netgen/nglib/nglib.cpp
2011-03-07 16:38:43 +00:00

1222 lines
27 KiB
C++

/**************************************************************************/
/* File: nglib.cpp */
/* Author: Joachim Schoeberl */
/* Date: 7. May. 2000 */
/**************************************************************************/
/*
Interface to the netgen meshing kernel
*/
#include <mystdlib.h>
#include <myadt.hpp>
#include <linalg.hpp>
#include <csg.hpp>
#include <stlgeom.hpp>
#include <geometry2d.hpp>
#include <meshing.hpp>
#ifdef OCCGEOMETRY
#include <occgeom.hpp>
#endif
#include <nginterface.h>
namespace netgen {
extern void MeshFromSpline2D (SplineGeometry2d & geometry,
Mesh *& mesh,
MeshingParameters & mp);
}
#ifdef PARALLEL
#include <mpi.h>
namespace netgen
{
int id, ntasks;
MPI_Group MPI_HIGHORDER_WORLD;
MPI_Comm MPI_HIGHORDER_COMM;
}
#endif
/*
// should not be needed (occ currently requires it)
namespace netgen {
#include "../libsrc/visualization/vispar.hpp"
VisualizationParameters vispar;
VisualizationParameters :: VisualizationParameters() { ; }
}
*/
namespace nglib {
#include "nglib.h"
}
using namespace netgen;
// constants and types:
namespace nglib
{
// initialize, deconstruct Netgen library:
DLL_HEADER void Ng_Init ()
{
mycout = &cout;
myerr = &cerr;
// netgen::testout->SetOutStream (new ofstream ("test.out"));
testout = new ofstream ("test.out");
}
// Clean-up functions before ending usage of nglib
DLL_HEADER void Ng_Exit ()
{
;
}
// Create a new netgen mesh object
DLL_HEADER Ng_Mesh * Ng_NewMesh ()
{
Mesh * mesh = new Mesh;
mesh->AddFaceDescriptor (FaceDescriptor (1, 1, 0, 1));
return (Ng_Mesh*)(void*)mesh;
}
// Delete an existing netgen mesh object
DLL_HEADER void Ng_DeleteMesh (Ng_Mesh * mesh)
{
if(mesh != NULL)
{
// Delete the Mesh structures
((Mesh*)mesh)->DeleteMesh();
// Now delete the Mesh class itself
delete (Mesh*)mesh;
// Set the Ng_Mesh pointer to NULL
mesh = NULL;
}
}
// Save a netgen mesh in the native VOL format
DLL_HEADER void Ng_SaveMesh(Ng_Mesh * mesh, const char* filename)
{
((Mesh*)mesh)->Save(filename);
}
// Load a netgen native VOL mesh from a given file
DLL_HEADER Ng_Mesh * Ng_LoadMesh(const char* filename)
{
Mesh * mesh = new Mesh;
mesh->Load(filename);
return ( (Ng_Mesh*)mesh );
}
// Merge another mesh file into the currently loaded one
DLL_HEADER Ng_Result Ng_MergeMesh( Ng_Mesh* mesh, const char* filename)
{
Ng_Result status = NG_OK;
ifstream infile(filename);
Mesh * m = (Mesh*)mesh;
if(!infile.good())
{
status = NG_FILE_NOT_FOUND;
}
if(!m)
{
status = NG_ERROR;
}
if(status == NG_OK)
{
const int num_pts = m->GetNP();
const int face_offset = m->GetNFD();
m->Merge(infile, face_offset);
if(m->GetNP() > num_pts)
{
status = NG_OK;
}
else
{
status = NG_ERROR;
}
}
return status;
}
// Merge another mesh file into the currently loaded one
DLL_HEADER Ng_Result Ng_MergeMesh( Ng_Mesh* mesh1, Ng_Mesh* mesh2)
{
return NG_ERROR;
}
// Manually add a point to an existing mesh object
