mesh.LegalTrig(el); } */ for (const Element2d & el : mesh.SurfaceElements()[hasonepi]) { bad1 += CalcTriangleBadness (mesh[el[0]], mesh[el[1]], mesh[el[2]], nv, -1, loch); illegal1 += 1-mesh.LegalTrig(el); } for (int k = 0; k < hasbothpi.Size(); k++) { const Element2d & el = mesh[hasbothpi[k]]; bad1 += CalcTriangleBadness (mesh[el[0]], mesh[el[1]], mesh[el[2]], nv, -1, loch); illegal1 += 1-mesh.LegalTrig(el); } double bad2 = 0; for (int k = 0; k < hasonepi.Size(); k++) { Element2d el = mesh[hasonepi[k]]; for (auto i : Range(3)) if(el[i]==pi2) el[i] = pi1; double err = CalcTriangleBadness (mesh[el[0]], mesh[el[1]], mesh[el[2]], nv, -1, loch); bad2 += err; Vec<3> hnv = Cross (Vec3d (mesh[el[0]], mesh[el[1]]), Vec3d (mesh[el[0]], mesh[el[2]])); if (hnv * nv < 0) bad2 += 1e10; for (int l = 0; l < 3; l++) { if ( (normals[el[l]] * nv) < 0.5) bad2 += 1e10; } illegal2 += 1-mesh.LegalTrig(el); } if (debugflag) { (*testout) << "bad1 = " << bad1 << ", bad2 = " << bad2 << endl; } bool should = (illegal2<=illegal1 && bad2 < bad1 && bad2 < 1e4); if(illegal2 < illegal1) { should = true; bad1 += 1e4; } double d_badness = should * (bad2-bad1); if(check_only) return d_badness; if (should) { /* (*testout) << "combine !" << endl; (*testout) << "bad1 = " << bad1 << ", bad2 = " << bad2 << endl; (*testout) << "illegal1 = " << illegal1 << ", illegal2 = " << illegal2 << endl; (*testout) << "loch = " << loch << endl; */ PointGeomInfo gi; // bool gi_set(false); /* Element2d *el1p(NULL); int l = 0; while(mesh[elementsonnode[pi1][l]].IsDeleted() && lGetNP(); l++) if ((*el1p)[l] == pi1) { gi = el1p->GeomInfoPi (l+1); // gi_set = true; } */ for (SurfaceElementIndex sei : elementsonnode[pi1]) { const Element2d & el1p = mesh[sei]; if (el1p.IsDeleted()) continue; for (int l = 0; l < el1p.GetNP(); l++) if (el1p[l] == pi1) // gi = el1p.GeomInfoPi (l+1); gi = el1p.GeomInfo()[l]; break; } // (*testout) << "Connect point " << pi2 << " to " << pi1 << "\n"; // for (int k = 0; k < elementsonnode[pi2].Size(); k++) for (SurfaceElementIndex sei2 : elementsonnode[pi2]) { Element2d & el = mesh[sei2]; if (el.IsDeleted()) continue; if (el.PNums().Contains(pi1)) continue; for (auto l : Range(el.GetNP())) { if (el[l] == pi2) { el[l] = pi1; el.GeomInfo()[l] = gi; } fixed[el[l]] = true; } } for (auto sei : hasbothpi) mesh[sei].Delete(); } return d_badness; } void MeshOptimize2d :: CombineImprove () { SplitImprove(); PrintMessage (3, "Combine improve"); if (multithread.terminate) throw NgException ("Meshing stopped"); static Timer timer ("Combineimprove 2D"); RegionTimer reg (timer); static Timer timerstart ("Combineimprove 2D start"); timerstart.Start(); static Timer timerstart1 ("Combineimprove 2D start1"); timerstart1.Start(); Array seia; if(faceindex) mesh.GetSurfaceElementsOfFace (faceindex, seia); else { seia.SetSize(mesh.GetNSE()); ParallelFor( IntRange(mesh.GetNSE()), [&seia] (auto i) NETGEN_LAMBDA_INLINE { seia[i] = i; }); } bool mixed = false; ParallelFor( Range(seia), [&] (auto