netgen/libsrc/meshing/python_mesh.cpp
2019-02-06 19:13:51 +01:00

983 lines
38 KiB
C++

#ifdef NG_PYTHON
#include <../general/ngpython.hpp>
#include <mystdlib.h>
#include "meshing.hpp"
// #include <csg.hpp>
// #include <geometry2d.hpp>
#include <../interface/writeuser.hpp>
using namespace netgen;
extern const char *ngscript[];
namespace netgen
{
extern bool netgen_executable_started;
extern shared_ptr<NetgenGeometry> ng_geometry;
#ifdef PARALLEL
/** we need allreduce in python-wrapped communicators **/
template <typename T>
inline T MyMPI_AllReduceNG (T d, const MPI_Op & op = MPI_SUM, MPI_Comm comm = ng_comm)
{
T global_d;
MPI_Allreduce ( &d, &global_d, 1, MyGetMPIType<T>(), op, comm);
return global_d;
}
#else
enum { MPI_SUM = 0, MPI_MIN = 1, MPI_MAX = 2 };
typedef int MPI_Op;
template <typename T>
inline T MyMPI_AllReduceNG (T d, const MPI_Op & op = MPI_SUM, MPI_Comm comm = ng_comm)
{ return d; }
#endif
}
template <typename T, int BASE = 0, typename TIND = int>
void ExportArray (py::module &m)
{
using TA = Array<T,BASE,TIND>;
string name = string("Array_") + typeid(T).name();
py::class_<Array<T,BASE,TIND>>(m, name.c_str())
.def ("__len__", [] ( Array<T,BASE,TIND> &self ) { return self.Size(); } )
.def ("__getitem__",
FunctionPointer ([](Array<T,BASE,TIND> & self, TIND i) -> T&
{
if (i < BASE || i >= BASE+self.Size())
throw py::index_error();
return self[i];
}),
py::return_value_policy::reference)
.def("__iter__", [] ( TA & self) {
return py::make_iterator (self.begin(),self.end());
}, py::keep_alive<0,1>()) // keep array alive while iterator is used
;
}
void TranslateException (const NgException & ex)
{
string err = string("Netgen exception: ")+ex.What();
PyErr_SetString(PyExc_RuntimeError, err.c_str());
}
static Transformation<3> global_trafo(Vec<3> (0,0,0));
DLL_HEADER void ExportNetgenMeshing(py::module &m)
{
py::register_exception<NgException>(m, "NgException");
m.attr("_netgen_executable_started") = py::cast(netgen::netgen_executable_started);
string script;
const char ** hcp = ngscript;
while (*hcp)
script += *hcp++;
m.attr("_ngscript") = py::cast(script);
m.def("_GetStatus", []()
{
MyStr s; double percent;
GetStatus(s, percent);
return py::make_tuple(s.c_str(), percent);
});
m.def("_PushStatus", [](string s) { PushStatus(MyStr(s)); });
m.def("_SetThreadPercentage", [](double percent) { SetThreadPercent(percent); });
py::class_<NGDummyArgument>(m, "NGDummyArgument")
.def("__bool__", []( NGDummyArgument &self ) { return false; } )
;
py::class_<Point<2>> (m, "Point2d")
.def(py::init<double,double>())
.def ("__str__", &ToString<Point<2>>)
.def(py::self-py::self)
.def(py::self+Vec<2>())
.def(py::self-Vec<2>())
.def("__getitem__", [](Point<2>& self, int index) { return self[index]; })
;
py::class_<Point<3>> (m, "Point3d")
.def(py::init<double,double,double>())
.def ("__str__", &ToString<Point<3>>)
.def(py::self-py::self)
.def(py::self+Vec<3>())
.def(py::self-Vec<3>())
.def("__getitem__", [](Point<2>& self, int index) { return self[index]; })
;
m.def ("Pnt", FunctionPointer
([](double x, double y, double z) { return global_trafo(Point<3>(x,y,z)); }));
m.def ("Pnt", FunctionPointer
([](double x, double y) { return Point<2>(x,y); }));
/*
// duplicated functions ????
