netgen/libsrc/csg/zrefine.cpp
Joachim Schoeberl 0a7a206223 ElementIndex
2024-12-27 13:12:59 +01:00

768 lines
17 KiB
C++

#include <mystdlib.h>
#include "meshing.hpp"
#include <csg.hpp>
namespace netgen
{
// find singular edges
void SelectSingularEdges (const Mesh & mesh, const CSGeometry & geom,
INDEX_2_HASHTABLE<int> & singedges,
ZRefinementOptions & opt)
{
// edges selected in csg input file
for (int i = 1; i <= geom.singedges.Size(); i++)
{
//if(geom.singedges.Get(i)->maxhinit > 0)
// continue; //!!!!
const SingularEdge & se = *geom.singedges.Get(i);
for (int j = 1; j <= se.segms.Size(); j++)
{
INDEX_2 i2 = se.segms.Get(j);
singedges.Set (i2, 1);
}
}
// edges interactively selected
for (int i = 1; i <= mesh.GetNSeg(); i++)
{
const Segment & seg = mesh.LineSegment(i);
if (seg.singedge_left || seg.singedge_right)
{
INDEX_2 i2(seg[0], seg[1]);
i2.Sort();
singedges.Set (i2, 1);
}
}
}
/**
Convert elements (vol-tets, surf-trigs) into prisms/quads
*/
void MakePrismsSingEdge (Mesh & mesh, INDEX_2_HASHTABLE<int> & singedges)
{
// volume elements
// for (int i = 1; i <= mesh.GetNE(); i++)
for (ElementIndex ei = 0; ei < mesh.GetNE(); ei++)
{
Element & el = mesh.VolumeElement(ei);
if (el.GetType() != TET) continue;
for (int j = 1; j <= 3; j++)
for (int k = j+1; k <= 4; k++)
{
INDEX_2 edge(el.PNum(j), el.PNum(k));
edge.Sort();
if (singedges.Used (edge))
{
int pi3 = 1, pi4 = 1;
while (pi3 == j || pi3 == k) pi3++;
pi4 = 10 - j - k - pi3;
int p3 = el.PNum(pi3);
int p4 = el.PNum(pi4);
el.SetType(PRISM);
el.PNum(1) = edge.I1();
el.PNum(2) = p3;
el.PNum(3) = p4;
el.PNum(4) = edge.I2();
el.PNum(5) = p3;
el.PNum(6) = p4;
}
}
}
// surface elements
for (SurfaceElementIndex sei = 0; sei < mesh.GetNSE(); sei++)
{
Element2d & el = mesh.SurfaceElement(sei);
if (el.GetType() != TRIG) continue;
for (int j = 1; j <= 3; j++)
{
int k = (j % 3) + 1;
INDEX_2 edge(el.PNum(j), el.PNum(k));
edge.Sort();
if (singedges.Used (edge))
{
int pi3 = 6-j-k;
int p3 = el.PNum(pi3);
int p1 = el.PNum(j);
int p2 = el.PNum(k);
el.SetType(QUAD);
el.PNum(1) = p2;
el.PNum(2) = p3;
el.PNum(3) = p3;
el.PNum(4) = p1;
}
}
}
}
/*
Convert tets and pyramids next to close (identified) points into prisms
*/
void MakePrismsClosePoints (Mesh & mesh)
{
// int i, j, k;
for (ElementIndex ei = 0; ei < mesh.GetNE(); ei++)
{
Element & el = mesh.VolumeElement(ei);
if (el.GetType() == TET)
{
for (int j = 1; j <= 3; j++)
for (int k = j+1; k <= 4; k++)
{
INDEX_2 edge(el.PNum(j), el.PNum(k));
edge.Sort();
if (mesh.GetIdentifications().UsedSymmetric (el.PNum(j), el.PNum(k)))
{
int pi3 = 1, pi4 = 1;
while (pi3 == j || pi3 == k) pi3++;
pi4 = 10 - j - k - pi3;
int p3 = el.PNum(pi3);
int p4 = el.PNum(pi4);
el.SetType(PRISM);
el.PNum(1) = edge.I1();
el.PNum(2) = p3;
el.PNum(3) = p4;
el.PNum(4) = edge.I2();
el.PNum(5) = p3;
