mirror of
https://github.com/NGSolve/netgen.git
synced 2024-12-27 06:10:34 +05:00
369 lines
11 KiB
C++
369 lines
11 KiB
C++
#include <mystdlib.h>
|
|
#include "meshing.hpp"
|
|
|
|
namespace netgen
|
|
{
|
|
|
|
DLL_HEADER GeometryRegisterArray geometryregister;
|
|
//DLL_HEADER NgArray<GeometryRegister*> geometryregister;
|
|
|
|
GeometryRegister :: ~GeometryRegister()
|
|
{ ; }
|
|
|
|
void NetgenGeometry :: Analyse(Mesh& mesh,
|
|
const MeshingParameters& mparam) const
|
|
{
|
|
static Timer t1("SetLocalMeshsize"); RegionTimer regt(t1);
|
|
mesh.SetGlobalH(mparam.maxh);
|
|
mesh.SetMinimalH(mparam.minh);
|
|
|
|
mesh.SetLocalH(bounding_box.PMin(), bounding_box.PMax(),
|
|
mparam.grading);
|
|
|
|
if(mparam.uselocalh)
|
|
RestrictLocalMeshsize(mesh, mparam);
|
|
mesh.LoadLocalMeshSize(mparam.meshsizefilename);
|
|
}
|
|
|
|
void NetgenGeometry :: FindEdges(Mesh& mesh,
|
|
const MeshingParameters& mparam) const
|
|
{
|
|
static Timer t1("MeshEdges"); RegionTimer regt(t1);
|
|
|
|
// create face descriptors and set bc names
|
|
mesh.SetNBCNames(faces.Size());
|
|
for(auto i : Range(faces.Size()))
|
|
{
|
|
mesh.SetBCName(i, faces[i]->GetName());
|
|
// todo find attached solids
|
|
FaceDescriptor fd(i+1, 1, 0, i+1);
|
|
fd.SetBCName(mesh.GetBCNamePtr(i));
|
|
mesh.AddFaceDescriptor(fd);
|
|
}
|
|
|
|
std::map<size_t, PointIndex> vert2meshpt;
|
|
for(auto i : Range(vertices))
|
|
{
|
|
const auto& vert = *vertices[i];
|
|
MeshPoint mp(vert.GetPoint());
|
|
vert2meshpt[vert.GetHash()] = mesh.AddPoint(mp);
|
|
}
|
|
|
|
size_t segnr = 0;
|
|
for(auto facenr : Range(faces.Size()))
|
|
{
|
|
const auto& face = *faces[facenr];
|
|
for(auto facebndnr : Range(face.GetNBoundaries()))
|
|
{
|
|
auto boundary = face.GetBoundary(facebndnr);
|
|
for(auto enr : Range(boundary))
|
|
{
|
|
const auto& oriented_edge = *boundary[enr];
|
|
auto edgenr = GetEdgeIndex(oriented_edge);
|
|
const auto& edge = edges[edgenr];
|
|
PointIndex startp, endp;
|
|
// throws if points are not found
|
|
startp = vert2meshpt.at(edge->GetStartVertex().GetHash());
|
|
endp = vert2meshpt.at(edge->GetEndVertex().GetHash());
|
|
|
|
// ignore collapsed edges
|
|
if(startp == endp && edge->GetLength() < 1e-10 * bounding_box.Diam())
|
|
continue;
|
|
|
|
|
|
Array<MeshPoint> mps;
|
|
Array<double> params;
|
|
// -------------------- DivideEdge -----------------
|
|
static constexpr int divide_edge_sections = 1000;
|
|
double hvalue[divide_edge_sections+1];
|
|
hvalue[0] = 0;
|
|
|
|
Point<3> oldpnt;
|
|
auto pnt = edge->GetPoint(0.);
|
|
|
|
// calc local h for edge
|
|
for(auto i : Range(divide_edge_sections))
|
|
{
|
|
oldpnt = pnt;
|
|
pnt = edge->GetPoint(double(i+1)/divide_edge_sections);
|
|
hvalue[i+1] = hvalue[i] + 1./mesh.GetH(pnt) * (pnt-oldpnt).Length();
|
|
}
|
|
int nsubedges = max2(1, int(floor(hvalue[divide_edge_sections]+0.5)));
|
|
mps.SetSize(nsubedges-1);
|
|
params.SetSize(nsubedges+1);
|
|
|
|
int i = 1;
|
|
int i1 = 0;
|
|
do
|
|
{
|
|
if (hvalue[i1]/hvalue[divide_edge_sections]*nsubedges >= i)
|
|
{
|
|
params[i] = (i1/double(divide_edge_sections));
|
|
pnt = edge->GetPoint(params[i]);
|
|
mps[i-1] = MeshPoint(pnt);
|
|
i++;
|
|
}
|
|
i1++;
|
|