m.def ("Pnt", FunctionPointer
([](double x, double y, double z) { return Point<3>(x,y,z); }));
m.def ("Pnt", FunctionPointer
([](double x, double y) { return Point<2>(x,y); }));
*/
py::class_<Vec<2>> (m, "Vec2d")
.def(py::init<double,double>())
.def ("__str__", &ToString<Vec<3>>)
.def(py::self+py::self)
.def(py::self-py::self)
.def(-py::self)
.def(double()*py::self)
.def("Norm", &Vec<2>::Length)
.def("__getitem__", [](Vec<2>& vec, int index) { return vec[index]; })
.def("__len__", [](Vec<2>& /*unused*/) { return 2; })
;
py::class_<Vec<3>> (m, "Vec3d")
.def(py::init<double,double,double>())
.def ("__str__", &ToString<Vec<3>>)
.def(py::self+py::self)
.def(py::self-py::self)
.def(-py::self)
.def(double()*py::self)
.def("Norm", &Vec<3>::Length)
.def("__getitem__", [](Vec<3>& vec, int index) { return vec[index]; })
.def("__len__", [](Vec<3>& /*unused*/) { return 3; })
;
m.def ("Vec", FunctionPointer
([] (double x, double y, double z) { return global_trafo(Vec<3>(x,y,z)); }));
m.def ("Vec", FunctionPointer
([] (double x, double y) { return Vec<2>(x,y); }));
py::class_<Transformation<3>> (m, "Trafo")
.def(py::init<Vec<3>>())
.def("__call__", [] (Transformation<3> trafo, Point<3> p) { return trafo(p); })
;
m.def ("GetTransformation", [] () { return global_trafo; });
m.def ("SetTransformation", [] (Transformation<3> trafo) { global_trafo = trafo; });
m.def ("SetTransformation",
[](int dir, double angle)
{
if (dir > 0)
global_trafo.SetAxisRotation (dir, angle*M_PI/180);
else
global_trafo = Transformation<3> (Vec<3>(0,0,0));
},
py::arg("dir")=int(0), py::arg("angle")=int(0));
m.def ("SetTransformation",
[](Point<3> p0, Vec<3> ex, Vec<3> ey, Vec<3> ez)
{
Point<3> pnts[4];
pnts[0] = p0;
pnts[1] = p0 + ex;
pnts[2] = p0 + ey;
pnts[3] = p0 + ez;
global_trafo = Transformation<3> (pnts);
},
py::arg("p0"), py::arg("ex"), py::arg("ey"), py::arg("ez"));
py::class_<PointIndex>(m, "PointId")
.def(py::init<int>())
.def("__repr__", &ToString<PointIndex>)
.def("__str__", &ToString<PointIndex>)
.def_property_readonly("nr", &PointIndex::operator int)
.def("__eq__" , FunctionPointer( [](PointIndex &self, PointIndex &other)
{ return static_cast<int>(self)==static_cast<int>(other); }) )
.def("__hash__" , FunctionPointer( [](PointIndex &self ) { return static_cast<int>(self); }) )
;
py::class_<ElementIndex>(m, "ElementId3D")
.def(py::init<int>())
.def("__repr__", &ToString<ElementIndex>)
.def("__str__", &ToString<ElementIndex>)
.def_property_readonly("nr", &ElementIndex::operator int)
.def("__eq__" , FunctionPointer( [](ElementIndex &self, ElementIndex &other)
{ return static_cast<int>(self)==static_cast<int>(other); }) )
.def("__hash__" , FunctionPointer( [](ElementIndex &self ) { return static_cast<int>(self); }) )
;
py::class_<SurfaceElementIndex>(m, "ElementId2D")
.def(py::init<int>())
.def("__repr__", &ToString<SurfaceElementIndex>)
.def("__str__", &ToString<SurfaceElementIndex>)
.def_property_readonly("nr", &SurfaceElementIndex::operator int)
.def("__eq__" , FunctionPointer( [](SurfaceElementIndex &self, SurfaceElementIndex &other)
{ return static_cast<int>(self)==static_cast<int>(other); }) )
.def("__hash__" , FunctionPointer( [](SurfaceElementIndex &self ) { return static_cast<int>(self); }) )
;
py::class_<SegmentIndex>(m, "ElementId1D")
.def(py::init<int>())
.def("__repr__", &ToString<SegmentIndex>)
.def("__str__", &ToString<SegmentIndex>)
.def_property_readonly("nr", &SegmentIndex::operator int)
.def("__eq__" , FunctionPointer( [](SegmentIndex &self, SegmentIndex &other)
