netgen/libsrc/meshing/improve3.cpp
2024-12-31 12:16:53 +01:00

2976 lines
78 KiB
C++

#include <mystdlib.h>
#include <algorithm>
#include <core/taskmanager.hpp>
#include <core/logging.hpp>
#include "meshing.hpp"
#ifdef SOLIDGEOM
#include <csg.hpp>
#endif
#include <opti.hpp>
namespace netgen
{
static constexpr int tetedges[6][2] =
{ { 0, 1 }, { 0, 2 }, { 0, 3 },
{ 1, 2 }, { 1, 3 }, { 2, 3 } };
static constexpr int IMPROVEMENT_CONFORMING_EDGE = -1e6;
static inline bool NotTooBad(double bad1, double bad2)
{
return (bad2 <= bad1) ||
(bad2 <= 100 * bad1 && bad2 <= 1e18) ||
(bad2 <= 1e8);
}
// Calc badness of new element where pi1 and pi2 are replaced by pnew
double CalcBadReplacePoints (const Mesh::T_POINTS & points, const MeshingParameters & mp, const Element & elem, double h, PointIndex &pi1, PointIndex &pi2, MeshPoint &pnew)
{
if (elem.GetType() != TET) return 0;
MeshPoint* p[] = {&points[elem[0]], &points[elem[1]], &points[elem[2]], &points[elem[3]]};
for (auto i : Range(4))
if(elem[i]==pi1 || elem[i]==pi2) p[i] = &pnew;
return CalcTetBadness (*p[0], *p[1], *p[2], *p[3], h, mp);
}
static ArrayMem<Element, 3> SplitElement (Element old, PointIndex pi0, PointIndex pi1, PointIndex pinew)
{
ArrayMem<Element, 3> new_elements;
// split element by cutting edge pi0,pi1 at pinew
auto np = old.GetNP();
old.Touch();
if(np == 4)
{
// Split tet into two tets
Element newel0 = old;
Element newel1 = old;
for (int i : Range(4))
{
if(newel0[i] == pi0) newel0[i] = pinew;
if(newel1[i] == pi1) newel1[i] = pinew;
}
new_elements.Append(newel0);
new_elements.Append(newel1);
}
else if (np == 5)
{
// split pyramid into pyramid and two tets
Element new_pyramid = old;
new_pyramid[4] = pinew;
new_elements.Append(new_pyramid);
auto pibase = (pi0==old[4]) ? pi1 : pi0;
auto pitop = (pi0==old[4]) ? pi0 : pi1;
Element new_tet0 = old;
Element new_tet1 = old;
new_tet0.SetType(TET);
new_tet1.SetType(TET);
size_t pibase_index=0;
for(auto i : Range(4))
if(old[i]==pibase)
pibase_index = i;
new_tet0[0] = old[(pibase_index+1)%4];
new_tet0[1] = old[(pibase_index+2)%4];
new_tet0[2] = pinew;
new_tet0[3] = pitop;
new_elements.Append(new_tet0);
new_tet1[0] = old[(pibase_index+2)%4];
new_tet1[1] = old[(pibase_index+3)%4];
new_tet1[2] = pinew;
new_tet1[3] = pitop;
new_elements.Append(new_tet1);
}
return new_elements;
}
static double SplitElementBadness (const Mesh::T_POINTS & points, const MeshingParameters & mp, Element old, PointIndex pi0, PointIndex pi1, MeshPoint & pnew)
{
double badness = 0;
auto np = old.GetNP();
PointIndex dummy{PointIndex::INVALID};
if(np == 4)
{
// Split tet into two tets
badness += CalcBadReplacePoints ( points, mp, old, 0, pi0, dummy, pnew );
badness += CalcBadReplacePoints ( points, mp, old, 0, pi1, dummy, pnew );
}
else if (np == 5)
{
// split pyramid into pyramid and two tets
auto pibase = (pi0==old[4]) ? pi1 : pi0;
auto pitop = (pi0==old[4]) ? pi0 : pi1;
badness += CalcBadReplacePoints ( points, mp, old, 0, pitop, dummy, pnew );
Element tet = old;
tet.SetType(TET);
size_t pibase_index=0;
for(auto i : Range(4))
if(old[i]==pibase)
pibase_index = i;
MeshPoint p[4];
p[0] = points[old[(pibase_index+1)%4]];
p[1] = points[old[(pibase_index+2)%4]];
p[2] = pnew;
p[3] = points[pitop];
badness += CalcTetBadness (p[0], p[1], p[2], p[3], 0, mp);
p[0] = points[old[(pibase_index+2)%4]];
p[1] = points[old[(pibase_index+3)%4]];
p[2] = pnew;
p[3] = points[pitop];
badness += CalcTetBadness (p[0], p[1], p[2], p[3], 0, mp);
}
return badness;
}
tuple<double, double, int> MeshOptimize3d :: UpdateBadness()
{
static Timer tbad("UpdateBadness");
RegionTimer reg(tbad);
double totalbad = 0.0;
double maxbad = 0.0;
atomic<int> bad_elements = 0;
ParallelForRange(Range(mesh.GetNE()), [&] (auto myrange) {
double totalbad_local = 0.0;
double maxbad_local = 0.0;
int bad_elements_local = 0;
for (ElementIndex ei : myrange)
{
auto & el = mesh[ei];
if(mp.only3D_domain_nr && mp.only3D_domain_nr != el.GetIndex()) continue;
if(!el.BadnessValid())
el.SetBadness(CalcBad(mesh.Points(), el, 0));
double bad = el.GetBadness();
totalbad_local += bad;
maxbad_local = max(maxbad_local, bad);
if(bad > min_badness)
bad_elements_local++;
}
AtomicAdd(totalbad, totalbad_local);
AtomicMax(maxbad, maxbad_local);
bad_elements += bad_elements_local;
});
return {totalbad, maxbad, bad_elements};
}
bool MeshOptimize3d :: HasBadElement(FlatArray<ElementIndex> els)
{
for(auto ei : els)
if(mesh[ei].GetBadness()>min_badness)
return true;
return false;
}
bool MeshOptimize3d :: HasIllegalElement(FlatArray<ElementIndex> els)
{
for(auto ei : els)
if(!mesh.LegalTet(mesh[ei]))
return true;
return false;
}
bool MeshOptimize3d :: NeedsOptimization(FlatArray<ElementIndex> els)
{
if(goal == OPT_LEGAL) return HasIllegalElement(els);
if(goal == OPT_QUALITY) return HasBadElement(els);
return true;
}
/*
Combine two points to one.
Set new point into the center, if both are
inner points.
Connect inner point to boundary point, if one
point is inner point.
*/
double MeshOptimize3d :: CombineImproveEdge (
Table<ElementIndex, PointIndex> & elements_of_point,
PointIndex pi0, PointIndex pi1,
FlatArray<bool, PointIndex> is_point_removed,
bool check_only)
{
if (pi1 < pi0) Swap (pi0, pi1);
if(is_point_removed[pi0] || is_point_removed[pi1]) return false;
MeshPoint p0 = mesh[pi0];
MeshPoint p1 = mesh[pi1];
if (p1.Type() != INNERPOINT)
return false;
ArrayMem<ElementIndex, 50> has_one_point;
ArrayMem<ElementIndex, 50> has_both_points;
for (auto ei : elements_of_point[pi0] )
{
Element & elem = mesh[ei];
if (elem.IsDeleted()) return false;
if(elem.GetType() != TET) return false; // TODO: implement case where pi0 or pi1 is top of a pyramid
if (elem[0] == pi1 || elem[1] == pi1 || elem[2] == pi1 || elem[3] == pi1)
{
if(!has_both_points.Contains(ei))
has_both_points.Append (ei);
}
else
{
if(!has_one_point.Contains(ei))
has_one_point.Append (ei);
}
}
for (auto ei : elements_of_point[pi1] )
{
Element & elem = mesh[ei];
if (elem.IsDeleted()) return false;
if(elem.GetType() != TET) return false; // TODO: implement case where pi0 or pi1 is top of a pyramid
if (elem[0] == pi0 || elem[1] == pi0 || elem[2] == pi0 || elem[3] == pi0)
{
;
}
else
{
if(!has_one_point.Contains(ei))
has_one_point.Append (ei);
}
}
double badness_old = 0.0;
for (auto ei : has_one_point)
badness_old += mesh[ei].GetBadness();
for (auto ei : has_both_points)
badness_old += mesh[ei].GetBadness();
if (goal == OPT_CONFORM && p0.Type() <= EDGEPOINT) {
// check if the optimization improves conformity with free segments
std::set<PointIndex> edges_before, edges_after;
for (auto ei : has_one_point) {
const auto el = mesh[ei];
for(auto i : Range(6)) {
auto e0 = el[tetedges[i][0]];
auto e1 = el[tetedges[i][1]];
if(e0 == pi0 || e1 == pi0) edges_before.insert(e0 == pi0 ? e1 : e0);
if(e0 == pi1 || e1 == pi1) edges_after.insert(e0 == pi1 ? e1 : e0);
}
}
for(auto new_edge : edges_after) {
if (edges_before.count(new_edge) == 0 && mesh[new_edge].Type() <= EDGEPOINT && mesh.BoundaryEdge (new_edge, pi0))
badness_old += GetLegalPenalty();
}
}
MeshPoint pnew = p0;
if (p0.Type() == INNERPOINT)
pnew = Center (p0, p1);
ArrayMem<double, 50> one_point_badness(has_one_point.Size());
double badness_new = 0;
for (auto i : Range(has_one_point))
{
const Element & elem = mesh[has_one_point[i]];
double badness = CalcBadReplacePoints (mesh.Points(), mp, elem, 0, pi0, pi1, pnew);
badness_new += badness;
one_point_badness[i] = badness;
}
// Check if changed tets are topologically legal
if (p0.Type() != INNERPOINT)
{
for (auto ei : has_one_point)
{
Element elem = mesh[ei];
// int l;
for (int l = 0; l < 4; l++)
if (elem[l] == pi1)
{
elem[l] = pi0;
break;
}
elem.Touch();
if (!mesh.LegalTet(elem))
badness_new += GetLegalPenalty();
}
}
double d_badness = badness_new / has_one_point.Size() - badness_old / (has_one_point.Size()+has_both_points.Size());
// Do the actual combine operation
if (d_badness < 0.0 && !check_only)
{
is_point_removed[pi1] = true;
mesh[pi0] = pnew;
for (auto ei : elements_of_point[pi1])
{
Element & elem = mesh[ei];