DLL_HEADER void Ng_AddPoint (Ng_Mesh * mesh, double * x)
{
Mesh * m = (Mesh*)mesh;
m->AddPoint (Point3d (x[0], x[1], x[2]));
}
// Manually add a surface element of a given type to an existing mesh object
DLL_HEADER void Ng_AddSurfaceElement (Ng_Mesh * mesh, Ng_Surface_Element_Type et,
int * pi)
{
Mesh * m = (Mesh*)mesh;
Element2d el (3);
el.SetIndex (1);
el.PNum(1) = pi[0];
el.PNum(2) = pi[1];
el.PNum(3) = pi[2];
m->AddSurfaceElement (el);
}
// Manually add a volume element of a given type to an existing mesh object
DLL_HEADER void Ng_AddVolumeElement (Ng_Mesh * mesh, Ng_Volume_Element_Type et,
int * pi)
{
Mesh * m = (Mesh*)mesh;
Element el (4);
el.SetIndex (1);
el.PNum(1) = pi[0];
el.PNum(2) = pi[1];
el.PNum(3) = pi[2];
el.PNum(4) = pi[3];
m->AddVolumeElement (el);
}
// Obtain the number of points in the mesh
DLL_HEADER int Ng_GetNP (Ng_Mesh * mesh)
{
return ((Mesh*)mesh) -> GetNP();
}
// Obtain the number of surface elements in the mesh
DLL_HEADER int Ng_GetNSE (Ng_Mesh * mesh)
{
return ((Mesh*)mesh) -> GetNSE();
}
// Obtain the number of volume elements in the mesh
DLL_HEADER int Ng_GetNE (Ng_Mesh * mesh)
{
return ((Mesh*)mesh) -> GetNE();
}
// Return point coordinates of a given point index in the mesh
DLL_HEADER void Ng_GetPoint (Ng_Mesh * mesh, int num, double * x)
{
const Point3d & p = ((Mesh*)mesh)->Point(num);
x[0] = p.X();
x[1] = p.Y();
x[2] = p.Z();
}
// Return the surface element at a given index "pi"
DLL_HEADER Ng_Surface_Element_Type
Ng_GetSurfaceElement (Ng_Mesh * mesh, int num, int * pi)
{
const Element2d & el = ((Mesh*)mesh)->SurfaceElement(num);
for (int i = 1; i <= el.GetNP(); i++)
pi[i-1] = el.PNum(i);
Ng_Surface_Element_Type et;
switch (el.GetNP())
{
case 3: et = NG_TRIG; break;
case 4: et = NG_QUAD; break;
case 6:
switch (el.GetNV())
{
case 3: et = NG_TRIG6; break;
case 4: et = NG_QUAD6; break;
default:
et = NG_TRIG6; break;
}
break;
case 8: et = NG_QUAD8; break;
default:
et = NG_TRIG; break; // for the compiler
}
return et;
}
// Return the volume element at a given index "pi"
DLL_HEADER Ng_Volume_Element_Type
Ng_GetVolumeElement (Ng_Mesh * mesh, int num, int * pi)
{
const Element & el = ((Mesh*)mesh)->VolumeElement(num);
for (int i = 1; i <= el.GetNP(); i++)
pi[i-1] = el.PNum(i);
Ng_Volume_Element_Type et;
switch (el.GetNP())
{
case 4: et = NG_TET; break;
case 5: et = NG_PYRAMID; break;
case 6: et = NG_PRISM; break;
case 10: et = NG_TET10; break;
default:
et = NG_TET; break; // for the compiler
}
return et;
}
// Set a global limit on the maximum mesh size allowed
DLL_HEADER void Ng_RestrictMeshSizeGlobal (Ng_Mesh * mesh, double h)
{
((Mesh*)mesh) -> SetGlobalH (h);
}
// Set a local limit on the maximum mesh size allowed around the given point
DLL_HEADER void Ng_RestrictMeshSizePoint (Ng_Mesh * mesh, double * p, double h)
{
((Mesh*)mesh) -> RestrictLocalH (Point3d (p[0], p[1], p[2]), h);
}
// Set a local limit on the maximum mesh size allowed within a given box region