{ return static_cast<int>(self)==static_cast<int>(other); }) )
.def("__hash__" , FunctionPointer( [](SegmentIndex &self ) { return static_cast<int>(self); }) )
;
/*
py::class_<Point<3>> ("Point")
.def(py::init<double,double,double>())
;
*/
py::class_<MeshPoint /* ,py::bases<Point<3>> */ >(m, "MeshPoint")
.def(py::init<Point<3>>())
.def("__str__", &ToString<MeshPoint>)
.def("__repr__", &ToString<MeshPoint>)
.def_property_readonly("p", FunctionPointer([](const MeshPoint & self)
{
py::list l;
l.append ( py::cast(self[0]) );
l.append ( py::cast(self[1]) );
l.append ( py::cast(self[2]) );
return py::tuple(l);
}))
.def("__getitem__", FunctionPointer([](const MeshPoint & self, int index) {
if(index<0 || index>2)
throw py::index_error();
return self[index];
}))
.def("__setitem__", FunctionPointer([](MeshPoint & self, int index, double val) {
if(index<0 || index>2)
throw py::index_error();
self(index) = val;
}))
;
py::class_<Element>(m, "Element3D")
.def(py::init([](int index, py::list vertices)
{
std::map<int, ELEMENT_TYPE> types = {{4, TET},
{5, PYRAMID},
{6, PRISM},
{8, HEX},
{10, TET10},
{13, PYRAMID13},
{15, PRISM15},
{20, HEX20}};
int np = py::len(vertices);
auto newel = new Element(types[np]);
for(int i=0; i<np; i++)
(*newel)[i] = py::cast<PointIndex>(vertices[i]);
newel->SetIndex(index);
return newel;
}),
py::arg("index")=1,py::arg("vertices"),
"create volume element"
)
.def("__repr__", &ToString<Element>)
.def_property("index", &Element::GetIndex, &Element::SetIndex)
.def_property("curved", &Element::IsCurved, &Element::SetCurved)
.def_property_readonly("vertices",
FunctionPointer ([](const Element & self) -> py::list
{
py::list li;
for (int i = 0; i < self.GetNV(); i++)
li.append (py::cast(self[i]));
return li;
}))
.def_property_readonly("points",
FunctionPointer ([](const Element & self) -> py::list
{
py::list li;
for (int i = 0; i < self.GetNP(); i++)
li.append (py::cast(self[i]));
return li;
}))
;
py::class_<Element2d>(m, "Element2D")
.def(py::init ([](int index, py::list vertices)
{
Element2d * newel = nullptr;
if (py::len(vertices) == 3)
{
newel = new Element2d(TRIG);
for (int i = 0; i < 3; i++)
(*newel)[i] = py::extract<PointIndex>(vertices[i])();
newel->SetIndex(index);
}
else if (py::len(vertices) == 4)
{
newel = new Element2d(QUAD);
for (int i = 0; i < 4; i++)
(*newel)[i] = py::extract<PointIndex>(vertices[i])();
newel->SetIndex(index);
}
else if (py::len(vertices) == 6)
{
newel = new Element2d(TRIG6);
for(int i = 0; i<6; i++)
(*newel)[i] = py::extract<PointIndex>(vertices[i])();
newel->SetIndex(index);
}
else if (py::len(vertices) == 8)
{
newel = new Element2d(QUAD8);
for(int i = 0; i<8; i++)
(*newel)[i] = py::extract<PointIndex>(vertices[i])();
newel->SetIndex(index);
}
else
throw NgException("Inconsistent number of vertices in Element2D");
return newel;
}),
py::arg("index")=1,py::arg("vertices"),
"create surface element"
)
.def_property("index", &Element2d::GetIndex, &Element2d::SetIndex)
.def_property("curved", &Element2d::IsCurved, &Element2d::SetCurved)
.def_property_readonly("vertices",
FunctionPointer([](const Element2d & self) -> py::list
{
py::list li;
for (int i = 0; i < self.GetNV(); i++)
li.append(py::cast(self[i]));
return li;
}))
.def_property_readonly("points",
FunctionPointer ([](const Element2d & self) -> py::list
{
py::list li;
for (int i = 0; i < self.GetNP(); i++)
li.append (py::cast(self[i]));
return li;
}))
;
py::class_<Segment>(m, "Element1D")
.def(py::init([](py::list vertices, py::list surfaces, int index, int edgenr)