if (elem.IsDeleted()) continue;
for (int l = 0; l < elem.GetNP(); l++)
if (elem[l] == pi1)
elem[l] = pi0;
elem.Touch();
if (!mesh.LegalTet (elem))
(*testout) << "illegal tet " << ei << endl;
}
for (auto i : Range(has_one_point))
mesh[has_one_point[i]].SetBadness(one_point_badness[i]);
for (auto ei : has_both_points)
{
mesh[ei].Touch();
mesh[ei].Delete();
}
}
return d_badness;
}
void MeshOptimize3d :: CombineImprove ()
{
static Timer t("MeshOptimize3d::CombineImprove"); RegionTimer reg(t);
static Timer topt("Optimize");
static Timer tsearch("Search-combine");
static Timer tbuild_elements_table("Build elements table");
mesh.BuildBoundaryEdges(false);
int np = mesh.GetNP();
int ne = mesh.GetNE();
int ntasks = 4*ngcore::TaskManager::GetNumThreads();
Array<bool, PointIndex> is_point_removed (np);
is_point_removed = false;
PrintMessage (3, "CombineImprove");
(*testout) << "Start CombineImprove" << "\n";
// mesh.CalcSurfacesOfNode ();
const char * savetask = multithread.task;
multithread.task = "Optimize Volume: Combine Improve";
UpdateBadness();
if (goal == OPT_QUALITY && testout->good())
{
double totalbad = mesh.CalcTotalBad (mp);
(*testout) << "Total badness = " << totalbad << endl;
}
auto elementsonnode = mesh.CreatePoint2ElementTable(nullopt, mp.only3D_domain_nr);
Array<std::tuple<PointIndex,PointIndex>> edges;
BuildEdgeList(mesh, elementsonnode, edges);
// Find edges with improvement
Array<std::tuple<double, int>> combine_candidate_edges(edges.Size());
std::atomic<int> improvement_counter(0);
tsearch.Start();
ParallelForRange(Range(edges), [&] (auto myrange)
{
for(auto i : myrange)
{
auto [p0,p1] = edges[i];
double d_badness = CombineImproveEdge (elementsonnode, p0, p1, is_point_removed, true);
if(d_badness<0.0)
{
int index = improvement_counter++;
combine_candidate_edges[index] = make_tuple(d_badness, i);
}
}
}, ntasks);
tsearch.Stop();
auto edges_with_improvement = combine_candidate_edges.Part(0, improvement_counter.load());
QuickSort(edges_with_improvement);
PrintMessage(5, edges.Size(), " edges");
PrintMessage(5, edges_with_improvement.Size(), " edges with improvement");
// Apply actual optimizations
topt.Start();
int cnt = 0;
for(auto [d_badness, ei] : edges_with_improvement)
{
auto [p0,p1] = edges[ei];
if (CombineImproveEdge (elementsonnode, p0, p1, is_point_removed, false) < 0.0)
cnt++;
}
topt.Stop();
mesh.Compress();
mesh.MarkIllegalElements();
PrintMessage (5, cnt, " elements combined");
(*testout) << "CombineImprove done" << "\n";
if (goal == OPT_QUALITY && testout->good())
{
double totalbad = mesh.CalcTotalBad (mp);
(*testout) << "Total badness = " << totalbad << endl;
int cntill = 0;
// for (ElementIndex ei = 0; ei < ne; ei++)
for (ElementIndex ei : ngcore::T_Range<ElementIndex>(ne))
if(!(mesh.GetDimension()==3 && mp.only3D_domain_nr && mp.only3D_domain_nr != mesh.VolumeElement(ei).GetIndex()))
if (!mesh.LegalTet (mesh[ei]))
cntill++;
PrintMessage (5, cntill, " illegal tets");
}
multithread.task = savetask;
}
double MeshOptimize3d :: SplitImproveEdge (Table<ElementIndex,PointIndex> & elementsonnode, NgArray<PointIndices<3>> &locfaces, double badmax, PointIndex pi1, PointIndex pi2, PointIndex ptmp, bool check_only)
{
double d_badness = 0.0;
// int cnt = 0;
ArrayMem<ElementIndex, 20> hasbothpoints;
if (mesh.BoundaryEdge (pi1, pi2)) return 0.0;
for (ElementIndex ei : elementsonnode[pi1])
{
Element & el = mesh[ei];
if(el.IsDeleted()) return 0.0;
if (mesh[ei].GetType() != TET) return 0.0;
bool has1 = el.PNums().Contains(pi1);
bool has2 = el.PNums().Contains(pi2);
if (has1 && has2)
if (!hasbothpoints.Contains (ei))
hasbothpoints.Append (ei);
}
if(mp.only3D_domain_nr)
for(auto ei : hasbothpoints)
if(mp.only3D_domain_nr != mesh[ei].GetIndex())
return 0.0;
if (!NeedsOptimization(hasbothpoints))
return 0.0;
double bad1 = 0.0;
double bad1_max = 0.0;
for (ElementIndex ei : hasbothpoints)
{
double bad = mesh[ei].GetBadness();
bad1 += bad;
bad1_max = max(bad1_max, bad);
}
if(bad1_max < 100.0)
return 0.0;
bool puretet = 1;
for (ElementIndex ei : hasbothpoints)
if (mesh[ei].GetType() != TET)
puretet = 0;
if (!puretet) return 0.0;
Point3d p1 = mesh[pi1];
Point3d p2 = mesh[pi2];
locfaces.SetSize(0);
for (ElementIndex ei : hasbothpoints)
{
const Element & el = mesh[ei];
for (int l = 0; l < 4; l++)
if (el[l] == pi1 || el[l] == pi2)
{
PointIndices<3> i3;
Element2d face(TRIG);
el.GetFace (l+1, face);
for (int kk = 0; kk < 3; kk++)
i3[kk] = face[kk];
locfaces.Append (i3);
}
}
PointFunction1 pf (mesh.Points(), locfaces, mp, -1);
OptiParameters par;
par.maxit_linsearch = 50;
par.maxit_bfgs = 20;
Point3d pnew = Center (p1, p2);
Vector px(3);
px(0) = pnew.X();
px(1) = pnew.Y();
px(2) = pnew.Z();
if (bad1_max > 0.1 * badmax)
{
int pok = pf.Func (px) < 1e10;
if (!pok)
pok = FindInnerPoint (mesh.Points(), locfaces, pnew);
if(pok)
{
px(0) = pnew.X();
px(1) = pnew.Y();
px(2) = pnew.Z();
BFGS (px, pf, par);
pnew.X() = px(0);
pnew.Y() = px(1);
pnew.Z() = px(2);
}
}
double bad2 = pf.Func (px);
for (int k = 0; k < hasbothpoints.Size(); k++)
{
Element & oldel = mesh[hasbothpoints[k]];
Element newel1 = oldel;
Element newel2 = oldel;
newel1.Touch();
newel2.Touch();
for (int l = 0; l < 4; l++)
{
if (newel1[l] == pi2) newel1[l] = ptmp;
if (newel2[l] == pi1) newel2[l] = ptmp;
}
if (!mesh.LegalTet (oldel)) return 0.0;
if (!mesh.LegalTet (newel1)) return 0.0;
if (!mesh.LegalTet (newel2)) return 0.0;
}
if(bad2 >= 1e24) return 0.0;
d_badness = bad2-bad1;
if(check_only)
return d_badness;
if (d_badness<0.0)
{
// cnt++;
PointIndex pinew = mesh.AddPoint (pnew);
for (ElementIndex ei : hasbothpoints)
{
Element & oldel = mesh[ei];
Element newel1 = oldel;
Element newel2 = oldel;
newel1.Touch();
newel2.Touch();
for (int l = 0; l < 4; l++)
{
if (newel1[l] == pi2) newel1[l] = pinew;
if (newel2[l] == pi1) newel2[l] = pinew;
}
oldel.Touch();
oldel.Delete();
mesh.AddVolumeElement (newel1);
mesh.AddVolumeElement (newel2);
}
}
return d_badness;
}
void MeshOptimize3d :: SplitImprove ()
{
static Timer t("MeshOptimize3d::SplitImprove"); RegionTimer reg(t);
static Timer topt("Optimize");
static Timer tsearch("Search-split");
// int np = mesh.GetNP();
int ne = mesh.GetNE();
double bad = 0.0;
double badmax = 0.0;
auto elementsonnode = mesh.CreatePoint2ElementTable(nullopt, mp.only3D_domain_nr);
const char * savetask = multithread.task;
multithread.task = "Optimize Volume: Split Improve";
PrintMessage (3, "SplitImprove");
(*testout) << "start SplitImprove" << "\n";
mesh.BuildBoundaryEdges(false);
UpdateBadness();
if (goal == OPT_QUALITY && testout->good())
{
bad = mesh.CalcTotalBad (mp);
(*testout) << "Total badness = " << bad << endl;
}
Array<std::tuple<PointIndex,PointIndex>> edges;
BuildEdgeList(mesh, elementsonnode, edges);
// Find edges with improvement
Array<std::tuple<double, int>> candidate_edges(edges.Size());
std::atomic<int> improvement_counter(0);
auto ptmp = mesh.AddPoint( {0,0,0} );
tsearch.Start();
ParallelForRange(Range(edges), [&] (auto myrange)
{
NgArray<PointIndices<3>> locfaces;
for(auto i : myrange)
{
auto [p0,p1] = edges[i];
double d_badness = SplitImproveEdge (elementsonnode, locfaces, badmax, p0, p1, ptmp, true);
if(d_badness<0.0)
{
int index = improvement_counter++;
candidate_edges[index] = make_tuple(d_badness, i);
}
}
}, ngcore::TasksPerThread(4));
tsearch.Stop();
auto edges_with_improvement = candidate_edges.Part(0, improvement_counter.load());
QuickSort(edges_with_improvement);
PrintMessage(5, edges.Size(), " edges");
PrintMessage(5, edges_with_improvement.Size(), " edges with improvement");
// Apply actual optimizations
topt.Start();
int cnt = 0;
NgArray<PointIndices<3>> locfaces;
for(auto [d_badness, ei] : edges_with_improvement)
{
auto [p0,p1] = edges[ei];
if (SplitImproveEdge (elementsonnode, locfaces, badmax, p0, p1, ptmp, false) < 0.0)
cnt++;
}
topt.Stop();
mesh.Compress();
PrintMessage (5, cnt, " splits performed");
(*testout) << "Splitt - Improve done" << "\n";
if (goal == OPT_QUALITY)
{
if(testout->good())
{
bad = mesh.CalcTotalBad (mp);
(*testout) << "Total badness = " << bad << endl;