DLL_HEADER void Ng_RestrictMeshSizeBox (Ng_Mesh * mesh, double * pmin, double * pmax, double h)
{
for (double x = pmin[0]; x < pmax[0]; x += h)
for (double y = pmin[1]; y < pmax[1]; y += h)
for (double z = pmin[2]; z < pmax[2]; z += h)
((Mesh*)mesh) -> RestrictLocalH (Point3d (x, y, z), h);
}
// Generates volume mesh from an existing surface mesh
DLL_HEADER Ng_Result Ng_GenerateVolumeMesh (Ng_Mesh * mesh, Ng_Meshing_Parameters * mp)
{
Mesh * m = (Mesh*)mesh;
// Philippose - 30/08/2009
// Do not locally re-define "mparam" here... "mparam" is a global
// object
//MeshingParameters mparam;
mp->Transfer_Parameters();
m->CalcLocalH();
MeshVolume (mparam, *m);
RemoveIllegalElements (*m);
OptimizeVolume (mparam, *m);
return NG_OK;
}
/* ------------------ 2D Meshing Functions ------------------------- */
DLL_HEADER void Ng_AddPoint_2D (Ng_Mesh * mesh, double * x)
{
Mesh * m = (Mesh*)mesh;
m->AddPoint (Point3d (x[0], x[1], 0));
}
DLL_HEADER void Ng_AddBoundarySeg_2D (Ng_Mesh * mesh, int pi1, int pi2)
{
Mesh * m = (Mesh*)mesh;
Segment seg;
seg[0] = pi1;
seg[1] = pi2;
m->AddSegment (seg);
}
DLL_HEADER int Ng_GetNP_2D (Ng_Mesh * mesh)
{
Mesh * m = (Mesh*)mesh;
return m->GetNP();
}
DLL_HEADER int Ng_GetNE_2D (Ng_Mesh * mesh)
{
Mesh * m = (Mesh*)mesh;
return m->GetNSE();
}
DLL_HEADER int Ng_GetNSeg_2D (Ng_Mesh * mesh)
{
Mesh * m = (Mesh*)mesh;
return m->GetNSeg();
}
DLL_HEADER void Ng_GetPoint_2D (Ng_Mesh * mesh, int num, double * x)
{
Mesh * m = (Mesh*)mesh;
Point<3> & p = m->Point(num);
x[0] = p(0);
x[1] = p(1);
}
DLL_HEADER Ng_Surface_Element_Type
Ng_GetElement_2D (Ng_Mesh * mesh, int num, int * pi, int * matnum)
{
const Element2d & el = ((Mesh*)mesh)->SurfaceElement(num);
for (int i = 1; i <= el.GetNP(); i++)
pi[i-1] = el.PNum(i);
Ng_Surface_Element_Type et;
switch (el.GetNP())
{
case 3: et = NG_TRIG; break;
case 4: et = NG_QUAD; break;
case 6:
switch (el.GetNV())
{
case 3: et = NG_TRIG6; break;
case 4: et = NG_QUAD6; break;
default:
et = NG_TRIG6; break;
}
break;
case 8: et = NG_QUAD8; break;
default:
et = NG_TRIG; break; // for the compiler
}
if (matnum)
*matnum = el.GetIndex();
return et;
}
DLL_HEADER void Ng_GetSegment_2D (Ng_Mesh * mesh, int num, int * pi, int * matnum)
{
const Segment & seg = ((Mesh*)mesh)->LineSegment(num);
pi[0] = seg[0];
pi[1] = seg[1];
if (matnum)
*matnum = seg.edgenr;
}
DLL_HEADER Ng_Geometry_2D * Ng_LoadGeometry_2D (const char * filename)
{
SplineGeometry2d * geom = new SplineGeometry2d();
geom -> Load (filename);
return (Ng_Geometry_2D *)geom;
}
DLL_HEADER Ng_Result Ng_GenerateMesh_2D (Ng_Geometry_2D * geom,
Ng_Mesh ** mesh,
Ng_Meshing_Parameters * mp)
{
// use global variable mparam
// MeshingParameters mparam;
mp->Transfer_Parameters();
Mesh * m;
MeshFromSpline2D (*(SplineGeometry2d*)geom, m, mparam);
cout << m->GetNSE() << " elements, " << m->GetNP() << " points" << endl;
*mesh = (Ng_Mesh*)m;
return NG_OK;
}
DLL_HEADER void Ng_HP_Refinement (Ng_Geometry_2D * geom,
Ng_Mesh * mesh,
int levels)