if (i1 > divide_edge_sections)
|
|
{
|
|
nsubedges = i;
|
|
mps.SetSize(nsubedges-1);
|
|
params.SetSize(nsubedges+1);
|
|
cout << "divide edge: local h too small" << endl;
|
|
}
|
|
|
|
} while(i < nsubedges);
|
|
|
|
params[0] = 0.;
|
|
params[nsubedges] = 1.;
|
|
|
|
if(params[nsubedges] <= params[nsubedges-1])
|
|
{
|
|
cout << "CORRECTED" << endl;
|
|
mps.SetSize (nsubedges-2);
|
|
params.SetSize (nsubedges);
|
|
params[nsubedges] = 1.;
|
|
}
|
|
// ----------- Add Points to mesh and create segments -----
|
|
|
|
Array<PointIndex> pnums(mps.Size() + 2);
|
|
pnums[0] = startp;
|
|
pnums[mps.Size()+1] = endp;
|
|
|
|
double eps = bounding_box.Diam() * 1e-8;
|
|
|
|
for(auto i : Range(mps))
|
|
{
|
|
bool exists = false;
|
|
for(auto pi : Range(mesh.Points()))
|
|
{
|
|
if((mesh[pi] - mps[i]).Length() < eps)
|
|
{
|
|
exists = true;
|
|
pnums[i+1] = pi;
|
|
break;
|
|
}
|
|
}
|
|
if(!exists)
|
|
pnums[i+1] = mesh.AddPoint(mps[i]);
|
|
}
|
|
|
|
for(auto i : Range(pnums.Size()-1))
|
|
{
|
|
segnr++;
|
|
Segment seg;
|
|
seg[0] = pnums[i];
|
|
seg[1] = pnums[i+1];
|
|
seg.edgenr = segnr;
|
|
seg.epgeominfo[0].dist = params[i];
|
|
seg.epgeominfo[1].dist = params[i+1];
|
|
seg.epgeominfo[0].edgenr = edgenr;
|
|
seg.epgeominfo[1].edgenr = edgenr;
|
|
seg.si = facenr+1;
|
|
seg.surfnr1 = facenr+1;
|
|
|
|
// TODO: implement functionality to transfer edge parameter t to face parameters u,v
|
|
for(auto j : Range(2))
|
|
face.CalcEdgePointGI(*edge, params[i+j],
|
|
seg.epgeominfo[j]);
|
|
|
|
if(!oriented_edge.OrientedLikeGlobal())
|
|
{
|
|
swap (seg[0], seg[1]);
|
|
swap (seg.epgeominfo[0].dist, seg.epgeominfo[1].dist);
|
|
swap (seg.epgeominfo[0].u, seg.epgeominfo[1].u);
|
|
swap (seg.epgeominfo[0].v, seg.epgeominfo[1].v);
|
|
}
|
|
mesh.AddSegment(seg);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void NetgenGeometry :: MeshSurface(Mesh& mesh,
|
|
const MeshingParameters& mparam) const
|
|
{
|
|
static Timer t1("Surface Meshing"); RegionTimer regt(t1);
|
|
|
|
Array<int, PointIndex> glob2loc(mesh.GetNP());
|
|
for(auto k : Range(faces))
|
|
{
|
|
const auto& face = *faces[k];
|
|
auto bb = face.GetBoundingBox();
|
|
bb.Increase(bb.Diam()/10);
|
|
Meshing2 meshing(*this, mparam, bb);
|
|
glob2loc = 0;
|
|
int cntp = 0;
|
|
|
|
for(auto& seg : mesh.LineSegments())
|
|
{
|
|
if(seg.si == k+1)
|
|
{
|
|
for(auto j : Range(2))
|
|
{
|
|
auto pi = seg[j];
|
|
if(glob2loc[pi] == 0)
|
|
{
|
|
meshing.AddPoint(mesh[pi], pi);
|
|
cntp++;
|
|
glob2loc[pi] = cntp;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for(auto & seg : mesh.LineSegments())
|
|
{
|
|
if(seg.si == k+1)
|
|
{
|
|
PointGeomInfo gi0, gi1;
|
|
gi0.trignum = gi1.trignum = k+1;
|
|
gi0.u = seg.epgeominfo[0].u;
|
|
gi0.v = seg.epgeominfo[0].v;
|
|
gi1.u = seg.epgeominfo[1].u;
|
|
gi1.v = seg.epgeominfo[1].v;
|
|
meshing.AddBoundaryElement(glob2loc[seg[0]],
|
|
glob2loc[seg[1]],
|
|
gi0, gi1);
|
|
}
|
|
}
|
|
|
|
// TODO Set max area 2* area of face
|
|
|
|
auto noldsurfels = mesh.GetNSE();
|
|
|
|
|
|
static Timer t("GenerateMesh"); RegionTimer reg(t);
|
|
MESHING2_RESULT res = meshing.GenerateMesh(mesh, mparam, mparam.maxh, k+1);
|
|
|
|
for(auto i : Range(noldsurfels, mesh.GetNSE()))