}
[[maybe_unused]] int cntill = 0;
ne = mesh.GetNE();
// for (ElementIndex ei = 0; ei < ne; ei++)
for (auto ei : ngcore::T_Range<ElementIndex>(ne))
if (!mesh.LegalTet (mesh[ei]))
cntill++;
// cout << cntill << " illegal tets" << endl;
}
multithread.task = savetask;
}
double MeshOptimize3d :: SwapImproveEdge (
const TBitArray<ElementIndex> * working_elements,
Table<ElementIndex, PointIndex> & elementsonnode,
INDEX_3_HASHTABLE<int> & faces,
PointIndex pi1, PointIndex pi2, bool check_only)
{
PointIndex pi3(PointIndex::INVALID), pi4(PointIndex::INVALID),
pi5(PointIndex::INVALID), pi6(PointIndex::INVALID);
double bad1, bad2, bad3;
Element el21(TET), el22(TET), el31(TET), el32(TET), el33(TET);
Element el1(TET), el2(TET), el3(TET), el4(TET);
Element el1b(TET), el2b(TET), el3b(TET), el4b(TET);
ArrayMem<ElementIndex, 20> hasbothpoints;
double d_badness = 0.0;
if (pi2 < pi1) Swap (pi1, pi2);
if (mesh.BoundaryEdge (pi1, pi2)) return 0.0;
hasbothpoints.SetSize (0);
for (ElementIndex elnr : elementsonnode[pi1])
{
bool has1 = 0, has2 = 0;
const Element & elem = mesh[elnr];
if (elem.IsDeleted()) return 0.0;
for (int l = 0; l < elem.GetNP(); l++)
{
if (elem[l] == pi1) has1 = 1;
if (elem[l] == pi2) has2 = 1;
}
if (has1 && has2)
{ // only once
if (hasbothpoints.Contains (elnr))
has1 = false;
if (has1)
{
hasbothpoints.Append (elnr);
}
}
}
for (ElementIndex ei : hasbothpoints)
{
if (mesh[ei].GetType () != TET)
return 0.0;
if (mp.only3D_domain_nr && mp.only3D_domain_nr != mesh.VolumeElement(ei).GetIndex())
return 0.0;
if ((mesh.ElementType(ei)) == FIXEDELEMENT)
return 0.0;
if(working_elements &&
ei < working_elements->Size() &&
!working_elements->Test(ei))
return 0.0;
if (mesh[ei].IsDeleted())
return 0.0;
}
if(!NeedsOptimization(hasbothpoints))
return 0.0;
int nsuround = hasbothpoints.Size();
int mattyp = mesh[hasbothpoints[0]].GetIndex();
if ( nsuround == 3 )
{
Element & elem = mesh[hasbothpoints[0]];
for (int l = 0; l < 4; l++)
if (elem[l] != pi1 && elem[l] != pi2)
{
pi4 = pi3;
pi3 = elem[l];
}
el31[0] = pi1;
el31[1] = pi2;
el31[2] = pi3;
el31[3] = pi4;
el31.SetIndex (mattyp);
if (WrongOrientation (mesh.Points(), el31))
{
Swap (pi3, pi4);
el31[2] = pi3;
el31[3] = pi4;
}
pi5.Invalidate();
for (int k = 0; k < 3; k++) // JS, 201212
{
const Element & elemk = mesh[hasbothpoints[k]];
bool has1 = false;
for (int l = 0; l < 4; l++)
if (elemk[l] == pi4)
has1 = true;
if (has1)
{
for (int l = 0; l < 4; l++)
if (elemk[l] != pi1 && elemk[l] != pi2 && elemk[l] != pi4)
pi5 = elemk[l];
}
}
if (!pi5.IsValid())
throw NgException("Illegal state observed in SwapImprove");
el32[0] = pi1;
el32[1] = pi2;
el32[2] = pi4;
el32[3] = pi5;
el32.SetIndex (mattyp);
el33[0] = pi1;
el33[1] = pi2;
el33[2] = pi5;
el33[3] = pi3;
el33.SetIndex (mattyp);
bad1 = CalcBad (mesh.Points(), el31, 0) +
CalcBad (mesh.Points(), el32, 0) +
CalcBad (mesh.Points(), el33, 0);
el31.Touch();
el32.Touch();
el33.Touch();
if (!mesh.LegalTet(el31) ||
!mesh.LegalTet(el32) ||
!mesh.LegalTet(el33))
bad1 += GetLegalPenalty();
el21[0] = pi3;
el21[1] = pi4;
el21[2] = pi5;
el21[3] = pi2;
el21.SetIndex (mattyp);
el22[0] = pi5;
el22[1] = pi4;
el22[2] = pi3;
el22[3] = pi1;
el22.SetIndex (mattyp);
bad2 = CalcBad (mesh.Points(), el21, 0) +
CalcBad (mesh.Points(), el22, 0);
el21.Touch();
el22.Touch();
if (!mesh.LegalTet(el21) ||
!mesh.LegalTet(el22))
bad2 += GetLegalPenalty();
if ((goal == OPT_CONFORM) && NotTooBad(bad1, bad2))
{
PointIndices<3> face(pi3, pi4, pi5);
face.Sort();
if (faces.Used(face))
{
// (*testout) << "3->2 swap, could improve conformity, bad1 = " << bad1
// << ", bad2 = " << bad2 << endl;
bad2 = bad1 + IMPROVEMENT_CONFORMING_EDGE;
}
}
if (bad2 < bad1)
{
// (*mycout) << "3->2 " << flush;
// (*testout) << "3->2 conversion" << endl;
d_badness = bad2-bad1;
if(check_only)
return d_badness;
/*
(*testout) << "3->2 swap, old els = " << endl
<< mesh[hasbothpoints[0]] << endl
<< mesh[hasbothpoints[1]] << endl
<< mesh[hasbothpoints[2]] << endl
<< "new els = " << endl
<< el21 << endl
<< el22 << endl;
*/
mesh[hasbothpoints[0]].Delete();
mesh[hasbothpoints[1]].Delete();
mesh[hasbothpoints[2]].Delete();
el21.Touch();
el22.Touch();
mesh.AddVolumeElement(el21);
mesh.AddVolumeElement(el22);
}
}
if (nsuround == 4)
{
const Element & elem1 = mesh[hasbothpoints[0]];
for (int l = 0; l < 4; l++)
if (elem1[l] != pi1 && elem1[l] != pi2)
{
pi4 = pi3;
pi3 = elem1[l];
}
el1[0] = pi1; el1[1] = pi2;
el1[2] = pi3; el1[3] = pi4;
el1.SetIndex (mattyp);
if (WrongOrientation (mesh.Points(), el1))
{
Swap (pi3, pi4);
el1[2] = pi3;
el1[3] = pi4;
}
pi5.Invalidate();
for (int k = 0; k < 4; k++)
{
const Element & elem = mesh[hasbothpoints[k]];
bool has1 = elem.PNums().Contains(pi4);
if (has1)
{
for (int l = 0; l < 4; l++)
if (elem[l] != pi1 && elem[l] != pi2 && elem[l] != pi4)
pi5 = elem[l];
}
}
pi6.Invalidate();
for (int k = 0; k < 4; k++)
{
const Element & elem = mesh[hasbothpoints[k]];
bool has1 = elem.PNums().Contains(pi3);
if (has1)
{
for (int l = 0; l < 4; l++)
if (elem[l] != pi1 && elem[l] != pi2 && elem[l] != pi3)
pi6 = elem[l];
}
}
el1[0] = pi1; el1[1] = pi2;
el1[2] = pi3; el1[3] = pi4;
el1.SetIndex (mattyp);
el2[0] = pi1; el2[1] = pi2;
el2[2] = pi4; el2[3] = pi5;
el2.SetIndex (mattyp);
el3[0] = pi1; el3[1] = pi2;
el3[2] = pi5; el3[3] = pi6;
el3.SetIndex (mattyp);
el4[0] = pi1; el4[1] = pi2;
el4[2] = pi6; el4[3] = pi3;
el4.SetIndex (mattyp);
bad1 = CalcBad (mesh.Points(), el1, 0) +
CalcBad (mesh.Points(), el2, 0) +
CalcBad (mesh.Points(), el3, 0) +
CalcBad (mesh.Points(), el4, 0);
el1.Touch();
el2.Touch();
el3.Touch();
el4.Touch();
if (goal != OPT_CONFORM)
{
if (!mesh.LegalTet(el1) ||
!mesh.LegalTet(el2) ||
!mesh.LegalTet(el3) ||
!mesh.LegalTet(el4))
bad1 += GetLegalPenalty();
}
el1[0] = pi3; el1[1] = pi5;
el1[2] = pi2; el1[3] = pi4;
el1.SetIndex (mattyp);
el2[0] = pi3; el2[1] = pi5;
el2[2] = pi4; el2[3] = pi1;
el2.SetIndex (mattyp);
el3[0] = pi3; el3[1] = pi5;
el3[2] = pi1; el3[3] = pi6;
el3.SetIndex (mattyp);
el4[0] = pi3; el4[1] = pi5;
el4[2] = pi6; el4[3] = pi2;
el4.SetIndex (mattyp);
bad2 = CalcBad (mesh.Points(), el1, 0) +
CalcBad (mesh.Points(), el2, 0) +
CalcBad (mesh.Points(), el3, 0) +
CalcBad (mesh.Points(), el4, 0);
el1.Touch();
el2.Touch();
el3.Touch();
el4.Touch();
if (goal != OPT_CONFORM)
{
if (!mesh.LegalTet(el1) ||
!mesh.LegalTet(el2) ||
!mesh.LegalTet(el3) ||
!mesh.LegalTet(el4))
bad2 += GetLegalPenalty();
}
el1b[0] = pi4; el1b[1] = pi6;
el1b[2] = pi3; el1b[3] = pi2;
el1b.SetIndex (mattyp);
el2b[0] = pi4; el2b[1] = pi6;
el2b[2] = pi2; el2b[3] = pi5;
el2b.SetIndex (mattyp);
el3b[0] = pi4; el3b[1] = pi6;
el3b[2] = pi5; el3b[3] = pi1;
el3b.SetIndex (mattyp);
el4b[0] = pi4; el4b[1] = pi6;
el4b[2] = pi1; el4b[3] = pi3;
el4b.SetIndex (mattyp);
bad3 = CalcBad (mesh.Points(), el1b, 0) +
CalcBad (mesh.Points(), el2b, 0) +
CalcBad (mesh.Points(), el3b, 0) +
CalcBad (mesh.Points(), el4b, 0);
el1b.Touch();
el2b.Touch();
el3b.Touch();
el4b.Touch();
if (goal != OPT_CONFORM)
{
if (!mesh.LegalTet(el1b) ||
!mesh.LegalTet(el2b) ||
!mesh.LegalTet(el3b) ||
!mesh.LegalTet(el4b))
bad3 += GetLegalPenalty();
}
bool swap2=false;
bool swap3=false;
if (goal == OPT_CONFORM)
{
swap2 = mesh.BoundaryEdge (pi3, pi5) && NotTooBad(bad1, bad2);
swap3 = mesh.BoundaryEdge (pi4, pi6) && NotTooBad(bad1, bad3);
if(swap2 || swap3)
d_badness = IMPROVEMENT_CONFORMING_EDGE;
}
if (goal != OPT_CONFORM || (!swap2 && !swap3))
{
swap2 = (bad2 < bad1) && (bad2 < bad3);
swap3 = !swap2 && (bad3 < bad1);
d_badness = swap2 ? bad2-bad1 : bad3-bad1;
}
if(check_only)
return d_badness;
if (swap2)
{
for (auto i : IntRange(4))
mesh[hasbothpoints[i]].Delete();
el1.Touch();
el2.Touch();
el3.Touch();
el4.Touch();
mesh.AddVolumeElement (el1);
mesh.AddVolumeElement (el2);
mesh.AddVolumeElement (el3);
mesh.AddVolumeElement (el4);
}
else if (swap3)
{
for (auto i : IntRange(4))
mesh[hasbothpoints[i]].Delete();
el1b.Touch();
el2b.Touch();
el3b.Touch();
el4b.Touch();
mesh.AddVolumeElement (el1b);
mesh.AddVolumeElement (el2b);
mesh.AddVolumeElement (el3b);
mesh.AddVolumeElement (el4b);