{
Segment * newel = new Segment();
for (int i = 0; i < 2; i++)
(*newel)[i] = py::extract<PointIndex>(vertices[i])();
newel -> si = index;
newel -> edgenr = edgenr;
newel -> epgeominfo[0].edgenr = edgenr;
newel -> epgeominfo[1].edgenr = edgenr;
// needed for codim2 in 3d
newel -> edgenr = index;
if (len(surfaces))
{
newel->surfnr1 = py::extract<int>(surfaces[0])();
newel->surfnr2 = py::extract<int>(surfaces[1])();
}
return newel;
}),
py::arg("vertices"),
py::arg("surfaces")=py::list(),
py::arg("index")=1,
py::arg("edgenr")=1,
"create segment element"
)
.def("__repr__", &ToString<Segment>)
.def_property_readonly("vertices",
FunctionPointer ([](const Segment & self) -> py::list
{
py::list li;
for (int i = 0; i < 2; i++)
li.append (py::cast(self[i]));
return li;
}))
.def_property_readonly("points",
FunctionPointer ([](const Segment & self) -> py::list
{
py::list li;
for (int i = 0; i < self.GetNP(); i++)
li.append (py::cast(self[i]));
return li;
}))
.def_property_readonly("surfaces",
FunctionPointer ([](const Segment & self) -> py::list
{
py::list li;
li.append (py::cast(self.surfnr1));
li.append (py::cast(self.surfnr2));
return li;
}))
.def_property_readonly("index", FunctionPointer([](const Segment &self) -> size_t
{
return self.si;
}))
.def_property_readonly("edgenr", FunctionPointer([](const Segment & self) -> size_t
{
return self.edgenr;
}))
;
py::class_<Element0d>(m, "Element0D")
.def(py::init([](PointIndex vertex, int index)
{
Element0d * instance = new Element0d;
instance->pnum = vertex;
instance->index = index;
return instance;
}),
py::arg("vertex"),
py::arg("index")=1,
"create point element"
)
.def("__repr__", &ToString<Element0d>)
.def_property_readonly("vertices",
FunctionPointer ([](const Element0d & self) -> py::list
{
py::list li;
li.append (py::cast(self.pnum));
return li;
}))
;
py::class_<FaceDescriptor>(m, "FaceDescriptor")
.def(py::init<const FaceDescriptor&>())
.def(py::init([](int surfnr, int domin, int domout, int bc)
{
FaceDescriptor * instance = new FaceDescriptor();
instance->SetSurfNr(surfnr);
instance->SetDomainIn(domin);
instance->SetDomainOut(domout);
instance->SetBCProperty(bc);
return instance;
}),
py::arg("surfnr")=1,
py::arg("domin")=1,
py::arg("domout")=py::int_(0),
py::arg("bc")=py::int_(0),
"create facedescriptor")
.def("__str__", &ToString<FaceDescriptor>)
.def("__repr__", &ToString<FaceDescriptor>)
.def_property("surfnr", &FaceDescriptor::SurfNr, &FaceDescriptor::SetSurfNr)
.def_property("domin", &FaceDescriptor::DomainIn, &FaceDescriptor::SetDomainIn)
.def_property("domout", &FaceDescriptor::DomainOut, &FaceDescriptor::SetDomainOut)
.def_property("bc", &FaceDescriptor::BCProperty, &FaceDescriptor::SetBCProperty)
.def_property("bcname",
[](FaceDescriptor & self) -> string { return self.GetBCName(); },
[](FaceDescriptor & self, string name) { self.SetBCName(new string(name)); } // memleak
)
.def("SetSurfaceColor", [](FaceDescriptor & self, py::list color )
{
Vec3d c;
c.X() = py::extract<double>(color[0])();
c.Y() = py::extract<double>(color[1])();
c.Z() = py::extract<double>(color[2])();
self.SetSurfColour(c);
})
;
ExportArray<Element,0,size_t>(m);
ExportArray<Element2d,0,size_t>(m);
ExportArray<Segment,0,size_t>(m);
ExportArray<Element0d>(m);
ExportArray<MeshPoint,PointIndex::BASE,PointIndex>(m);
ExportArray<FaceDescriptor>(m);
py::implicitly_convertible< int, PointIndex>();
py::class_<NetgenGeometry, shared_ptr<NetgenGeometry>> (m, "NetgenGeometry", py::dynamic_attr())