|
|
{
|
|
mesh.SurfaceElements()[i].SetIndex(k+1);
|
|
}
|
|
}
|
|
}
|
|
|
|
void NetgenGeometry :: OptimizeSurface(Mesh& mesh, const MeshingParameters& mparam) const
|
|
{
|
|
const auto savetask = multithread.task;
|
|
multithread.task = "Optimizing surface";
|
|
|
|
static Timer timer_opt2d("Optimization 2D");
|
|
RegionTimer reg(timer_opt2d);
|
|
auto meshopt = MeshOptimize2d(mesh);
|
|
for(auto i : Range(mparam.optsteps2d))
|
|
{
|
|
PrintMessage(2, "Optimization step ", i);
|
|
for(auto optstep : mparam.optimize2d)
|
|
{
|
|
switch(optstep)
|
|
{
|
|
case 's':
|
|
meshopt.EdgeSwapping(0);
|
|
break;
|
|
case 'S':
|
|
meshopt.EdgeSwapping(1);
|
|
break;
|
|
case 'm':
|
|
meshopt.ImproveMesh(mparam);
|
|
break;
|
|
case 'c':
|
|
meshopt.CombineImprove();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
mesh.CalcSurfacesOfNode();
|
|
mesh.Compress();
|
|
multithread.task = savetask;
|
|
}
|
|
|
|
shared_ptr<NetgenGeometry> GeometryRegisterArray :: LoadFromMeshFile (istream & ist) const
|
|
{
|
|
for (int i = 0; i < Size(); i++)
|
|
{
|
|
NetgenGeometry * hgeom = (*this)[i]->LoadFromMeshFile (ist);
|
|
if (hgeom)
|
|
return shared_ptr<NetgenGeometry>(hgeom);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
|
|
|
|
int NetgenGeometry :: GenerateMesh (shared_ptr<Mesh> & mesh, MeshingParameters & mparam)
|
|
{
|
|
multithread.percent = 0;
|
|
|
|
if(mparam.perfstepsstart <= MESHCONST_ANALYSE)
|
|
{
|
|
if(!mesh)
|
|
mesh = make_shared<Mesh>();
|
|
mesh->geomtype = GetGeomType();
|
|
Analyse(*mesh, mparam);
|
|
}
|
|
|
|
if(multithread.terminate || mparam.perfstepsend <= MESHCONST_ANALYSE)
|
|
return 0;
|
|
|
|
if(mparam.perfstepsstart <= MESHCONST_MESHEDGES)
|
|
FindEdges(*mesh, mparam);
|
|
|
|
if(multithread.terminate || mparam.perfstepsend <= MESHCONST_MESHEDGES)
|
|
return 0;
|
|
|
|
if (mparam.perfstepsstart <= MESHCONST_MESHSURFACE)
|
|
{
|
|
MeshSurface(*mesh, mparam);
|
|
mesh->CalcSurfacesOfNode();
|
|
}
|
|
|
|
if (multithread.terminate || mparam.perfstepsend <= MESHCONST_MESHSURFACE)
|
|
return 0;
|
|
|
|
if (mparam.perfstepsstart <= MESHCONST_OPTSURFACE)
|
|
OptimizeSurface(*mesh, mparam);
|
|
|
|
if (multithread.terminate || mparam.perfstepsend <= MESHCONST_OPTSURFACE)
|
|
return 0;
|
|
|
|
|
|
if(mparam.perfstepsstart <= MESHCONST_MESHVOLUME)
|
|
{
|
|
multithread.task = "Volume meshing";
|
|
|
|
MESHING3_RESULT res = MeshVolume (mparam, *mesh);
|
|
|
|
if (res != MESHING3_OK) return 1;
|
|
if (multithread.terminate) return 0;
|
|
|
|
RemoveIllegalElements (*mesh);
|
|
if (multithread.terminate) return 0;
|
|
|
|
MeshQuality3d (*mesh);
|
|
}
|
|
|
|
if (multithread.terminate || mparam.perfstepsend <= MESHCONST_MESHVOLUME)
|
|
return 0;
|
|
|
|
|
|
if (mparam.perfstepsstart <= MESHCONST_OPTVOLUME)
|
|
{
|
|
multithread.task = "Volume optimization";
|
|
|
|
OptimizeVolume (mparam, *mesh);
|
|
if (multithread.terminate) return 0;
|
|
}
|
|
FinalizeMesh(*mesh);
|
|
return 0;
|
|
}
|
|
|
|
void NetgenGeometry :: Save (string filename) const
|
|
{
|
|
throw NgException("Cannot save geometry - no geometry available");
|
|
}
|
|
|
|
static RegisterClassForArchive<NetgenGeometry> regnggeo;
|
|
}
|