}
}
// if (goal == OPT_QUALITY)
if (nsuround >= 5)
{
Element hel(TET);
NgArrayMem<PointIndex, 50> suroundpts(nsuround);
NgArrayMem<bool, 50> tetused(nsuround);
Element & elem = mesh[hasbothpoints[0]];
for (int l = 0; l < 4; l++)
if (elem[l] != pi1 && elem[l] != pi2)
{
pi4 = pi3;
pi3 = elem[l];
}
hel[0] = pi1;
hel[1] = pi2;
hel[2] = pi3;
hel[3] = pi4;
hel.SetIndex (mattyp);
if (WrongOrientation (mesh.Points(), hel))
{
Swap (pi3, pi4);
hel[2] = pi3;
hel[3] = pi4;
}
// suroundpts.SetSize (nsuround);
suroundpts = PointIndex::INVALID;
suroundpts[0] = pi3;
suroundpts[1] = pi4;
tetused = false;
tetused[0] = true;
for (int l = 2; l < nsuround; l++)
{
PointIndex oldpi = suroundpts[l-1];
PointIndex newpi;
newpi.Invalidate();
for (int k = 0; k < nsuround && !newpi.IsValid(); k++)
if (!tetused[k])
{
const Element & nel = mesh[hasbothpoints[k]];
for (int k2 = 0; k2 < 4 && !newpi.IsValid(); k2++)
if (nel[k2] == oldpi)
{
newpi = nel[0] - pi1 + nel[1] - pi2 + nel[2] - oldpi + nel[3];
tetused[k] = true;
suroundpts[l] = newpi;
}
}
}
bad1 = 0;
for (int k = 0; k < nsuround; k++)
{
hel[0] = pi1;
hel[1] = pi2;
hel[2] = suroundpts[k];
hel[3] = suroundpts[(k+1) % nsuround];
hel.SetIndex (mattyp);
bad1 += CalcBad (mesh.Points(), hel, 0);
}
// (*testout) << "nsuround = " << nsuround << " bad1 = " << bad1 << endl;
int bestl = -1;
int confface = -1;
int confedge = -1;
double badopt = bad1;
for (int l = 0; l < nsuround; l++)
{
bad2 = 0;
for (int k = l+1; k <= nsuround + l - 2; k++)
{
hel[0] = suroundpts[l];
hel[1] = suroundpts[k % nsuround];
hel[2] = suroundpts[(k+1) % nsuround];
hel[3] = pi2;
bad2 += CalcBad (mesh.Points(), hel, 0);
hel.Touch();
if (!mesh.LegalTet(hel)) bad2 += GetLegalPenalty();
hel[2] = suroundpts[k % nsuround];
hel[1] = suroundpts[(k+1) % nsuround];
hel[3] = pi1;
bad2 += CalcBad (mesh.Points(), hel, 0);
hel.Touch();
if (!mesh.LegalTet(hel)) bad2 += GetLegalPenalty();
}
// (*testout) << "bad2," << l << " = " << bad2 << endl;
if ( bad2 < badopt )
{
bestl = l;
badopt = bad2;
}
if (goal == OPT_CONFORM)
{
bool nottoobad = NotTooBad(bad1, bad2);
for (int k = l+1; k <= nsuround + l - 2; k++)
{
PointIndices<3> hi3(suroundpts[l],
suroundpts[k % nsuround],
suroundpts[(k+1) % nsuround]);
hi3.Sort();
if (faces.Used(hi3))
{
// (*testout) << "could improve face conformity, bad1 = " << bad1
// << ", bad 2 = " << bad2 << ", nottoobad = " << nottoobad << endl;
if (nottoobad)
confface = l;
}
}
for (int k = l+2; k <= nsuround+l-2; k++)
{
if (mesh.BoundaryEdge (suroundpts[l],
suroundpts[k % nsuround]))
{
/*
*testout << "could improve edge conformity, bad1 = " << bad1
<< ", bad 2 = " << bad2 << ", nottoobad = " << nottoobad << endl;
*/
if (nottoobad)
confedge = l;
}
}
}
}
if (confedge != -1)
bestl = confedge;
if (confface != -1)
bestl = confface;
if(confface != -1 || confedge != -1)
badopt = bad1 + IMPROVEMENT_CONFORMING_EDGE;
if (bestl != -1)
{
// (*mycout) << nsuround << "->" << 2 * (nsuround-2) << " " << flush;
d_badness = badopt-bad1;
if(check_only)
return d_badness;
for (int k = bestl+1; k <= nsuround + bestl - 2; k++)
{
// int k1;
hel[0] = suroundpts[bestl];
hel[1] = suroundpts[k % nsuround];
hel[2] = suroundpts[(k+1) % nsuround];
hel[3] = pi2;
hel.Touch();
/*
(*testout) << nsuround << "-swap, new el,top = "
<< hel << endl;
*/
mesh.AddVolumeElement (hel);
hel[2] = suroundpts[k % nsuround];
hel[1] = suroundpts[(k+1) % nsuround];
hel[3] = pi1;
/*
(*testout) << nsuround << "-swap, new el,bot = "
<< hel << endl;
*/
mesh.AddVolumeElement (hel);
}
for (int k = 0; k < nsuround; k++)
{
Element & rel = mesh[hasbothpoints[k]];
/*
(*testout) << nsuround << "-swap, old el = "
<< rel << endl;
*/
rel.Delete();
for (int k1 = 0; k1 < 4; k1++)
rel[k1].Invalidate();
}
}
}
return d_badness;
}
void MeshOptimize3d :: SwapImprove (const TBitArray<ElementIndex> * working_elements)
{
static Timer t("MeshOptimize3d::SwapImprove"); RegionTimer reg(t);
static Timer tloop("MeshOptimize3d::SwapImprove loop");
int cnt = 0;
// int np = mesh.GetNP();
// int ne = mesh.GetNE();
mesh.BuildBoundaryEdges(false);
TBitArray<PointIndex> free_points(mesh.GetNP());
free_points.Clear();
ParallelForRange(mesh.VolumeElements().Range(), [&] (auto myrange)
{
for (ElementIndex eli : myrange)
{
const auto & el = mesh[eli];
if(el.Flags().fixed || el.GetType() != TET)
continue;
if(mp.only3D_domain_nr && mp.only3D_domain_nr != el.GetIndex())
continue;
for (auto pi : el.PNums())
if(!free_points[pi])
free_points.SetBitAtomic(pi);
}
});
auto elementsonnode = mesh.CreatePoint2ElementTable(free_points, mp.only3D_domain_nr );
NgArray<ElementIndex> hasbothpoints;
PrintMessage (3, "SwapImprove ");
(*testout) << "\n" << "Start SwapImprove" << endl;
const char * savetask = multithread.task;
multithread.task = "Optimize Volume: Swap Improve";
INDEX_3_HASHTABLE<int> faces(mesh.GetNOpenElements()/3 + 2);
if (goal == OPT_CONFORM)
{
for (int i = 1; i <= mesh.GetNOpenElements(); i++)
{
const Element2d & hel = mesh.OpenElement(i);
PointIndices<3> face(hel[0], hel[1], hel[2]);
face.Sort();
faces.Set (face, i);
}
}
// Calculate total badness
if (goal == OPT_QUALITY && testout->good())
{
double bad1 = mesh.CalcTotalBad (mp);
(*testout) << "Total badness = " << bad1 << endl;
}
Array<std::tuple<PointIndex,PointIndex>> edges;
BuildEdgeList(mesh, elementsonnode, edges);
Array<std::tuple<double, int>> candidate_edges(edges.Size());
std::atomic<int> improvement_counter(0);
UpdateBadness();
tloop.Start();
auto num_elements_before = mesh.VolumeElements().Range().Next();
ParallelForRange(Range(edges), [&] (auto myrange)
{
for(auto i : myrange)
{
if (multithread.terminate)
break;
auto [pi0, pi1] = edges[i];
double d_badness = SwapImproveEdge (working_elements, elementsonnode, faces, pi0, pi1, true);
if(d_badness<0.0)
{
int index = improvement_counter++;
candidate_edges[index] = make_tuple(d_badness, i);
}
}
}, TasksPerThread (4));
auto edges_with_improvement = candidate_edges.Part(0, improvement_counter.load());
QuickSort(edges_with_improvement);
for(auto [d_badness, ei] : edges_with_improvement)
{
auto [pi0,pi1] = edges[ei];
if(SwapImproveEdge (working_elements, elementsonnode, faces, pi0, pi1, false) < 0.0)
cnt++;
}
tloop.Stop();
PrintMessage (5, cnt, " swaps performed");
if(goal == OPT_CONFORM)
{
// Remove open elements that were closed by new tets
auto & open_els = mesh.OpenElements();
for (auto & el : mesh.VolumeElements().Range( num_elements_before, mesh.VolumeElements().Range().Next() ))
{
for (auto i : Range(1,5))
{
Element2d sel;
el.GetFace(i, sel);
PointIndices<3> face(sel[0], sel[1], sel[2]);
face.Sort();
if(faces.Used(face))
open_els[faces.Get(face)-1].Delete();
}
}
for(int i=open_els.Size()-1; i>=0; i--)
if(open_els[i].IsDeleted())
open_els.Delete(i);
mesh.DeleteBoundaryEdges();
}
mesh.Compress ();
multithread.task = savetask;
}
void MeshOptimize3d :: SwapImproveSurface (
const TBitArray<ElementIndex> * working_elements,
const NgArray< idmap_type* > * idmaps)
{
NgArray< idmap_type* > locidmaps;
const NgArray< idmap_type* > * used_idmaps;
if(idmaps)
used_idmaps = idmaps;
else
{
used_idmaps = &locidmaps;
for(int i=1; i<=mesh.GetIdentifications().GetMaxNr(); i++)
{
if(mesh.GetIdentifications().GetType(i) == Identifications::PERIODIC)
{
locidmaps.Append(new idmap_type);
mesh.GetIdentifications().GetMap(i,*locidmaps.Last(),true);
}
}
}
PointIndex pi1, pi2; // , pi3, pi4, pi5, pi6;
PointIndex pi1other, pi2other;
int cnt = 0;
//double bad1, bad2, bad3, sbad;
double bad1, sbad;
double h;
int np = mesh.GetNP();
int ne = mesh.GetNE();
int nse = mesh.GetNSE();
int mattype, othermattype;
// contains at least all elements at node
DynamicTable<ElementIndex,PointIndex> elementsonnode(np);
DynamicTable<SurfaceElementIndex,PointIndex> surfaceelementsonnode(np);
DynamicTable<int,PointIndex> surfaceindicesonnode(np);
NgArray<ElementIndex> hasbothpoints;
NgArray<ElementIndex> hasbothpointsother;
PrintMessage (3, "SwapImproveSurface ");
(*testout) << "\n" << "Start SwapImproveSurface" << endl;
const char * savetask = multithread.task;