i) NETGEN_LAMBDA_INLINE { if (mesh[seia[i]].GetNP() != 3) mixed = true; }); if(mixed) return; int np = mesh.GetNP(); auto elementsonnode = mesh.CreatePoint2SurfaceElementTable(faceindex); int ntasks = ngcore::TaskManager::GetMaxThreads(); Array> edges; BuildEdgeList( mesh, elementsonnode, edges ); Array fixed(np); ParallelFor( fixed.Range(), [&fixed] (auto i) NETGEN_LAMBDA_INLINE { fixed[i] = false; }); ParallelFor( edges.Range(), [&] (auto i) NETGEN_LAMBDA_INLINE { auto [pi0, pi1] = edges[i]; if (mesh.IsSegment (pi0, pi1)) { fixed[pi0] = true; fixed[pi1] = true; } }); timerstart1.Stop(); ParallelFor( mesh.LockedPoints().Range(), [&] (auto i) NETGEN_LAMBDA_INLINE { fixed[mesh.LockedPoints()[i]] = true; }); Array,PointIndex> normals(np); ParallelFor( mesh.Points().Range(), [&] (auto pi) NETGEN_LAMBDA_INLINE { if (elementsonnode[pi].Size()) { Element2d & hel = mesh[elementsonnode[pi][0]]; for (int k = 0; k < 3; k++) if (hel[k] == pi) { const int faceindex = hel.GetIndex(); const int surfnr = mesh.GetFaceDescriptor (faceindex).SurfNr(); normals[pi] = geo.GetNormal (surfnr, mesh[pi], &hel.GeomInfoPi(k+1)); break; } } }, TasksPerThread(4)); timerstart.Stop(); // Find edges with improvement Array> candidate_edges(edges.Size()); std::atomic improvement_counter(0); ParallelFor( Range(edges), [&] (auto i) NETGEN_LAMBDA_INLINE { auto [pi1, pi2] = edges[i]; double d_badness = CombineImproveEdge(mesh, elementsonnode, normals, fixed, pi1, pi2, true); if(d_badness < 0.0) candidate_edges[improvement_counter++] = make_tuple(d_badness, i); }, TasksPerThread(4)); auto edges_with_improvement = candidate_edges.Part(0, improvement_counter.load()); QuickSort(edges_with_improvement); for(auto [d_badness, ei] : edges_with_improvement) { auto [pi1, pi2] = edges[ei]; CombineImproveEdge(mesh, elementsonnode, normals, fixed, pi1, pi2, false); } // mesh.Compress(); mesh.SetNextTimeStamp(); } void MeshOptimize2d :: SplitImprove() { if (!faceindex) { PrintMessage (3, "Split improve"); mesh.CalcSurfacesOfNode(); // TODO: needed? for (faceindex = 1; faceindex <= mesh.GetNFD(); faceindex++) { SplitImprove(); if (multithread.terminate) throw NgException ("Meshing stopped"); } faceindex = 0; mesh.Compress(); // TODO: needed? return; } Array elements; mesh.GetSurfaceElementsOfFace (faceindex, elements); // return if we have quads in this surface for (auto & ei : elements) if (mesh[ei].GetNP() != 3) return; // maps from edges to adjacent trigs INDEX_2_HASHTABLE> els_on_edge(2*elements.Size() + 2); // build els_on_edge table for (SurfaceElementIndex sei : elements) { const Element2d & sel = mesh[sei]; for (int j = 0; j < 3; j++) { PointIndex pi1 = sel.PNumMod(j+2); PointIndex pi2 = sel.PNumMod(j+3); if (mesh.IsSegment (pi1, pi2)) continue; INDEX_2 ii2 (pi1, pi2); ii2.Sort(); if (els_on_edge.Used (ii2)) { auto els = els_on_edge.Get(ii2); get<1>(els) = sei; els_on_edge.Set(ii2, els); } else { els_on_edge.Set (ii2, make_tuple(sei, sei)); } } } // split edges of illegal trigs