;
py::class_<Mesh,shared_ptr<Mesh>>(m, "Mesh")
// .def(py::init<>("create empty mesh"))
.def(py::init( [] (int dim, shared_ptr<PyMPI_Comm> pycomm)
{
auto mesh = make_shared<Mesh>();
mesh->SetCommunicator(pycomm!=nullptr ? pycomm->comm : netgen::ng_comm);
mesh -> SetDimension(dim);
SetGlobalMesh(mesh); // for visualization
mesh -> SetGeometry (nullptr);
return mesh;
} ),
py::arg("dim")=3, py::arg("comm")=nullptr
)
.def(NGSPickle<Mesh>())
.def_property_readonly("comm", [](const Mesh & amesh)
{ return make_shared<PyMPI_Comm>(amesh.GetCommunicator()); },
"MPI-communicator the Mesh lives in")
/*
.def("__init__",
[](Mesh *instance, int dim)
{
new (instance) Mesh();
instance->SetDimension(dim);
},
py::arg("dim")=3
)
*/
.def_property_readonly("_timestamp", &Mesh::GetTimeStamp)
.def("Distribute", [](Mesh & self, shared_ptr<PyMPI_Comm> pycomm) {
MPI_Comm comm = pycomm!=nullptr ? pycomm->comm : self.GetCommunicator();
self.SetCommunicator(comm);
if(MyMPI_GetNTasks(comm)==1) return;
if(MyMPI_GetNTasks(comm)==2) throw NgException("Sorry, cannot handle communicators with NP=2!");
cout << " rank " << MyMPI_GetId(comm) << " of " << MyMPI_GetNTasks(comm) << " called Distribute " << endl;
if(MyMPI_GetId(comm)==0) self.Distribute();
else self.SendRecvMesh();
}, py::arg("comm")=nullptr)
.def("Load", FunctionPointer
([](Mesh & self, const string & filename)
{
istream * infile;
MPI_Comm comm = self.GetCommunicator();
id = MyMPI_GetId(comm);
ntasks = MyMPI_GetNTasks(comm);
#ifdef PARALLEL
char* buf = nullptr;
int strs = 0;
if(id==0) {
#endif
if (filename.find(".vol.gz") != string::npos)
infile = new igzstream (filename.c_str());
else
infile = new ifstream (filename.c_str());
// ifstream input(filename);
#ifdef PARALLEL
//still inside id==0-bracket...
self.Load(*infile);
self.Distribute();
/** Copy the rest of the file into a string (for geometry) **/
stringstream geom_part;
geom_part << infile->rdbuf();
string geom_part_string = geom_part.str();
strs = geom_part_string.size();
buf = new char[strs];
memcpy(buf, geom_part_string.c_str(), strs*sizeof(char));
}
else {
self.SendRecvMesh();
}
/** Scatter the geometry-string **/
MPI_Bcast(&strs, 1, MPI_INT, 0, comm);
if(id!=0)
buf = new char[strs];
MPI_Bcast(buf, strs, MPI_CHAR, 0, comm);
if(id==0)
delete infile;
infile = new istringstream(string((const char*)buf, (size_t)strs));
delete[] buf;
#else
self.Load(*infile);
#endif
for (int i = 0; i < geometryregister.Size(); i++)
{
NetgenGeometry * hgeom = geometryregister[i]->LoadFromMeshFile (*infile);
if (hgeom)
{
ng_geometry.reset (hgeom);
self.SetGeometry(ng_geometry);
break;
}
}
self.SetGeometry(ng_geometry);
delete infile;
}),py::call_guard<py::gil_scoped_release>())
// static_cast<void(Mesh::*)(const string & name)>(&Mesh::Load))
.def("Save", static_cast<void(Mesh::*)(const string & name)const>(&Mesh::Save),py::call_guard<py::gil_scoped_release>())
.def("Export",
[] (Mesh & self, string filename, string format)
{
if (WriteUserFormat (format, self, /* *self.GetGeometry(), */ filename))
{
string err = string ("nothing known about format")+format;
Array<const char*> names, extensions;
RegisterUserFormats (names, extensions);
err += "\navailable formats are:\n";
for (auto name : names)
err += string("'") + name + "'\n";
throw NgException (err);
}
},
py::arg("filename"), py::arg("format"),py::call_guard<py::gil_scoped_release>())
.def_property("dim", &Mesh::GetDimension, &Mesh::SetDimension)
.def("Elements3D",
static_cast<Array<Element,0,size_t>&(Mesh::*)()> (&Mesh::VolumeElements),