multithread.task = "Swap Improve Surface";
// find elements on node
for (ElementIndex ei = 0; ei < ne; ei++)
for (int j = 0; j < mesh[ei].GetNP(); j++)
elementsonnode.Add (mesh[ei][j], ei);
for (SurfaceElementIndex sei = 0; sei < nse; sei++)
for(int j=0; j<mesh[sei].GetNP(); j++)
{
surfaceelementsonnode.Add(mesh[sei][j], sei);
if(!surfaceindicesonnode[mesh[sei][j]].Contains(mesh[sei].GetIndex()))
surfaceindicesonnode.Add(mesh[sei][j],mesh[sei].GetIndex());
}
bool periodic;
int idnum(-1);
// INDEX_2_HASHTABLE<int> edgeused(2 * ne + 5);
INDEX_2_CLOSED_HASHTABLE<int> edgeused(12 * ne + 5);
for (ElementIndex ei = 0; ei < ne; ei++)
{
if (multithread.terminate)
break;
multithread.percent = 100.0 * (ei+1) / ne;
if (mesh.ElementType(ei) == FIXEDELEMENT)
continue;
if(working_elements &&
ei < working_elements->Size() &&
!working_elements->Test(ei))
continue;
if (mesh[ei].IsDeleted())
continue;
if (goal == OPT_LEGAL && mesh.LegalTet (mesh[ei]))
continue;
const Element & elemi = mesh[ei];
//Element elemi = mesh[ei];
if (elemi.IsDeleted()) continue;
mattype = elemi.GetIndex();
bool swapped = false;
for (int j = 0; !swapped && j < 6; j++)
{
// loop over edges
pi1 = elemi[tetedges[j][0]];
pi2 = elemi[tetedges[j][1]];
if (pi2 < pi1)
Swap (pi1, pi2);
bool found = false;
for(int k=0; !found && k<used_idmaps->Size(); k++)
{
if(pi2 < (*used_idmaps)[k]->Size() + IndexBASE<PointIndex>())
{
pi1other = (*(*used_idmaps)[k])[pi1];
pi2other = (*(*used_idmaps)[k])[pi2];
found = (pi1other.IsValid() && pi2other.IsValid() && pi1other != pi1 && pi2other != pi2);
if(found)
idnum = k;
}
}
if(found)
periodic = true;
else
{
periodic = false;
pi1other = pi1; pi2other = pi2;
}
if (!mesh.BoundaryEdge (pi1, pi2) ||
mesh.IsSegment(pi1, pi2)) continue;
othermattype = -1;
PointIndices<2> i2 (pi1, pi2);
i2.Sort();
if (edgeused.Used(i2)) continue;
edgeused.Set (i2, 1);
if(periodic)
{
i2[0] = pi1other;
i2[1] = pi2other;
i2.Sort();
edgeused.Set(i2,1);
}
hasbothpoints.SetSize (0);
hasbothpointsother.SetSize (0);
for (int k = 0; k < elementsonnode[pi1].Size(); k++)
{
bool has1 = false, has2 = false;
ElementIndex elnr = elementsonnode[pi1][k];
const Element & elem = mesh[elnr];
if (elem.IsDeleted()) continue;
for (int l = 0; l < elem.GetNP(); l++)
{
if (elem[l] == pi1) has1 = true;
if (elem[l] == pi2) has2 = true;
}
if (has1 && has2)
{
if(othermattype == -1 && elem.GetIndex() != mattype)
othermattype = elem.GetIndex();
if(elem.GetIndex() == mattype)
{
// only once
for (int l = 0; l < hasbothpoints.Size(); l++)
if (hasbothpoints[l] == elnr)
has1 = 0;
if (has1)
hasbothpoints.Append (elnr);
}
else if(elem.GetIndex() == othermattype)
{
// only once
for (int l = 0; l < hasbothpointsother.Size(); l++)
if (hasbothpointsother[l] == elnr)
has1 = 0;
if (has1)
hasbothpointsother.Append (elnr);
}
else
{
cout << "problem with domain indices" << endl;
(*testout) << "problem: mattype = " << mattype << ", othermattype = " << othermattype
<< " elem " << elem << " mt " << elem.GetIndex() << endl
<< " pi1 " << pi1 << " pi2 " << pi2 << endl;
(*testout) << "hasbothpoints:" << endl;
for(int ii=0; ii < hasbothpoints.Size(); ii++)
(*testout) << mesh[hasbothpoints[ii]] << endl;
(*testout) << "hasbothpointsother:" << endl;
for(int ii=0; ii < hasbothpointsother.Size(); ii++)
(*testout) << mesh[hasbothpointsother[ii]] << endl;
}
}
}
if(hasbothpointsother.Size() > 0 && periodic)
throw NgException("SwapImproveSurface: Assumption about interface/periodicity wrong!");
if(periodic)
{
for (int k = 0; k < elementsonnode[pi1other].Size(); k++)
{
bool has1 = false, has2 = false;
ElementIndex elnr = elementsonnode[pi1other][k];
const Element & elem = mesh[elnr];
if (elem.IsDeleted()) continue;
for (int l = 0; l < elem.GetNP(); l++)
{
if (elem[l] == pi1other) has1 = true;
if (elem[l] == pi2other) has2 = true;
}
if (has1 && has2)
{
if(othermattype == -1)
othermattype = elem.GetIndex();
// only once
for (int l = 0; l < hasbothpointsother.Size(); l++)
if (hasbothpointsother[l] == elnr)
has1 = 0;
if (has1)
hasbothpointsother.Append (elnr);
}
}
}
//for(k=0; k<hasbothpoints.Size(); k++)
// (*testout) << "hasbothpoints["<<k<<"]: " << mesh[hasbothpoints[k]] << endl;
SurfaceElementIndex sel1=-1,sel2=-1;
SurfaceElementIndex sel1other=-1,sel2other=-1;
for(int k = 0; k < surfaceelementsonnode[pi1].Size(); k++)
{
bool has1 = false, has2 = false;
SurfaceElementIndex elnr = surfaceelementsonnode[pi1][k];
const Element2d & elem = mesh[elnr];
if (elem.IsDeleted()) continue;
for (int l = 0; l < elem.GetNP(); l++)
{
if (elem[l] == pi1) has1 = true;
if (elem[l] == pi2) has2 = true;
}
if(has1 && has2 && elnr != sel2)
{
sel1 = sel2;
sel2 = elnr;
}
}
if(periodic)
{
for(int k = 0; k < surfaceelementsonnode[pi1other].Size(); k++)
{
bool has1 = false, has2 = false;
SurfaceElementIndex elnr = surfaceelementsonnode[pi1other][k];
const Element2d & elem = mesh[elnr];
if (elem.IsDeleted()) continue;
for (int l = 0; l < elem.GetNP(); l++)
{
if (elem[l] == pi1other) has1 = true;
if (elem[l] == pi2other) has2 = true;
}
if(has1 && has2 && elnr != sel2other)
{
sel1other = sel2other;
sel2other = elnr;
}
}
}
else
{
sel1other = sel1; sel2other = sel2;
}
//(*testout) << "sel1 " << sel1 << " sel2 " << sel2 << " el " << mesh[sel1] << " resp. " << mesh[sel2] << endl;
PointIndex sp1(PointIndex::INVALID), sp2(PointIndex::INVALID);
PointIndex sp1other, sp2other;
for(int l=0; l<mesh[sel1].GetNP(); l++)
if(mesh[sel1][l] != pi1 && mesh[sel1][l] != pi2)
sp1 = mesh[sel1][l];
for(int l=0; l<mesh[sel2].GetNP(); l++)
if(mesh[sel2][l] != pi1 && mesh[sel2][l] != pi2)
sp2 = mesh[sel2][l];
if(periodic)
{
sp1other = (*(*used_idmaps)[idnum])[sp1];
sp2other = (*(*used_idmaps)[idnum])[sp2];
bool change = false;
for(int l=0; !change && l<mesh[sel1other].GetNP(); l++)
change = (sp2other == mesh[sel1other][l]);
if(change)
{
SurfaceElementIndex aux = sel1other;
sel1other = sel2other;
sel2other = aux;
}
}
else
{
sp1other = sp1; sp2other = sp2;
}
Vec<3> v1 = mesh[sp1]-mesh[pi1],
v2 = mesh[sp2]-mesh[pi1],
v3 = mesh[sp1]-mesh[pi2],
v4 = mesh[sp2]-mesh[pi2];
double vol = 0.5*(Cross(v1,v2).Length() + Cross(v3,v4).Length());
h = sqrt(vol);
h = 0;
sbad = CalcTriangleBadness (mesh[pi1],mesh[pi2],mesh[sp1],0,0) +
CalcTriangleBadness (mesh[pi2],mesh[pi1],mesh[sp2],0,0);
bool puretet = true;
for (int k = 0; puretet && k < hasbothpoints.Size(); k++)
if (mesh[hasbothpoints[k]].GetType () != TET)
puretet = false;
for (int k = 0; puretet && k < hasbothpointsother.Size(); k++)
if (mesh[hasbothpointsother[k]].GetType () != TET)
puretet = false;
if (!puretet)
continue;
int nsuround = hasbothpoints.Size();
int nsuroundother = hasbothpointsother.Size();
NgArray < PointIndex > outerpoints(nsuround+1);
outerpoints[0] = sp1;
for(int i=0; i<nsuround; i++)
{
bool done = false;
for(int jj=i; !done && jj<hasbothpoints.Size(); jj++)
{
for(int k=0; !done && k<4; k++)
if(mesh[hasbothpoints[jj]][k] == outerpoints[i])
{
done = true;
for(int l=0; l<4; l++)
if(mesh[hasbothpoints[jj]][l] != pi1 &&
mesh[hasbothpoints[jj]][l] != pi2 &&
mesh[hasbothpoints[jj]][l] != outerpoints[i])
outerpoints[i+1] = mesh[hasbothpoints[jj]][l];
}
if(done)
{
ElementIndex aux = hasbothpoints[i];
hasbothpoints[i] = hasbothpoints[jj];
hasbothpoints[jj] = aux;
}
}
}
if(outerpoints[nsuround] != sp2)
{
cerr << "OJE OJE OJE" << endl;
(*testout) << "OJE OJE OJE" << endl;
(*testout) << "hasbothpoints: " << endl;
for(int ii=0; ii < hasbothpoints.Size(); ii++)
{
(*testout) << mesh[hasbothpoints[ii]] << endl;
for(int jj=0; jj<mesh[hasbothpoints[ii]].GetNP(); jj++)
if(mesh.mlbetweennodes[mesh[hasbothpoints[ii]][jj]][0].IsValid())
(*testout) << mesh[hasbothpoints[ii]][jj] << " between "
<< mesh.mlbetweennodes[mesh[hasbothpoints[ii]][jj]][0] << " and "
<< mesh.mlbetweennodes[mesh[hasbothpoints[ii]][jj]][1] << endl;
}
(*testout) << "outerpoints: " << outerpoints << endl;
(*testout) << "sel1 " << mesh[sel1] << endl
<< "sel2 " << mesh[sel2] << endl;
for(int ii=0; ii<3; ii++)
{
if(mesh.mlbetweennodes[mesh[sel1][ii]][0].IsValid())
(*testout) << mesh[sel1][ii] << " between "