{
Refinement2d ref(*(SplineGeometry2d*)geom);
HPRefinement (*(Mesh*)mesh, &ref, levels);
}
DLL_HEADER void Ng_HP_Refinement (Ng_Geometry_2D * geom,
Ng_Mesh * mesh,
int levels, double parameter)
{
Refinement2d ref(*(SplineGeometry2d*)geom);
HPRefinement (*(Mesh*)mesh, &ref, levels, parameter);
}
Array<STLReadTriangle> readtrias; //only before initstlgeometry
Array<Point<3> > readedges; //only before init stlgeometry
// loads geometry from STL file
DLL_HEADER Ng_STL_Geometry * Ng_STL_LoadGeometry (const char * filename, int binary)
{
int i;
STLGeometry geom;
STLGeometry* geo;
ifstream ist(filename);
if (binary)
{
geo = geom.LoadBinary(ist);
}
else
{
geo = geom.Load(ist);
}
readtrias.SetSize(0);
readedges.SetSize(0);
Point3d p;
Vec3d normal;
double p1[3];
double p2[3];
double p3[3];
double n[3];
Ng_STL_Geometry * geo2 = Ng_STL_NewGeometry();
for (i = 1; i <= geo->GetNT(); i++)
{
const STLTriangle& t = geo->GetTriangle(i);
p = geo->GetPoint(t.PNum(1));
p1[0] = p.X(); p1[1] = p.Y(); p1[2] = p.Z();
p = geo->GetPoint(t.PNum(2));
p2[0] = p.X(); p2[1] = p.Y(); p2[2] = p.Z();
p = geo->GetPoint(t.PNum(3));
p3[0] = p.X(); p3[1] = p.Y(); p3[2] = p.Z();
normal = t.Normal();
n[0] = normal.X(); n[1] = normal.Y(); n[2] = normal.Z();
Ng_STL_AddTriangle(geo2, p1, p2, p3, n);
}
return geo2;
}
// generate new STL Geometry
DLL_HEADER Ng_STL_Geometry * Ng_STL_NewGeometry ()
{
return (Ng_STL_Geometry*)(void*)new STLGeometry;
}
// after adding triangles (and edges) initialize
DLL_HEADER Ng_Result Ng_STL_InitSTLGeometry (Ng_STL_Geometry * geom)
{
STLGeometry* geo = (STLGeometry*)geom;
geo->InitSTLGeometry(readtrias);
readtrias.SetSize(0);
if (readedges.Size() != 0)
{
/*
for (int i = 1; i <= readedges.Size(); i+=2)
{
cout << "e(" << readedges.Get(i) << "," << readedges.Get(i+1) << ")" << endl;
}
*/
geo->AddEdges(readedges);
}
if (geo->GetStatus() == STLTopology::STL_GOOD || geo->GetStatus() == STLTopology::STL_WARNING) return NG_OK;
return NG_SURFACE_INPUT_ERROR;
}
// automatically generates edges:
DLL_HEADER Ng_Result Ng_STL_MakeEdges (Ng_STL_Geometry * geom,
Ng_Mesh* mesh,
Ng_Meshing_Parameters * mp)
{
STLGeometry* stlgeometry = (STLGeometry*)geom;
Mesh* me = (Mesh*)mesh;
// Philippose - 27/07/2009
// Do not locally re-define "mparam" here... "mparam" is a global
// object
//MeshingParameters mparam;
mp->Transfer_Parameters();
me -> SetGlobalH (mparam.maxh);
me -> SetLocalH (stlgeometry->GetBoundingBox().PMin() - Vec3d(10, 10, 10),
stlgeometry->GetBoundingBox().PMax() + Vec3d(10, 10, 10),
0.3);
me -> LoadLocalMeshSize (mp->meshsize_filename);
/*
if (mp->meshsize_filename)
{
ifstream infile (mp->meshsize_filename);
if (!infile.good()) return NG_FILE_NOT_FOUND;
me -> LoadLocalMeshSize (infile);
}
*/
STLMeshing (*stlgeometry, *me);
stlgeometry->edgesfound = 1;
stlgeometry->surfacemeshed = 0;
stlgeometry->surfaceoptimized = 0;
stlgeometry->volumemeshed = 0;
return NG_OK;
}
// generates mesh, empty mesh be already created.