py::return_value_policy::reference)
.def("Elements2D",
static_cast<Array<Element2d,0,size_t>&(Mesh::*)()> (&Mesh::SurfaceElements),
py::return_value_policy::reference)
.def("Elements1D",
static_cast<Array<Segment,0,size_t>&(Mesh::*)()> (&Mesh::LineSegments),
py::return_value_policy::reference)
.def("Elements0D", FunctionPointer([] (Mesh & self) -> Array<Element0d>&
{
return self.pointelements;
} ),
py::return_value_policy::reference)
.def("Points",
static_cast<Mesh::T_POINTS&(Mesh::*)()> (&Mesh::Points),
py::return_value_policy::reference)
.def("FaceDescriptor", static_cast<FaceDescriptor&(Mesh::*)(int)> (&Mesh::GetFaceDescriptor),
py::return_value_policy::reference)
.def("GetNFaceDescriptors", &Mesh::GetNFD)
.def("GetNCD2Names", &Mesh::GetNCD2Names)
.def("__getitem__", FunctionPointer ([](const Mesh & self, PointIndex pi)
{
return self[pi];
}))
.def ("Add", FunctionPointer ([](Mesh & self, MeshPoint p)
{
return self.AddPoint (Point3d(p));
}))
.def ("Add", FunctionPointer ([](Mesh & self, const Element & el)
{
return self.AddVolumeElement (el);
}))
.def ("Add", FunctionPointer ([](Mesh & self, const Element2d & el)
{
return self.AddSurfaceElement (el);
}))
.def ("Add", FunctionPointer ([](Mesh & self, const Segment & el)
{
return self.AddSegment (el);
}))
.def ("Add", FunctionPointer ([](Mesh & self, const Element0d & el)
{
return self.pointelements.Append (el);
}))
.def ("Add", FunctionPointer ([](Mesh & self, const FaceDescriptor & fd)
{
return self.AddFaceDescriptor (fd);
}))
.def ("DeleteSurfaceElement",
FunctionPointer ([](Mesh & self, SurfaceElementIndex i)
{
return self.DeleteSurfaceElement (i);
}))
.def ("Compress", FunctionPointer ([](Mesh & self)
{
return self.Compress ();
}),py::call_guard<py::gil_scoped_release>())
.def ("SetBCName", &Mesh::SetBCName)
.def ("GetBCName", FunctionPointer([](Mesh & self, int bc)->string
{ return self.GetBCName(bc); }))
.def ("SetMaterial", &Mesh::SetMaterial)
.def ("GetMaterial", FunctionPointer([](Mesh & self, int domnr)
{ return string(self.GetMaterial(domnr)); }))
.def ("GetCD2Name", &Mesh::GetCD2Name)
.def ("SetCD2Name", &Mesh::SetCD2Name)
.def ("GetCD3Name", &Mesh::GetCD3Name)
.def ("SetCD3Name", &Mesh::SetCD3Name)
.def ("AddPointIdentification", [](Mesh & self, py::object pindex1, py::object pindex2, int identnr, int type)
{
if(py::extract<PointIndex>(pindex1).check() && py::extract<PointIndex>(pindex2).check())
{
self.GetIdentifications().Add (py::extract<PointIndex>(pindex1)(), py::extract<PointIndex>(pindex2)(), identnr);
self.GetIdentifications().SetType(identnr, Identifications::ID_TYPE(type)); // type = 2 ... periodic
}
},
//py::default_call_policies(),
py::arg("pid1"),
py::arg("pid2"),
py::arg("identnr"),
py::arg("type"))
.def ("CalcLocalH", &Mesh::CalcLocalH)
.def ("SetMaxHDomain", [] (Mesh& self, py::list maxhlist)
{
Array<double> maxh;
for(auto el : maxhlist)
maxh.Append(py::cast<double>(el));
self.SetMaxHDomain(maxh);
})
.def ("GenerateVolumeMesh",
[](Mesh & self, py::object pymp)
{
cout << "generate vol mesh" << endl;
MeshingParameters mp;
{
py::gil_scoped_acquire acquire;
if (py::extract<MeshingParameters>(pymp).check())
mp = py::extract<MeshingParameters>(pymp)();
else
{
mp.optsteps3d = 5;
}
}
MeshVolume (mp, self);
OptimizeVolume (mp, self);
},
py::arg("mp")=NGDummyArgument(),py::call_guard<py::gil_scoped_release>())
.def ("OptimizeVolumeMesh", FunctionPointer
([](Mesh & self)
{
MeshingParameters mp;
mp.optsteps3d = 5;
OptimizeVolume (mp, self);