<< mesh.mlbetweennodes[mesh[sel1][ii]][0] << " and "
<< mesh.mlbetweennodes[mesh[sel1][ii]][1] << endl;
if(mesh.mlbetweennodes[mesh[sel2][ii]][0].IsValid())
(*testout) << mesh[sel2][ii] << " between "
<< mesh.mlbetweennodes[mesh[sel2][ii]][0] << " and "
<< mesh.mlbetweennodes[mesh[sel2][ii]][1] << endl;
}
}
NgArray < PointIndex > outerpointsother;
if(nsuroundother > 0)
{
outerpointsother.SetSize(nsuroundother+1);
outerpointsother[0] = sp2other;
}
for(int i=0; i<nsuroundother; i++)
{
bool done = false;
for(int jj=i; !done && jj<hasbothpointsother.Size(); jj++)
{
for(int k=0; !done && k<4; k++)
if(mesh[hasbothpointsother[jj]][k] == outerpointsother[i])
{
done = true;
for(int l=0; l<4; l++)
if(mesh[hasbothpointsother[jj]][l] != pi1other &&
mesh[hasbothpointsother[jj]][l] != pi2other &&
mesh[hasbothpointsother[jj]][l] != outerpointsother[i])
outerpointsother[i+1] = mesh[hasbothpointsother[jj]][l];
}
if(done)
{
ElementIndex aux = hasbothpointsother[i];
hasbothpointsother[i] = hasbothpointsother[jj];
hasbothpointsother[jj] = aux;
}
}
}
if(nsuroundother > 0 && outerpointsother[nsuroundother] != sp1other)
{
cerr << "OJE OJE OJE (other)" << endl;
(*testout) << "OJE OJE OJE (other)" << endl;
(*testout) << "pi1 " << pi1 << " pi2 " << pi2 << " sp1 " << sp1 << " sp2 " << sp2 << endl;
(*testout) << "hasbothpoints: " << endl;
for(int ii=0; ii < hasbothpoints.Size(); ii++)
{
(*testout) << mesh[hasbothpoints[ii]] << endl;
for(int jj=0; jj<mesh[hasbothpoints[ii]].GetNP(); jj++)
if(mesh.mlbetweennodes[mesh[hasbothpoints[ii]][jj]][0].IsValid())
(*testout) << mesh[hasbothpoints[ii]][jj] << " between "
<< mesh.mlbetweennodes[mesh[hasbothpoints[ii]][jj]][0] << " and "
<< mesh.mlbetweennodes[mesh[hasbothpoints[ii]][jj]][1] << endl;
}
(*testout) << "outerpoints: " << outerpoints << endl;
(*testout) << "sel1 " << mesh[sel1] << endl
<< "sel2 " << mesh[sel2] << endl;
for(int ii=0; ii<3; ii++)
{
if(mesh.mlbetweennodes[mesh[sel1][ii]][0].IsValid())
(*testout) << mesh[sel1][ii] << " between "
<< mesh.mlbetweennodes[mesh[sel1][ii]][0] << " and "
<< mesh.mlbetweennodes[mesh[sel1][ii]][1] << endl;
if(mesh.mlbetweennodes[mesh[sel2][ii]][0].IsValid())
(*testout) << mesh[sel2][ii] << " between "
<< mesh.mlbetweennodes[mesh[sel2][ii]][0] << " and "
<< mesh.mlbetweennodes[mesh[sel2][ii]][1] << endl;
}
(*testout) << "pi1other " << pi1other << " pi2other " << pi2other << " sp1other " << sp1other << " sp2other " << sp2other << endl;
(*testout) << "hasbothpointsother: " << endl;
for(int ii=0; ii < hasbothpointsother.Size(); ii++)
{
(*testout) << mesh[hasbothpointsother[ii]] << endl;
for(int jj=0; jj<mesh[hasbothpointsother[ii]].GetNP(); jj++)
if(mesh.mlbetweennodes[mesh[hasbothpointsother[ii]][jj]][0].IsValid())
(*testout) << mesh[hasbothpointsother[ii]][jj] << " between "
<< mesh.mlbetweennodes[mesh[hasbothpointsother[ii]][jj]][0] << " and "
<< mesh.mlbetweennodes[mesh[hasbothpointsother[ii]][jj]][1] << endl;
}
(*testout) << "outerpoints: " << outerpointsother << endl;
(*testout) << "sel1other " << mesh[sel1other] << endl
<< "sel2other " << mesh[sel2other] << endl;
for(int ii=0; ii<3; ii++)
{
if(mesh.mlbetweennodes[mesh[sel1other][ii]][0].IsValid())
(*testout) << mesh[sel1other][ii] << " between "
<< mesh.mlbetweennodes[mesh[sel1other][ii]][0] << " and "
<< mesh.mlbetweennodes[mesh[sel1other][ii]][1] << endl;
if(mesh.mlbetweennodes[mesh[sel2other][ii]][0].IsValid())
(*testout) << mesh[sel2other][ii] << " between "
<< mesh.mlbetweennodes[mesh[sel2other][ii]][0] << " and "
<< mesh.mlbetweennodes[mesh[sel2other][ii]][1] << endl;
}
}
bad1=0;
for(int i=0; i<hasbothpoints.Size(); i++)
bad1 += CalcBad(mesh.Points(), mesh[hasbothpoints[i]],h);
for(int i=0; i<hasbothpointsother.Size(); i++)
bad1 += CalcBad(mesh.Points(), mesh[hasbothpointsother[i]],h);
bad1 /= double(hasbothpoints.Size() + hasbothpointsother.Size());
int startpoints,startpointsother;
if(outerpoints.Size() == 3)
startpoints = 1;
else if(outerpoints.Size() == 4)
startpoints = 2;
else
startpoints = outerpoints.Size();
if(outerpointsother.Size() == 3)
startpointsother = 1;
else if(outerpointsother.Size() == 4)
startpointsother = 2;
else
startpointsother = outerpointsother.Size();
NgArray < NgArray < Element* > * > newelts(startpoints);
NgArray < NgArray < Element* > * > neweltsother(startpointsother);
double minbad = 1e50, minbadother = 1e50, currbad;
int minpos = -1, minposother = -1;
//(*testout) << "pi1 " << pi1 << " pi2 " << pi2 << " outerpoints " << outerpoints << endl;
for(int i=0; i<startpoints; i++)
{
newelts[i] = new NgArray <Element*>(2*(nsuround-1));
for(int jj=0; jj<nsuround-1; jj++)
{
(*newelts[i])[2*jj] = new Element(TET);
(*newelts[i])[2*jj+1] = new Element(TET);
Element & newel1 = *((*newelts[i])[2*jj]);
Element & newel2 = *((*newelts[i])[2*jj+1]);
newel1[0] = pi1;
newel1[1] = outerpoints[i];
newel1[2] = outerpoints[(i+jj+1)%outerpoints.Size()];
newel1[3] = outerpoints[(i+jj+2)%outerpoints.Size()];
newel2[0] = pi2;
newel2[1] = outerpoints[i];
newel2[2] = outerpoints[(i+jj+2)%outerpoints.Size()];
newel2[3] = outerpoints[(i+jj+1)%outerpoints.Size()];
//(*testout) << "j " << j << " newel1 " << newel1[0] << " "<< newel1[1] << " "<< newel1[2] << " "<< newel1[3] << endl
// << " newel2 " << newel2[0] << " "<< newel2[1] << " "<< newel2[2] << " "<< newel2[3] << endl;
newel1.SetIndex(mattype);
newel2.SetIndex(mattype);
}
bool wrongorientation = true;
for(int jj = 0; wrongorientation && jj<newelts[i]->Size(); jj++)
wrongorientation = wrongorientation && WrongOrientation(mesh.Points(), *(*newelts[i])[jj]);
currbad = 0;
for(int jj=0; jj<newelts[i]->Size(); jj++)
{
if(wrongorientation)
Swap((*(*newelts[i])[jj])[2],(*(*newelts[i])[jj])[3]);
// not two new faces on same surface
NgArray<int> face_index;
for(int k = 0; k<surfaceindicesonnode[(*(*newelts[i])[jj])[0]].Size(); k++)
face_index.Append(surfaceindicesonnode[(*(*newelts[i])[jj])[0]][k]);
for(int k=1; k<4; k++)
{
for(int l=0; l<face_index.Size(); l++)
{
if(face_index[l] != -1 &&
!(surfaceindicesonnode[(*(*newelts[i])[jj])[k]].Contains(face_index[l])))
face_index[l] = -1;
}
}
for(int k=0; k<face_index.Size(); k++)
if(face_index[k] != -1)
currbad += 1e12;
currbad += CalcBad(mesh.Points(),*(*newelts[i])[jj],h);
}
//currbad /= double(newelts[i]->Size());
if(currbad < minbad)
{
minbad = currbad;
minpos = i;
}
}
if(startpointsother == 0)
minbadother = 0;
for(int i=0; i<startpointsother; i++)
{
neweltsother[i] = new NgArray <Element*>(2*(nsuroundother));
for(int jj=0; jj<nsuroundother; jj++)
{
(*neweltsother[i])[2*jj] = new Element(TET);
(*neweltsother[i])[2*jj+1] = new Element(TET);
Element & newel1 = *((*neweltsother[i])[2*jj]);
Element & newel2 = *((*neweltsother[i])[2*jj+1]);
newel1[0] = pi1other;
newel1[1] = outerpointsother[i];
newel1[2] = outerpointsother[(i+jj+1)%outerpointsother.Size()];
newel1[3] = outerpointsother[(i+jj+2)%outerpointsother.Size()];
newel2[0] = pi2other;
newel2[1] = outerpointsother[i];
newel2[2] = outerpointsother[(i+jj+2)%outerpointsother.Size()];
newel2[3] = outerpointsother[(i+jj+1)%outerpointsother.Size()];
//(*testout) << "j " << j << " newel1 " << newel1[0] << " "<< newel1[1] << " "<< newel1[2] << " "<< newel1[3] << endl
// << " newel2 " << newel2[0] << " "<< newel2[1] << " "<< newel2[2] << " "<< newel2[3] << endl;
newel1.SetIndex(othermattype);
newel2.SetIndex(othermattype);
}
bool wrongorientation = true;
for(int jj = 0; wrongorientation && jj<neweltsother[i]->Size(); jj++)
wrongorientation = wrongorientation && WrongOrientation(mesh.Points(), *(*neweltsother[i])[jj]);
currbad = 0;
for(int jj=0; jj<neweltsother[i]->Size(); jj++)
{
if(wrongorientation)
Swap((*(*neweltsother[i])[jj])[2],(*(*neweltsother[i])[jj])[3]);
currbad += CalcBad(mesh.Points(),*(*neweltsother[i])[jj],h);
}
//currbad /= double(neweltsother[i]->Size());
if(currbad < minbadother)
{
minbadother = currbad;
minposother = i;
}
}
//(*testout) << "minbad " << minbad << " bad1 " << bad1 << endl;
double sbadnew = CalcTriangleBadness (mesh[pi1],mesh[sp2],mesh[sp1],0,0) +
CalcTriangleBadness (mesh[pi2],mesh[sp1],mesh[sp2],0,0);