el.PNum(6) = p4;
}
}
}
if (el.GetType() == PYRAMID)
{
// pyramid, base face = 1,2,3,4
for (int j = 0; j <= 1; j++)
{
PointIndex pi1 = el.PNum( (j+0) % 4 + 1);
PointIndex pi2 = el.PNum( (j+1) % 4 + 1);
PointIndex pi3 = el.PNum( (j+2) % 4 + 1);
PointIndex pi4 = el.PNum( (j+3) % 4 + 1);
PointIndex pi5 = el.PNum(5);
INDEX_2 edge1(pi1, pi4);
INDEX_2 edge2(pi2, pi3);
edge1.Sort();
edge2.Sort();
if (mesh.GetIdentifications().UsedSymmetric (pi1, pi4) &&
mesh.GetIdentifications().UsedSymmetric (pi2, pi3))
{
//int p3 = el.PNum(pi3);
//int p4 = el.PNum(pi4);
el.SetType(PRISM);
el.PNum(1) = pi1;
el.PNum(2) = pi2;
el.PNum(3) = pi5;
el.PNum(4) = pi4;
el.PNum(5) = pi3;
el.PNum(6) = pi5;
}
}
}
}
for (SurfaceElementIndex sei = 0; sei < mesh.GetNSE(); sei++)
{
Element2d & el = mesh.SurfaceElement(sei);
if (el.GetType() != TRIG) continue;
for (int j = 1; j <= 3; j++)
{
int k = (j % 3) + 1;
INDEX_2 edge(el.PNum(j), el.PNum(k));
edge.Sort();
if (mesh.GetIdentifications().UsedSymmetric (el.PNum(j), el.PNum(k)))
{
int pi3 = 6-j-k;
int p3 = el.PNum(pi3);
int p1 = el.PNum(j);
int p2 = el.PNum(k);
el.SetType(QUAD);
el.PNum(1) = p2;
el.PNum(2) = p3;
el.PNum(3) = p3;
el.PNum(4) = p1;
}
}
}
}
#ifdef OLD
void MakeCornerNodes (Mesh & mesh,
INDEX_HASHTABLE<int> & cornernodes)
{
int i, j;
int nseg = mesh.GetNSeg();
NgArray<int> edgesonpoint(mesh.GetNP());
for (i = 1; i <= mesh.GetNP(); i++)
edgesonpoint.Elem(i) = 0;
for (i = 1; i <= nseg; i++)
{
for (j = 1; j <= 2; j++)
{
int pi = (j == 1) ?
mesh.LineSegment(i)[0] :
mesh.LineSegment(i)[1];
edgesonpoint.Elem(pi)++;
}
}
/*
cout << "cornernodes: ";
for (i = 1; i <= edgesonpoint.Size(); i++)
if (edgesonpoint.Get(i) >= 6)
{
cornernodes.Set (i, 1);
cout << i << " ";
}
cout << endl;
*/
// cornernodes.Set (5, 1);
}
#endif
void RefinePrisms (Mesh & mesh, const CSGeometry * geom,
ZRefinementOptions & opt)
{
// int i, j;
bool found, change;
int cnt = 0;
// markers for z-refinement: p1, p2, levels
// p1-p2 is an edge to be refined
NgArray<INDEX_3> ref_uniform;
NgArray<INDEX_3> ref_singular;
NgArray<INDEX_4 > ref_slices;
NgBitArray first_id(geom->identifications.Size());
first_id.Set();
// if (mesh.GetIdentifications().HasIdentifiedPoints())
{
auto & identpts =
mesh.GetIdentifications().GetIdentifiedPoints ();
for (int i = 1; i <= identpts.GetNBags(); i++)
for (int j = 1; j <= identpts.GetBagSize(i); j++)
{
INDEX_3 pair;
int dummy;
identpts.GetData(i, j, pair, dummy);
auto idnr = pair[2];
const CloseSurfaceIdentification * csid =
dynamic_cast<const CloseSurfaceIdentification*>
(geom->identifications.Get(idnr));
if (csid)
{
if (!csid->GetSlices().Size())
{
if (first_id.Test (idnr))
{
first_id.Clear(idnr);
ref_uniform.Append (INDEX_3 (pair.I1(), pair.I2(), csid->RefLevels()));
ref_singular.Append (INDEX_3 (pair.I1(), pair.I2(), csid->RefLevels1()));