for (SurfaceElementIndex sei : elements) { Element2d & sel = mesh[sei]; if (sel.IsDeleted()) continue; // TODO: split also bad trigs, nut just illegal ones if (mesh.LegalTrig(sel)) continue; // find longest edge INDEX_2 edge; double edge_len = 0; PointIndex pi1, pi2, pi3, pi4; PointGeomInfo gi1, gi2, gi3, gi4; for(auto j : Range(1,4)) { auto test_pi1 = sel.PNumMod(j); auto test_pi2 = sel.PNumMod(j+1); if (mesh.IsSegment(test_pi1, test_pi2)) continue; auto len = (mesh[test_pi2]-mesh[test_pi1]).Length(); if(len > edge_len) { edge = {test_pi1, test_pi2}; edge.Sort(); edge_len = len; pi1 = test_pi1; pi2 = test_pi2; pi3 = sel.PNumMod(j+2); gi1 = sel.GeomInfoPiMod(j); gi2 = sel.GeomInfoPiMod(j+1); gi3 = sel.GeomInfoPiMod(j+2); } } if(!edge_len) throw Exception("Couldn't find edge to split, something is wrong"); // get neighbor element auto els = els_on_edge.Get(edge); SurfaceElementIndex other_i = get<0>(els); if(other_i==sei) other_i = get<1>(els); auto & other = mesh[other_i]; // find opposite point of neighbor element for (int j = 0; j < 3; j++) if(other[j]!=pi1 && other[j]!=pi2) { pi4 = other[j]; gi4 = other.GeomInfoPi(j); break; } // split edge pi1,pi2 Point<3> p5; PointIndex pi5; PointGeomInfo gi5; geo.PointBetween(mesh[pi1], mesh[pi2], 0.5, faceindex, gi1, gi2, p5, gi5); pi5 = mesh.AddPoint(p5); Element2d e1(3); e1.SetIndex(faceindex); e1={ {pi1,gi1}, {pi5,gi5}, {pi3,gi3} }; mesh.AddSurfaceElement( e1 ); Element2d e2(3); e2.SetIndex(faceindex); e2 ={ {pi5,gi5}, {pi2,gi2}, {pi3,gi3} }; mesh.AddSurfaceElement( e2 ); Element2d e3(3); e3.SetIndex(faceindex); e3 ={ {pi1,gi1}, {pi4,gi4}, {pi5,gi5} }; mesh.AddSurfaceElement( e3 ); Element2d e4(3); e4.SetIndex(faceindex); e4 ={ {pi4,gi4}, {pi2,gi2}, {pi5,gi5} }; mesh.AddSurfaceElement( e4 ); sel.Delete(); other.Delete(); } mesh.SetNextTimeStamp(); } void MeshOptimize2d :: CheckMeshApproximation (Mesh & mesh) { // Check angles between elements and normals at corners /* int i, j; int ne = mesh.GetNSE(); int surfnr; Vec3d n, ng; NgArray ngs(3); (*mycout) << "Check Surface Approximation" << endl; (*testout) << "Check Surface Approximation" << endl; for (i = 1; i <= ne; i++) { const Element2d & el = mesh.SurfaceElement(i); surfnr = mesh.GetFaceDescriptor (el.GetIndex()).SurfNr(); Vec3d n = Cross (mesh.Point (el.PNum(1)) - mesh.Point (el.PNum(2)), mesh.Point (el.PNum(1)) - mesh.Point (el.PNum(3))); n /= n.Length(); for (j = 1; j <= el.GetNP(); j++) { SelectSurfaceOfPoint (mesh.Point(el.PNum(j)), el.GeomInfoPi(j)); GetNormalVector (surfnr, mesh.Point(el.PNum(j)), ng); ng /= ng.Length(); ngs.Elem(j) = ng; double angle = (180.0 / M_PI) * Angle (n, ng); if (angle > 60) { (*testout) << "el " << i << " node " << el.PNum(j) << "has angle = " << angle << endl; } } for (j = 1; j <= 3; j++) { double angle = (180.0 / M_PI) * Angle (ngs.Get(j), ngs.Get(j%3+1)); if (angle > 60) { (*testout) << "el " << i << " node-node " << ngs.Get(j) << " - " << ngs.Get(j%3+1) << " has angle = " << angle << endl; } } } */ } }