DLL_HEADER Ng_Result Ng_STL_GenerateSurfaceMesh (Ng_STL_Geometry * geom,
Ng_Mesh* mesh,
Ng_Meshing_Parameters * mp)
{
STLGeometry* stlgeometry = (STLGeometry*)geom;
Mesh* me = (Mesh*)mesh;
// Philippose - 27/07/2009
// Do not locally re-define "mparam" here... "mparam" is a global
// object
//MeshingParameters mparam;
mp->Transfer_Parameters();
/*
me -> SetGlobalH (mparam.maxh);
me -> SetLocalH (stlgeometry->GetBoundingBox().PMin() - Vec3d(10, 10, 10),
stlgeometry->GetBoundingBox().PMax() + Vec3d(10, 10, 10),
0.3);
*/
/*
STLMeshing (*stlgeometry, *me);
stlgeometry->edgesfound = 1;
stlgeometry->surfacemeshed = 0;
stlgeometry->surfaceoptimized = 0;
stlgeometry->volumemeshed = 0;
*/
int retval = STLSurfaceMeshing (*stlgeometry, *me);
if (retval == MESHING3_OK)
{
(*mycout) << "Success !!!!" << endl;
stlgeometry->surfacemeshed = 1;
stlgeometry->surfaceoptimized = 0;
stlgeometry->volumemeshed = 0;
}
else if (retval == MESHING3_OUTERSTEPSEXCEEDED)
{
(*mycout) << "ERROR: Give up because of too many trials. Meshing aborted!" << endl;
}
else if (retval == MESHING3_TERMINATE)
{
(*mycout) << "Meshing Stopped!" << endl;
}
else
{
(*mycout) << "ERROR: Surface meshing not successful. Meshing aborted!" << endl;
}
STLSurfaceOptimization (*stlgeometry, *me, mparam);
return NG_OK;
}
// fills STL Geometry
// positive orientation
// normal vector may be null-pointer
DLL_HEADER void Ng_STL_AddTriangle (Ng_STL_Geometry * geom,
double * p1, double * p2, double * p3,
double * nv)
{
Point<3> apts[3];
apts[0] = Point<3>(p1[0],p1[1],p1[2]);
apts[1] = Point<3>(p2[0],p2[1],p2[2]);
apts[2] = Point<3>(p3[0],p3[1],p3[2]);
Vec<3> n;
if (!nv)
n = Cross (apts[0]-apts[1], apts[0]-apts[2]);
else
n = Vec<3>(nv[0],nv[1],nv[2]);
readtrias.Append(STLReadTriangle(apts,n));
}
// add (optional) edges:
DLL_HEADER void Ng_STL_AddEdge (Ng_STL_Geometry * geom,
double * p1, double * p2)
{
readedges.Append(Point3d(p1[0],p1[1],p1[2]));
readedges.Append(Point3d(p2[0],p2[1],p2[2]));
}
#ifdef OCCGEOMETRY
// --------------------- OCC Geometry / Meshing Utility Functions -------------------
// Create new OCC Geometry Object
DLL_HEADER Ng_OCC_Geometry * Ng_OCC_NewGeometry ()
{
return (Ng_OCC_Geometry*)(void*)new OCCGeometry;
}
// Delete the OCC Geometry Object
DLL_HEADER Ng_Result Ng_OCC_DeleteGeometry(Ng_OCC_Geometry * geom)
{
if (geom != NULL)
{
delete (OCCGeometry*)geom;
geom = NULL;
return NG_OK;
}
return NG_ERROR;
}
// Loads geometry from STEP File
DLL_HEADER Ng_OCC_Geometry * Ng_OCC_Load_STEP (const char * filename)
{
// Call the STEP File Load function. Note.. the geometry class
// is created and instantiated within the load function
OCCGeometry * occgeo = LoadOCC_STEP(filename);
return ((Ng_OCC_Geometry *)occgeo);
}
// Loads geometry from IGES File
DLL_HEADER Ng_OCC_Geometry * Ng_OCC_Load_IGES (const char * filename)
{
// Call the IGES File Load function. Note.. the geometry class
// is created and instantiated within the load function
OCCGeometry * occgeo = LoadOCC_IGES(filename);
return ((Ng_OCC_Geometry *)occgeo);
}
// Loads geometry from BREP File
DLL_HEADER Ng_OCC_Geometry * Ng_OCC_Load_BREP (const char * filename)
{
// Call the BREP File Load function. Note.. the geometry class
// is created and instantiated within the load function
OCCGeometry * occgeo = LoadOCC_BREP(filename);
return ((Ng_OCC_Geometry *)occgeo);
}
// Locally limit the size of the mesh to be generated at various points