ref_singular.Append (INDEX_3 (pair.I2(), pair.I1(), csid->RefLevels2()));
}
}
else
{
//const NgArray<double> & slices = csid->GetSlices();
INDEX_4 i4;
i4[0] = pair.I1();
i4[1] = pair.I2();
i4[2] = idnr;
i4[3] = csid->GetSlices().Size();
ref_slices.Append (i4);
}
}
}
}
NgArray<EdgePointGeomInfo> epgi;
while (1)
{
cnt++;
PrintMessage (3, "Z-Refinement, level = ", cnt);
INDEX_2_HASHTABLE<int> refedges(mesh.GetNSE()+1);
found = 0;
// mark prisms due to close surface flags:
int oldsize = ref_uniform.Size();
for (int i = 1; i <= oldsize; i++)
{
int pi1 = ref_uniform.Get(i).I1();
int pi2 = ref_uniform.Get(i).I2();
int levels = ref_uniform.Get(i).I3();
if (levels > 0)
{
const Point3d & p1 = mesh.Point(pi1);
const Point3d & p2 = mesh.Point(pi2);
int npi(0);
INDEX_2 edge(pi1, pi2);
edge.Sort();
if (!refedges.Used(edge))
{
Point3d np = Center (p1, p2);
npi = mesh.AddPoint (np);
refedges.Set (edge, npi);
found = 1;
}
ref_uniform.Elem(i) = INDEX_3(pi1, npi, levels-1);
ref_uniform.Append (INDEX_3(pi2, npi, levels-1));
}
}
for (int i = 1; i <= ref_singular.Size(); i++)
{
int pi1 = ref_singular.Get(i).I1();
int pi2 = ref_singular.Get(i).I2();
int levels = ref_singular.Get(i).I3();
if (levels > 0)
{
const Point3d & p1 = mesh.Point(pi1);
const Point3d & p2 = mesh.Point(pi2);
int npi;
INDEX_2 edge(pi1, pi2);
edge.Sort();
if (!refedges.Used(edge))
{
Point3d np = Center (p1, p2);
npi = mesh.AddPoint (np);
refedges.Set (edge, npi);
found = 1;
}
else
npi = refedges.Get (edge);
ref_singular.Elem(i) = INDEX_3(pi1, npi, levels-1);
}
}
for (int i = 1; i <= ref_slices.Size(); i++)
{
int pi1 = ref_slices.Get(i)[0];
int pi2 = ref_slices.Get(i)[1];
int idnr = ref_slices.Get(i)[2];
int slicenr = ref_slices.Get(i)[3];
if (slicenr > 0)
{
const Point3d & p1 = mesh.Point(pi1);
const Point3d & p2 = mesh.Point(pi2);
int npi;
const CloseSurfaceIdentification * csid =
dynamic_cast<const CloseSurfaceIdentification*>
(geom->identifications.Get(idnr));
INDEX_2 edge(pi1, pi2);
edge.Sort();
if (!refedges.Used(edge))
{
const auto& slices = csid->GetSlices();
//(*testout) << "idnr " << idnr << " i " << i << endl;
//(*testout) << "slices " << slices << endl;
double slicefac = slices[slicenr-1];
double slicefaclast =
(slicenr == slices.Size()) ? 1 : slices[slicenr];
Point3d np = p1 + (slicefac / slicefaclast) * (p2-p1);
//(*testout) << "slicenr " << slicenr << " slicefac " << slicefac << " quot " << (slicefac / slicefaclast) << " np " << np << endl;
npi = mesh.AddPoint (np);
refedges.Set (edge, npi);
found = 1;
}
else
npi = refedges.Get (edge);
ref_slices.Elem(i)[1] = npi;
ref_slices.Elem(i)[3] --;
}
}
for (ElementIndex ei = 0; ei < mesh.GetNE(); ei++)
{
Element & el = mesh.VolumeElement (ei);
if (el.GetType() != PRISM)
continue;
for (int j = 1; j <= 3; j++)
{
int pi1 = el.PNum(j);