}),py::call_guard<py::gil_scoped_release>())
.def ("Refine", FunctionPointer
([](Mesh & self)
{
if (self.GetGeometry())
self.GetGeometry()->GetRefinement().Refine(self);
else
Refinement().Refine(self);
self.UpdateTopology();
}),py::call_guard<py::gil_scoped_release>())
.def ("SecondOrder", FunctionPointer
([](Mesh & self)
{
if (self.GetGeometry())
self.GetGeometry()->GetRefinement().MakeSecondOrder(self);
else
Refinement().MakeSecondOrder(self);
}))
.def ("GetGeometry", [] (Mesh& self) { return self.GetGeometry(); })
.def ("SetGeometry", [](Mesh & self, shared_ptr<NetgenGeometry> geo)
{
self.SetGeometry(geo);
})
/*
.def ("SetGeometry", FunctionPointer
([](Mesh & self, shared_ptr<CSGeometry> geo)
{
self.SetGeometry(geo);
}))
*/
.def ("BuildSearchTree", &Mesh::BuildElementSearchTree,py::call_guard<py::gil_scoped_release>())
.def ("BoundaryLayer", FunctionPointer
([](Mesh & self, int bc, py::list thicknesses, int volnr, py::list materials)
{
int n = py::len(thicknesses);
BoundaryLayerParameters blp;
for (int i = 1; i <= self.GetNFD(); i++)
if (self.GetFaceDescriptor(i).BCProperty() == bc)
blp.surfid.Append (i);
cout << "add layer at surfaces: " << blp.surfid << endl;
blp.prismlayers = n;
blp.growthfactor = 1.0;
// find max domain nr
int maxind = 0;
for (ElementIndex ei = 0; ei < self.GetNE(); ei++)
maxind = max (maxind, self[ei].GetIndex());
cout << "maxind = " << maxind << endl;
for ( int i=0; i<n; i++ )
{
blp.heights.Append( py::extract<double>(thicknesses[i])()) ;
blp.new_matnrs.Append( maxind+1+i );
self.SetMaterial (maxind+1+i, py::extract<string>(materials[i])().c_str());
}
blp.bulk_matnr = volnr;
GenerateBoundaryLayer (self, blp);
}
))
.def ("BoundaryLayer", FunctionPointer
([](Mesh & self, int bc, double thickness, int volnr, string material)
{
BoundaryLayerParameters blp;
for (int i = 1; i <= self.GetNFD(); i++)
if (self.GetFaceDescriptor(i).BCProperty() == bc)
blp.surfid.Append (i);
cout << "add layer at surfaces: " << blp.surfid << endl;
blp.prismlayers = 1;
blp.hfirst = thickness;
blp.growthfactor = 1.0;
// find max domain nr
int maxind = 0;
for (ElementIndex ei = 0; ei < self.GetNE(); ei++)
maxind = max (maxind, self[ei].GetIndex());
cout << "maxind = " << maxind << endl;
self.SetMaterial (maxind+1, material.c_str());
blp.new_matnr = maxind+1;
blp.bulk_matnr = volnr;
GenerateBoundaryLayer (self, blp);
}
))
.def ("EnableTable", [] (Mesh & self, string name, bool set)
{
if (name == "edges")
const_cast<MeshTopology&>(self.GetTopology()).SetBuildEdges(set);
if (name == "faces")
const_cast<MeshTopology&>(self.GetTopology()).SetBuildFaces(set);
},
py::arg("name"), py::arg("set")=true)
.def ("Scale", FunctionPointer([](Mesh & self, double factor)
{
for(auto i = 0; i<self.GetNP();i++)
self.Point(i).Scale(factor);
}))
;
py::enum_<MESHING_STEP>(m,"MeshingStep")
.value("MESHEDGES",MESHCONST_MESHEDGES)
.value("MESHSURFACE",MESHCONST_OPTSURFACE)
.value("MESHVOLUME",MESHCONST_OPTVOLUME)
;
typedef MeshingParameters MP;
py::class_<MP> (m, "MeshingParameters")
.def(py::init<>())
.def(py::init([](double maxh, bool quad_dominated, int optsteps2d, int optsteps3d,
MESHING_STEP perfstepsend, int only3D_domain, const string & meshsizefilename,
double grading, double curvaturesafety, double segmentsperedge)
{
MP * instance = new MeshingParameters;
instance->maxh = maxh;
instance->quad = int(quad_dominated);
instance->optsteps2d = optsteps2d;
instance->optsteps3d = optsteps3d;
instance->only3D_domain_nr = only3D_domain;
instance->perfstepsend = perfstepsend;