int denom = newelts[minpos]->Size();
if(minposother >= 0)
denom += neweltsother[minposother]->Size();
if((minbad+minbadother)/double(denom) < bad1 &&
sbadnew < sbad)
{
cnt++;
swapped = true;
int start1 = -1;
for(int l=0; l<3; l++)
if(mesh[sel1][l] == pi1)
start1 = l;
if(mesh[sel1][(start1+1)%3] == pi2)
{
mesh[sel1][0] = pi1;
mesh[sel1][1] = sp2;
mesh[sel1][2] = sp1;
mesh[sel2][0] = pi2;
mesh[sel2][1] = sp1;
mesh[sel2][2] = sp2;
}
else
{
mesh[sel1][0] = pi2;
mesh[sel1][1] = sp2;
mesh[sel1][2] = sp1;
mesh[sel2][0] = pi1;
mesh[sel2][1] = sp1;
mesh[sel2][2] = sp2;
}
//(*testout) << "changed surface element " << sel1 << " to " << mesh[sel1] << ", " << sel2 << " to " << mesh[sel2] << endl;
for(int l=0; l<3; l++)
{
surfaceelementsonnode.Add(mesh[sel1][l],sel1);
surfaceelementsonnode.Add(mesh[sel2][l],sel2);
}
if(periodic)
{
start1 = -1;
for(int l=0; l<3; l++)
if(mesh[sel1other][l] == pi1other)
start1 = l;
//(*testout) << "changed surface elements " << mesh[sel1other] << " and " << mesh[sel2other] << endl;
if(mesh[sel1other][(start1+1)%3] == pi2other)
{
mesh[sel1other][0] = pi1other;
mesh[sel1other][1] = sp2other;
mesh[sel1other][2] = sp1other;
mesh[sel2other][0] = pi2other;
mesh[sel2other][1] = sp1other;
mesh[sel2other][2] = sp2other;
//(*testout) << " with rule 1" << endl;
}
else
{
mesh[sel1other][0] = pi2other;
mesh[sel1other][1] = sp2other;
mesh[sel1other][2] = sp1other;
mesh[sel2other][0] = pi1other;
mesh[sel2other][1] = sp1other;
mesh[sel2other][2] = sp2other;
//(*testout) << " with rule 2" << endl;
}
//(*testout) << " to " << mesh[sel1other] << " and " << mesh[sel2other] << endl;
//(*testout) << " and surface element " << sel1other << " to " << mesh[sel1other] << ", " << sel2other << " to " << mesh[sel2other] << endl;
for(int l=0; l<3; l++)
{
surfaceelementsonnode.Add(mesh[sel1other][l],sel1other);
surfaceelementsonnode.Add(mesh[sel2other][l],sel2other);
}
}
for(int i=0; i<hasbothpoints.Size(); i++)
{
mesh[hasbothpoints[i]] = *(*newelts[minpos])[i];
for(int l=0; l<4; l++)
elementsonnode.Add((*(*newelts[minpos])[i])[l],hasbothpoints[i]);
}
for(int i=hasbothpoints.Size(); i<(*newelts[minpos]).Size(); i++)
{
ElementIndex ni = mesh.AddVolumeElement(*(*newelts[minpos])[i]);
for(int l=0; l<4; l++)
elementsonnode.Add((*(*newelts[minpos])[i])[l],ni);
}
if(hasbothpointsother.Size() > 0)
{
for(int i=0; i<hasbothpointsother.Size(); i++)
{
mesh[hasbothpointsother[i]] = *(*neweltsother[minposother])[i];
for(int l=0; l<4; l++)
elementsonnode.Add((*(*neweltsother[minposother])[i])[l],hasbothpointsother[i]);
}
for(int i=hasbothpointsother.Size(); i<(*neweltsother[minposother]).Size(); i++)
{
ElementIndex ni = mesh.AddVolumeElement(*(*neweltsother[minposother])[i]);
for(int l=0; l<4; l++)
elementsonnode.Add((*(*neweltsother[minposother])[i])[l],ni);
}
}
}
for(int i=0; i<newelts.Size(); i++)
{
for(int jj=0; jj<newelts[i]->Size(); jj++)
delete (*newelts[i])[jj];
delete newelts[i];
}
for(int i=0; i<neweltsother.Size(); i++)
{
for(int jj=0; jj<neweltsother[i]->Size(); jj++)
delete (*neweltsother[i])[jj];
delete neweltsother[i];
}
}
}
PrintMessage (5, cnt, " swaps performed");
for(int i=0; i<locidmaps.Size(); i++)
delete locidmaps[i];
mesh.Compress ();
multithread.task = savetask;
}
/*
2 -> 3 conversion
*/
double MeshOptimize3d :: SwapImprove2 ( ElementIndex eli1, int face,
Table<ElementIndex, PointIndex> & elementsonnode,
DynamicTable<SurfaceElementIndex, PointIndex> & belementsonnode, bool check_only )
{
PointIndex pi1, pi2, pi3, pi4, pi5;
Element el21(TET), el22(TET), el31(TET), el32(TET), el33(TET);
int j = face;
double bad1, bad2;
double d_badness = 0.0;
Element & elem = mesh[eli1];
if (elem.IsDeleted()) return 0.0;
int mattyp = elem.GetIndex();
switch (j)
{
case 0:
pi1 = elem.PNum(1); pi2 = elem.PNum(2);
pi3 = elem.PNum(3); pi4 = elem.PNum(4);
break;
case 1:
pi1 = elem.PNum(1); pi2 = elem.PNum(4);
pi3 = elem.PNum(2); pi4 = elem.PNum(3);
break;
case 2:
pi1 = elem.PNum(1); pi2 = elem.PNum(3);
pi3 = elem.PNum(4); pi4 = elem.PNum(2);
break;
case 3:
pi1 = elem.PNum(2); pi2 = elem.PNum(4);
pi3 = elem.PNum(3); pi4 = elem.PNum(1);
break;
}
bool bface = 0;
for (int k = 0; k < belementsonnode[pi1].Size(); k++)
{
const Element2d & bel =
mesh[belementsonnode[pi1][k]];
bool bface1 = 1;
for (int l = 0; l < 3; l++)
if (bel[l] != pi1 && bel[l] != pi2 && bel[l] != pi3)
{
bface1 = 0;
break;
}
if (bface1)
{
bface = 1;
break;
}
}
if (bface) return 0.0;
FlatArray<ElementIndex> row = elementsonnode[pi1];
for(auto ei : row)
if (mesh[ei].IsDeleted()) return 0.0;
for(auto ei : elementsonnode[pi2])
if (mesh[ei].IsDeleted()) return 0.0;
for(auto ei : elementsonnode[pi3])
if (mesh[ei].IsDeleted()) return 0.0;
for(auto ei : elementsonnode[pi4])
if (mesh[ei].IsDeleted()) return 0.0;
for (int k = 0; k < row.Size(); k++)
{
ElementIndex eli2 = row[k];
if ( eli1 != eli2 )
{
Element & elem2 = mesh[eli2];
if (elem2.GetType() != TET)
continue;
ArrayMem<ElementIndex, 2> elis = {eli1, eli2};
if(!NeedsOptimization(elis))
continue;
int comnodes=0;
for (int l = 1; l <= 4; l++)
if (elem2.PNum(l) == pi1 || elem2.PNum(l) == pi2 ||
elem2.PNum(l) == pi3)
{
comnodes++;
}
else
{
pi5 = elem2.PNum(l);
}
if (comnodes == 3)
{
bad1 = elem.GetBadness() + elem2.GetBadness();
if (!mesh.LegalTet(elem) ||
!mesh.LegalTet(elem2))
bad1 += GetLegalPenalty();
if(mesh.BoundaryEdge (pi4, pi5))
bad1 += GetLegalPenalty();
el31.PNum(1) = pi1;
el31.PNum(2) = pi2;
el31.PNum(3) = pi5;
el31.PNum(4) = pi4;
el31.SetIndex (mattyp);
el32.PNum(1) = pi2;
el32.PNum(2) = pi3;
el32.PNum(3) = pi5;
el32.PNum(4) = pi4;
el32.SetIndex (mattyp);
el33.PNum(1) = pi3;
el33.PNum(2) = pi1;
el33.PNum(3) = pi5;
el33.PNum(4) = pi4;
el33.SetIndex (mattyp);
bad2 = CalcBad (mesh.Points(), el31, 0) +
CalcBad (mesh.Points(), el32, 0) +
CalcBad (mesh.Points(), el33, 0);
el31.Touch();
el32.Touch();
el33.Touch();
if (!mesh.LegalTet(el31) ||
!mesh.LegalTet(el32) ||
!mesh.LegalTet(el33))
bad2 += GetLegalPenalty();
d_badness = bad2 - bad1;
if ( ((bad2 < 1e6) || (bad2 < 10 * bad1)) &&
mesh.BoundaryEdge (pi4, pi5))
d_badness = -1e4;
if(check_only)
return d_badness;
if (d_badness<0.0)
{
el31.Touch();
el32.Touch();
el33.Touch();
mesh[eli1].Delete();
mesh[eli2].Delete();
mesh.AddVolumeElement (el31);
mesh.AddVolumeElement (el32);
mesh.AddVolumeElement (el33);
}
return d_badness;
}
}
}
return d_badness;
}
/*
2 -> 3 conversion
*/
void MeshOptimize3d :: SwapImprove2 ()
{
static Timer t("MeshOptimize3d::SwapImprove2"); RegionTimer reg(t);
if (goal == OPT_CONFORM) return;
mesh.BuildBoundaryEdges(false);
int cnt = 0;
// double bad1, bad2;
int np = mesh.GetNP();
int ne = mesh.GetNE();
int nse = mesh.GetNSE();
// contains at least all elements at node
DynamicTable<SurfaceElementIndex, PointIndex> belementsonnode(np);
PrintMessage (3, "SwapImprove2 ");
(*testout) << "\n" << "Start SwapImprove2" << "\n";
if(testout->good())
{
double bad1 = mesh.CalcTotalBad (mp);
(*testout) << "Total badness = " << bad1 << endl;
}
// find elements on node
auto elementsonnode = mesh.CreatePoint2ElementTable(nullopt, mp.only3D_domain_nr);
// todo: respect mp.only3D_domain_nr
for (SurfaceElementIndex sei = 0; sei < nse; sei++)
for (int j = 0; j < 3; j++)
belementsonnode.Add (mesh[sei][j], sei);
int num_threads = ngcore::TaskManager::GetNumThreads();
Array<std::tuple<double, ElementIndex, int>> faces_with_improvement;
Array<Array<std::tuple<double, ElementIndex, int>>> faces_with_improvement_threadlocal(num_threads);
UpdateBadness();
ParallelForRange( Range(ne), [&]( auto myrange )
{
int tid = ngcore::TaskManager::GetThreadId();
auto & my_faces_with_improvement = faces_with_improvement_threadlocal[tid];
for (ElementIndex eli1 : myrange)
{
if (multithread.terminate)
break;
if (mesh.ElementType (eli1) == FIXEDELEMENT)
continue;
if (mesh[eli1].GetType() != TET)
continue;
if (goal == OPT_LEGAL && mesh.LegalTet (mesh[eli1]))
continue;
if(mesh.GetDimension()==3 && mp.only3D_domain_nr && mp.only3D_domain_nr != mesh.VolumeElement(eli1).GetIndex())
continue;
for (int j = 0; j < 4; j++)