int pi2 = el.PNum(j+3);
const Point3d & p1 = mesh.Point(pi1);
const Point3d & p2 = mesh.Point(pi2);
bool ref = 0;
/*
if (Dist (p1, p2) > mesh.GetH (Center (p1, p2)))
ref = 1;
*/
/*
if (cnt <= opt.minref)
ref = 1;
*/
/*
if ((pi1 == 460 || pi2 == 460 ||
pi1 == 461 || pi2 == 461) && cnt <= 8) ref = 1;
*/
if (ref == 1)
{
INDEX_2 edge(pi1, pi2);
edge.Sort();
if (!refedges.Used(edge))
{
Point3d np = Center (p1, p2);
int npi = mesh.AddPoint (np);
refedges.Set (edge, npi);
found = 1;
}
}
}
}
if (!found) break;
// build closure:
PrintMessage (5, "start closure");
do
{
PrintMessage (5, "start loop");
change = 0;
for (ElementIndex ei = 0; ei < mesh.GetNE(); ei++)
{
Element & el = mesh.VolumeElement (ei);
if (el.GetType() != PRISM)
continue;
bool hasref = 0, hasnonref = 0;
for (int j = 1; j <= 3; j++)
{
int pi1 = el.PNum(j);
int pi2 = el.PNum(j+3);
if (pi1 != pi2)
{
INDEX_2 edge(pi1, pi2);
edge.Sort();
if (refedges.Used(edge))
hasref = 1;
else
hasnonref = 1;
}
}
if (hasref && hasnonref)
{
// cout << "el " << i << " in closure" << endl;
change = 1;
for (int j = 1; j <= 3; j++)
{
int pi1 = el.PNum(j);
int pi2 = el.PNum(j+3);
const Point3d & p1 = mesh.Point(pi1);
const Point3d & p2 = mesh.Point(pi2);
INDEX_2 edge(pi1, pi2);
edge.Sort();
if (!refedges.Used(edge))
{
Point3d np = Center (p1, p2);
int npi = mesh.AddPoint (np);
refedges.Set (edge, npi);
}
}
}
}
}
while (change);
PrintMessage (5, "Do segments");
// (*testout) << "closure formed, np = " << mesh.GetNP() << endl;
int oldns = mesh.GetNSeg();
for (int i = 1; i <= oldns; i++)
{
const Segment & el = mesh.LineSegment(i);
INDEX_2 i2(el[0], el[1]);
i2.Sort();
int pnew;
EdgePointGeomInfo ngi;
if (refedges.Used(i2))
{
pnew = refedges.Get(i2);
// ngi = epgi.Get(pnew);
}
else
{
continue;
// Point3d pb;
// /*
// geom->PointBetween (mesh.Point (el[0]),
// mesh.Point (el[1]),
// el.surfnr1, el.surfnr2,
// el.epgeominfo[0], el.epgeominfo[1],
// pb, ngi);
// */
// pb = Center (mesh.Point (el[0]), mesh.Point (el[1]));
// pnew = mesh.AddPoint (pb);
// refedges.Set (i2, pnew);
// if (pnew > epgi.Size())
// epgi.SetSize (pnew);
// epgi.Elem(pnew) = ngi;
}
Segment ns1 = el;
Segment ns2 = el;
ns1[1] = pnew;
ns1.epgeominfo[1] = ngi;
ns2[0] = pnew;
ns2.epgeominfo[0] = ngi;
mesh.LineSegment(i) = ns1;
mesh.AddSegment (ns2);
}
PrintMessage (5, "Segments done, NSeg = ", mesh.GetNSeg());
// do refinement
int oldne = mesh.GetNE();
for (ElementIndex ei = 0; ei < oldne; ei++)
{
Element & el = mesh.VolumeElement (ei);
if (el.GetNP() != 6)
continue;
int npi[3];
for (int j = 1; j <= 3; j++)
{
int pi1 = el.PNum(j);
int pi2 = el.PNum(j+3);
if (pi1 == pi2)
npi[j-1] = pi1;
else
{
INDEX_2 edge(pi1, pi2);
edge.Sort();
if (refedges.Used (edge))
npi[j-1] = refedges.Get(edge);
else
{
/*
(*testout) << "ERROR: prism " << i << " has hanging node !!"