// based on the topology of the geometry
DLL_HEADER Ng_Result Ng_OCC_SetLocalMeshSize (Ng_OCC_Geometry * geom,
Ng_Mesh * mesh,
Ng_Meshing_Parameters * mp)
{
OCCGeometry * occgeom = (OCCGeometry*)geom;
Mesh * me = (Mesh*)mesh;
me->geomtype = Mesh::GEOM_OCC;
mp->Transfer_Parameters();
occparam.resthcloseedgeenable = mp->closeedgeenable;
occparam.resthcloseedgefac = mp->closeedgefact;
// Delete the mesh structures in order to start with a clean
// slate
me->DeleteMesh();
OCCSetLocalMeshSize(*occgeom, *me);
return(NG_OK);
}
// Mesh the edges and add Face descriptors to prepare for surface meshing
DLL_HEADER Ng_Result Ng_OCC_GenerateEdgeMesh (Ng_OCC_Geometry * geom,
Ng_Mesh * mesh,
Ng_Meshing_Parameters * mp)
{
OCCGeometry * occgeom = (OCCGeometry*)geom;
Mesh * me = (Mesh*)mesh;
mp->Transfer_Parameters();
OCCFindEdges(*occgeom, *me);
if((me->GetNP()) && (me->GetNFD()))
{
return NG_OK;
}
else
{
return NG_ERROR;
}
}
// Mesh the edges and add Face descriptors to prepare for surface meshing
DLL_HEADER Ng_Result Ng_OCC_GenerateSurfaceMesh (Ng_OCC_Geometry * geom,
Ng_Mesh * mesh,
Ng_Meshing_Parameters * mp)
{
int numpoints = 0;
OCCGeometry * occgeom = (OCCGeometry*)geom;
Mesh * me = (Mesh*)mesh;
// Set the internal meshing parameters structure from the nglib meshing
// parameters structure
mp->Transfer_Parameters();
// Only go into surface meshing if the face descriptors have already been added
if(!me->GetNFD())
return NG_ERROR;
numpoints = me->GetNP();
// Initially set up only for surface meshing without any optimisation
int perfstepsend = MESHCONST_MESHSURFACE;
// Check and if required, enable surface mesh optimisation step
if(mp->optsurfmeshenable)
{
perfstepsend = MESHCONST_OPTSURFACE;
}
OCCMeshSurface(*occgeom, *me, perfstepsend);
me->CalcSurfacesOfNode();
if(me->GetNP() <= numpoints)
return NG_ERROR;
if(me->GetNSE() <= 0)
return NG_ERROR;
return NG_OK;
}
// Extract the face map from the OCC geometry
// The face map basically gives an index to each face in the geometry,
// which can be used to access a specific face
DLL_HEADER Ng_Result Ng_OCC_GetFMap(Ng_OCC_Geometry * geom,
Ng_OCC_TopTools_IndexedMapOfShape * FMap)
{
OCCGeometry* occgeom = (OCCGeometry*)geom;
TopTools_IndexedMapOfShape *occfmap = (TopTools_IndexedMapOfShape *)FMap;
// Copy the face map from the geometry to the given variable
occfmap->Assign(occgeom->fmap);
if(occfmap->Extent())
{
return NG_OK;
}
else
{
return NG_ERROR;
}
}
// ------------------ End - OCC Geometry / Meshing Utility Functions ----------------
#endif
// ------------------ Begin - Meshing Parameters related functions ------------------
// Constructor for the local nglib meshing parameters class
DLL_HEADER Ng_Meshing_Parameters :: Ng_Meshing_Parameters()
{
uselocalh = 1;
maxh = 1000;
minh = 0.0;
fineness = 0.5;
grading = 0.3;
elementsperedge = 2.0;
elementspercurve = 2.0;
closeedgeenable = 0;
closeedgefact = 2.0;
second_order = 0;
quad_dominated = 0;
meshsize_filename = 0;
optsurfmeshenable = 1;
optvolmeshenable = 1;
optsteps_2d = 3;
optsteps_3d = 3;
invert_tets = 0;
invert_trigs = 0;
check_overlap = 1;
check_overlapping_boundary = 1;
}
// Reset the local meshing parameters to the default values
DLL_HEADER void Ng_Meshing_Parameters :: Reset_Parameters()
{
uselocalh = 1;
maxh = 1000;
minh = 0;
fineness = 0.5;
grading = 0.3;
elementsperedge = 2.0;
elementspercurve = 2.0;
closeedgeenable = 0;