instance->meshsizefilename = meshsizefilename;
instance->grading = grading;
instance->curvaturesafety = curvaturesafety;
instance->segmentsperedge = segmentsperedge;
return instance;
}),
py::arg("maxh")=1000,
py::arg("quad_dominated")=false,
py::arg("optsteps2d") = 3,
py::arg("optsteps3d") = 3,
py::arg("perfstepsend") = MESHCONST_OPTVOLUME,
py::arg("only3D_domain") = 0,
py::arg("meshsizefilename") = "",
py::arg("grading")=0.3,
py::arg("curvaturesafety")=2,
py::arg("segmentsperedge")=1,
"create meshing parameters"
)
.def("__str__", &ToString<MP>)
.def_property("maxh",
FunctionPointer ([](const MP & mp ) { return mp.maxh; }),
FunctionPointer ([](MP & mp, double maxh) { return mp.maxh = maxh; }))
.def("RestrictH", FunctionPointer
([](MP & mp, double x, double y, double z, double h)
{
mp.meshsize_points.Append ( MeshingParameters::MeshSizePoint (Point<3> (x,y,z), h));
}),
py::arg("x"), py::arg("y"), py::arg("z"), py::arg("h")
)
;
m.def("SetTestoutFile", FunctionPointer ([] (const string & filename)
{
delete testout;
testout = new ofstream (filename);
}));
m.def("SetMessageImportance", FunctionPointer ([] (int importance)
{
int old = printmessage_importance;
printmessage_importance = importance;
return old;
}));
py::class_<PyMPI_Comm, shared_ptr<PyMPI_Comm>> (m, "MPI_Comm")
.def_property_readonly ("rank", &PyMPI_Comm::Rank)
.def_property_readonly ("size", &PyMPI_Comm::Size)
// .def_property_readonly ("rank", [](PyMPI_Comm & c) { cout << "rank for " << c.comm << endl; return c.Rank(); })
// .def_property_readonly ("size", [](PyMPI_Comm & c) { cout << "size for " << c.comm << endl; return c.Size(); })
#ifdef PARALLEL
.def("Barrier", [](PyMPI_Comm & c) { MPI_Barrier(c.comm); })
.def("WTime", [](PyMPI_Comm & c) { return MPI_Wtime(); })
#else
.def("Barrier", [](PyMPI_Comm & c) { })
.def("WTime", [](PyMPI_Comm & c) { return -1.0; })
#endif
.def("Sum", [](PyMPI_Comm & c, double x) { return MyMPI_AllReduceNG(x, MPI_SUM, c.comm); })
.def("Min", [](PyMPI_Comm & c, double x) { return MyMPI_AllReduceNG(x, MPI_MIN, c.comm); })
.def("Max", [](PyMPI_Comm & c, double x) { return MyMPI_AllReduceNG(x, MPI_MAX, c.comm); })
.def("Sum", [](PyMPI_Comm & c, int x) { return MyMPI_AllReduceNG(x, MPI_SUM, c.comm); })
.def("Min", [](PyMPI_Comm & c, int x) { return MyMPI_AllReduceNG(x, MPI_MIN, c.comm); })
.def("Max", [](PyMPI_Comm & c, int x) { return MyMPI_AllReduceNG(x, MPI_MAX, c.comm); })
.def("Sum", [](PyMPI_Comm & c, size_t x) { return MyMPI_AllReduceNG(x, MPI_SUM, c.comm); })
.def("Min", [](PyMPI_Comm & c, size_t x) { return MyMPI_AllReduceNG(x, MPI_MIN, c.comm); })
.def("Max", [](PyMPI_Comm & c, size_t x) { return MyMPI_AllReduceNG(x, MPI_MAX, c.comm); })
.def("SubComm", [](PyMPI_Comm & c, py::list proc_list) -> shared_ptr<PyMPI_Comm> {
Array<int> procs;
if (py::extract<py::list> (proc_list).check()) {
py::list pylist = py::extract<py::list> (proc_list)();
procs.SetSize(py::len(pylist));
for (int i = 0; i < py::len(pylist); i++)
procs[i] = py::extract<int>(pylist[i])();
}
else {
throw Exception("SubComm needs a list!");
}
if(!procs.Size()) {
cout << "warning, tried to construct empty communicator, returning MPI_COMM_NULL" << endl;
return make_shared<PyMPI_Comm>(MPI_COMM_NULL);
}
else if(procs.Size()==2) {
throw Exception("Sorry, NGSolve cannot handle NP=2.");
}
MPI_Comm subcomm = MyMPI_SubCommunicator(c.comm, procs);
return make_shared<PyMPI_Comm>(subcomm, true);
}, py::arg("procs"));
;
}
PYBIND11_MODULE(libmesh, m) {
ExportNetgenMeshing(m);
}
#endif