<< ", edge = " << edge << endl;
cerr << "ERROR: prism " << i << " has hanging node !!" << endl;
*/
npi[j-1] = 0;
}
}
}
if (npi[0])
{
Element nel1(6), nel2(6);
for (int j = 1; j <= 3; j++)
{
nel1.PNum(j) = el.PNum(j);
nel1.PNum(j+3) = npi[j-1];
nel2.PNum(j) = npi[j-1];
nel2.PNum(j+3) = el.PNum(j+3);
}
nel1.SetIndex (el.GetIndex());
nel2.SetIndex (el.GetIndex());
mesh.VolumeElement (ei) = nel1;
mesh.AddVolumeElement (nel2);
}
}
PrintMessage (5, "Elements done, NE = ", mesh.GetNE());
// do surface elements
int oldnse = mesh.GetNSE();
// cout << "oldnse = " << oldnse << endl;
for (SurfaceElementIndex sei = 0; sei < oldnse; sei++)
{
Element2d & el = mesh.SurfaceElement (sei);
if (el.GetType() != QUAD)
continue;
int index = el.GetIndex();
int npi[2];
for (int j = 1; j <= 2; j++)
{
int pi1, pi2;
if (j == 1)
{
pi1 = el.PNum(1);
pi2 = el.PNum(4);
}
else
{
pi1 = el.PNum(2);
pi2 = el.PNum(3);
}
if (pi1 == pi2)
npi[j-1] = pi1;
else
{
INDEX_2 edge(pi1, pi2);
edge.Sort();
if (refedges.Used (edge))
npi[j-1] = refedges.Get(edge);
else
{
npi[j-1] = 0;
}
}
}
if (npi[0])
{
Element2d nel1(QUAD), nel2(QUAD);
for (int j = 1; j <= 4; j++)
{
nel1.PNum(j) = el.PNum(j);
nel2.PNum(j) = el.PNum(j);
}
nel1.PNum(3) = npi[1];
nel1.PNum(4) = npi[0];
nel2.PNum(1) = npi[0];
nel2.PNum(2) = npi[1];
/*
for (j = 1; j <= 2; j++)
{
nel1.PNum(j) = el.PNum(j);
nel1.PNum(j+2) = npi[j-1];
nel2.PNum(j) = npi[j-1];
nel2.PNum(j+2) = el.PNum(j+2);
}
*/
nel1.SetIndex (el.GetIndex());
nel2.SetIndex (el.GetIndex());
mesh.SurfaceElement (sei) = nel1;
mesh.AddSurfaceElement (nel2);
int si = mesh.GetFaceDescriptor (index).SurfNr();
Point<3> hp = mesh.Point(npi[0]);
geom->GetSurface(si)->Project (hp);
mesh.Point (npi[0]).SetPoint (hp);
hp = mesh.Point(npi[1]);
geom->GetSurface(si)->Project (hp);
mesh.Point (npi[1]).SetPoint (hp);
// geom->GetSurface(si)->Project (mesh.Point(npi[0]));
// geom->GetSurface(si)->Project (mesh.Point(npi[1]));
}
}
mesh.RebuildSurfaceElementLists();
PrintMessage (5, "Surface elements done, NSE = ", mesh.GetNSE());
}
}
void CombineSingularPrisms(Mesh& mesh)
{
for(ElementIndex ei = 0; ei < mesh.GetNE(); ei++)
{
Element& el = mesh.VolumeElement(ei);
if(el.GetType() != PRISM)
continue;
if(el.PNum(3) == el.PNum(6))
{
if(el.PNum(2) == el.PNum(5))
{
el.SetType(TET);
}
else
{
el.SetType(PYRAMID);
int pnr5 = el.PNum(3);
el.PNum(3) = el.PNum(5);
el.PNum(5) = pnr5;
}
}
}
}
void ZRefinement (Mesh & mesh, const NetgenGeometry * hgeom,
ZRefinementOptions & opt)
{
const CSGeometry * geom = dynamic_cast<const CSGeometry*> (hgeom);
if (!geom) return;
INDEX_2_HASHTABLE<int> singedges(mesh.GetNSeg());
SelectSingularEdges (mesh, *geom, singedges, opt);
//MakePrismsSingEdge (mesh, singedges);
MakePrismsClosePoints (mesh);
RefinePrisms (mesh, geom, opt);
CombineSingularPrisms(mesh);
}
ZRefinementOptions :: ZRefinementOptions()
{
minref = 0;
}
}