closeedgefact = 2.0;
second_order = 0;
quad_dominated = 0;
meshsize_filename = 0;
optsurfmeshenable = 1;
optvolmeshenable = 1;
optsteps_2d = 3;
optsteps_3d = 3;
invert_tets = 0;
invert_trigs = 0;
check_overlap = 1;
check_overlapping_boundary = 1;
}
//
DLL_HEADER void Ng_Meshing_Parameters :: Transfer_Parameters()
{
mparam.uselocalh = uselocalh;
mparam.maxh = maxh;
mparam.minh = minh;
mparam.grading = grading;
mparam.curvaturesafety = elementspercurve;
mparam.segmentsperedge = elementsperedge;
mparam.secondorder = second_order;
mparam.quad = quad_dominated;
mparam.meshsizefilename = meshsize_filename;
mparam.optsteps2d = optsteps_2d;
mparam.optsteps3d = optsteps_3d;
mparam.inverttets = invert_tets;
mparam.inverttrigs = invert_trigs;
mparam.checkoverlap = check_overlap;
mparam.checkoverlappingboundary = check_overlapping_boundary;
}
// ------------------ End - Meshing Parameters related functions --------------------
// ------------------ Begin - Second Order Mesh generation functions ----------------
DLL_HEADER void Ng_Generate_SecondOrder(Ng_Mesh * mesh)
{
Refinement ref;
ref.MakeSecondOrder(*(Mesh*) mesh);
}
DLL_HEADER void Ng_2D_Generate_SecondOrder(Ng_Geometry_2D * geom,
Ng_Mesh * mesh)
{
( (SplineGeometry2d*)geom ) -> GetRefinement().MakeSecondOrder( * (Mesh*) mesh );
}
DLL_HEADER void Ng_STL_Generate_SecondOrder(Ng_STL_Geometry * geom,
Ng_Mesh * mesh)
{
((STLGeometry*)geom)->GetRefinement().MakeSecondOrder(*(Mesh*) mesh);
}
DLL_HEADER void Ng_CSG_Generate_SecondOrder (Ng_CSG_Geometry * geom,
Ng_Mesh * mesh)
{
((CSGeometry*)geom)->GetRefinement().MakeSecondOrder(*(Mesh*) mesh);
}
#ifdef OCCGEOMETRY
DLL_HEADER void Ng_OCC_Generate_SecondOrder (Ng_OCC_Geometry * geom,
Ng_Mesh * mesh)
{
((OCCGeometry*)geom )->GetRefinement().MakeSecondOrder(*(Mesh*) mesh);
}
#endif
// ------------------ End - Second Order Mesh generation functions ------------------
// ------------------ Begin - Uniform Mesh Refinement functions ---------------------
DLL_HEADER void Ng_Uniform_Refinement (Ng_Mesh * mesh)
{
Refinement ref;
ref.Refine ( * (Mesh*) mesh );
}
DLL_HEADER void Ng_2D_Uniform_Refinement (Ng_Geometry_2D * geom,
Ng_Mesh * mesh)
{
( (SplineGeometry2d*)geom ) -> GetRefinement().Refine ( * (Mesh*) mesh );
}
DLL_HEADER void Ng_STL_Uniform_Refinement (Ng_STL_Geometry * geom,
Ng_Mesh * mesh)
{
( (STLGeometry*)geom ) -> GetRefinement().Refine ( * (Mesh*) mesh );
}
DLL_HEADER void Ng_CSG_Uniform_Refinement (Ng_CSG_Geometry * geom,
Ng_Mesh * mesh)
{
( (CSGeometry*)geom ) -> GetRefinement().Refine ( * (Mesh*) mesh );
}
#ifdef OCCGEOMETRY
DLL_HEADER void Ng_OCC_Uniform_Refinement (Ng_OCC_Geometry * geom,
Ng_Mesh * mesh)
{
( (OCCGeometry*)geom ) -> GetRefinement().Refine ( * (Mesh*) mesh );
}
#endif
// ------------------ End - Uniform Mesh Refinement functions -----------------------
} // End of namespace nglib
// compatibility functions:
namespace netgen
{
char geomfilename[255];
DLL_HEADER void MyError (const char * ch)
{
cerr << ch;
}
//Destination for messages, errors, ...
DLL_HEADER void Ng_PrintDest(const char * s)
{
(*mycout) << s << flush;
}
DLL_HEADER double GetTime ()
{
return 0;
}
void ResetTime ()
{
;
}
void MyBeep (int i)
{
;
}
void Render()
{
;
}
} // End of namespace netgen
void Ng_Redraw () { ; }
void Ng_ClearSolutionData () { ; }
void Ng_SetSolutionData (Ng_SolutionData * soldata) { ; }
void Ng_InitSolutionData (Ng_SolutionData * soldata) { ; }