{
double d_badness = SwapImprove2( eli1, j, elementsonnode, belementsonnode, true);
if(d_badness<0.0)
my_faces_with_improvement.Append( std::make_tuple(d_badness, eli1, j) );
}
}
});
for (auto & a : faces_with_improvement_threadlocal)
faces_with_improvement.Append(a);
QuickSort(faces_with_improvement);
for (auto [dummy, eli,j] : faces_with_improvement)
{
if(mesh[eli].IsDeleted())
continue;
if(SwapImprove2( eli, j, elementsonnode, belementsonnode, false) < 0.0)
cnt++;
}
PrintMessage (5, cnt, " swaps performed");
mesh.Compress();
if(testout->good())
{
double bad1 = mesh.CalcTotalBad (mp);
(*testout) << "Total badness = " << bad1 << endl;
(*testout) << "swapimprove2 done" << "\n";
}
}
double MeshOptimize3d :: SplitImprove2Element (
ElementIndex ei,
const Table<ElementIndex, PointIndex> & elements_of_point,
bool check_only)
{
auto & el = mesh[ei];
if(el.GetType() != TET)
return false;
// Optimize only bad elements
if(el.GetBadness() < 100)
return false;
// search for very flat tets, with two disjoint edges nearly crossing, like a rectangle with diagonals
int minedge = -1;
double mindist = 1e99;
double minlam0=0, minlam1=0;
for (int i : Range(3))
{
auto pi0 = el[tetedges[i][0]];
auto pi1 = el[tetedges[i][1]];
auto pi2 = el[tetedges[5-i][0]];
auto pi3 = el[tetedges[5-i][1]];
double lam0, lam1;
double dist = MinDistLL2(mesh[pi0], mesh[pi1], mesh[pi2], mesh[pi3], lam0, lam1 );
if(dist<mindist)
{
mindist = dist;
minedge = i;
minlam0 = lam0;
minlam1 = lam1;
}
}
if(minedge==-1)
return false;
auto pi0 = el[tetedges[minedge][0]];
auto pi1 = el[tetedges[minedge][1]];
auto pi2 = el[tetedges[5-minedge][0]];
auto pi3 = el[tetedges[5-minedge][1]];
// we cannot split edges on the boundary
if(mesh.BoundaryEdge (pi0,pi1) || mesh.BoundaryEdge(pi2, pi3))
return false;
ArrayMem<ElementIndex, 50> has_both_points0;
ArrayMem<ElementIndex, 50> has_both_points1;
Point3d p[4] = { mesh[el[0]], mesh[el[1]], mesh[el[2]], mesh[el[3]] };
auto center = Center(p[0]+minlam0*(p[1]-p[0]), p[2]+minlam1*(p[3]-p[2]));
MeshPoint pnew;
pnew(0) = center.X();
pnew(1) = center.Y();
pnew(2) = center.Z();
// find all tets with edge (pi0,pi1) or (pi2,pi3)
for (auto ei0 : elements_of_point[pi0] )
{
Element & elem = mesh[ei0];
if (elem.IsDeleted()) return false;
if (ei0 == ei) continue;
if (elem.GetType() != TET) return false;
if (elem[0] == pi1 || elem[1] == pi1 || elem[2] == pi1 || elem[3] == pi1 || (elem.GetNP()==5 && elem[4]==pi1) )
if(!has_both_points0.Contains(ei0))
has_both_points0.Append (ei0);
}
for (auto ei1 : elements_of_point[pi2] )
{
Element & elem = mesh[ei1];
if (elem.IsDeleted()) return false;
if (ei1 == ei) continue;
if (elem.GetType() != TET) return false;
if (elem[0] == pi3 || elem[1] == pi3 || elem[2] == pi3 || elem[3] == pi3 || (elem.GetNP()==5 && elem[4]==pi3))
if(!has_both_points1.Contains(ei1))
has_both_points1.Append (ei1);
}
double badness_before = mesh[ei].GetBadness();
double badness_after = 0.0;
for (auto ei0 : has_both_points0)
{
if(mesh[ei0].GetType()!=TET)
return false;
badness_before += mesh[ei0].GetBadness();
badness_after += SplitElementBadness (mesh.Points(), mp, mesh[ei0], pi0, pi1, pnew);
}
for (auto ei1 : has_both_points1)
{
if(mesh[ei1].GetType()!=TET)
return false;
badness_before += mesh[ei1].GetBadness();
badness_after += SplitElementBadness (mesh.Points(), mp, mesh[ei1], pi2, pi3, pnew);
}
if(check_only)
return badness_after-badness_before;
if(badness_after<badness_before)
{
PointIndex pinew = mesh.AddPoint (center);
el.Touch();
el.Delete();
for (auto ei1 : has_both_points0)
{
auto new_els = SplitElement(mesh[ei1], pi0, pi1, pinew);
for(const auto & el : new_els)
mesh.AddVolumeElement(el);
mesh[ei1].Delete();
}
for (auto ei1 : has_both_points1)
{
auto new_els = SplitElement(mesh[ei1], pi2, pi3, pinew);
for(const auto & el : new_els)
mesh.AddVolumeElement(el);
mesh[ei1].Delete();
}
}
return badness_after-badness_before;
}
// Split two opposite edges of very flat tet and let all 4 new segments have one common vertex
// Imagine a square with 2 diagonals -> new point where diagonals cross, remove the flat tet
void MeshOptimize3d :: SplitImprove2 ()
{
static Timer t("MeshOptimize3d::SplitImprove2"); RegionTimer reg(t);
static Timer tsearch("Search");
static Timer topt("Optimize");
int ne = mesh.GetNE();
auto elements_of_point = mesh.CreatePoint2ElementTable(nullopt, mp.only3D_domain_nr);
int ntasks = 4*ngcore::TaskManager::GetNumThreads();
const char * savetask = multithread.task;
multithread.task = "Optimize Volume: Split Improve 2";
UpdateBadness();
mesh.BuildBoundaryEdges(false);
Array<std::tuple<double, ElementIndex>> split_candidates(ne);
std::atomic<int> improvement_counter(0);
tsearch.Start();
ParallelForRange(Range(ne), [&] (auto myrange)
{
for(ElementIndex ei : myrange)
{
if(mp.only3D_domain_nr && mp.only3D_domain_nr != mesh[ei].GetIndex())
continue;
double d_badness = SplitImprove2Element(ei, elements_of_point, true);
if(d_badness<0.0)
{
int index = improvement_counter++;
split_candidates[index] = make_tuple(d_badness, ei);
}
}
}, ntasks);
tsearch.Stop();
auto elements_with_improvement = split_candidates.Part(0, improvement_counter.load());
QuickSort(elements_with_improvement);
size_t cnt = 0;
topt.Start();
for(auto [d_badness, ei] : elements_with_improvement)
{
if( SplitImprove2Element(ei, elements_of_point, false) < 0.0)
cnt++;
}
topt.Stop();
PrintMessage (5, cnt, " elements split");
(*testout) << "SplitImprove2 done" << "\n";
if(cnt>0)
mesh.Compress();
multithread.task = savetask;
}
/*
void Mesh :: SwapImprove2 (OPTIMIZEGOAL goal)
{
int i, j;
int eli1, eli2;
int mattyp;
Element el31(4), el32(4), el33(4);
double bad1, bad2;
INDEX_3_HASHTABLE<INDEX_2> elsonface (GetNE());
(*mycout) << "SwapImprove2 " << endl;
(*testout) << "\n" << "Start SwapImprove2" << "\n";
// Calculate total badness
if (goal == OPT_QUALITY)
{
double bad1 = CalcTotalBad (points, volelements);
(*testout) << "Total badness = " << bad1 << endl;
}
// find elements on node
Element2d face;
for (i = 1; i <= GetNE(); i++)
if ( (i > eltyps.Size()) || (eltyps.Get(i) != FIXEDELEMENT) )
{
const Element & el = VolumeElement(i);
if (!el.PNum(1)) continue;
for (j = 1; j <= 4; j++)
{
el.GetFace (j, face);
INDEX_3 i3 (face.PNum(1), face.PNum(2), face.PNum(3));
i3.Sort();
int bnr, posnr;
if (!elsonface.PositionCreate (i3, bnr, posnr))
{
INDEX_2 i2;
elsonface.GetData (bnr, posnr, i3, i2);
i2.I2() = i;
elsonface.SetData (bnr, posnr, i3, i2);
}
else
{
INDEX_2 i2 (i, 0);
elsonface.SetData (bnr, posnr, i3, i2);
}
// if (elsonface.Used (i3))
// {
// INDEX_2 i2 = elsonface.Get(i3);
// i2.I2() = i;
// elsonface.Set (i3, i2);
// }
// else
// {
// INDEX_2 i2 (i, 0);
// elsonface.Set (i3, i2);
// }
}
}
NgBitArray original(GetNE());
original.Set();
for (i = 1; i <= GetNSE(); i++)
{
const Element2d & sface = SurfaceElement(i);
INDEX_3 i3 (sface.PNum(1), sface.PNum(2), sface.PNum(3));
i3.Sort();
INDEX_2 i2(0,0);
elsonface.Set (i3, i2);
}
for (i = 1; i <= elsonface.GetNBags(); i++)
for (j = 1; j <= elsonface.GetBagSize(i); j++)
{
INDEX_3 i3;
INDEX_2 i2;
elsonface.GetData (i, j, i3, i2);
int eli1 = i2.I1();
int eli2 = i2.I2();
if (eli1 && eli2 && original.Test(eli1) && original.Test(eli2) )
{
Element & elem = volelements.Elem(eli1);
Element & elem2 = volelements.Elem(eli2);
int pi1 = i3.I1();
int pi2 = i3.I2();
int pi3 = i3.I3();
int pi4 = elem.PNum(1) + elem.PNum(2) + elem.PNum(3) + elem.PNum(4) - pi1 - pi2 - pi3;
int pi5 = elem2.PNum(1) + elem2.PNum(2) + elem2.PNum(3) + elem2.PNum(4) - pi1 - pi2 - pi3;
el31.PNum(1) = pi1;
el31.PNum(2) = pi2;
el31.PNum(3) = pi3;
el31.PNum(4) = pi4;
el31.SetIndex (mattyp);
if (WrongOrientation (points, el31))
swap (pi1, pi2);
bad1 = CalcBad (points, elem, 0) +
CalcBad (points, elem2, 0);
// if (!LegalTet(elem) || !LegalTet(elem2))
// bad1 += 1e4;
el31.PNum(1) = pi1;
el31.PNum(2) = pi2;
el31.PNum(3) = pi5;
el31.PNum(4) = pi4;
el31.SetIndex (mattyp);
el32.PNum(1) = pi2;
el32.PNum(2) = pi3;
el32.PNum(3) = pi5;
el32.PNum(4) = pi4;
el32.SetIndex (mattyp);
el33.PNum(1) = pi3;
el33.PNum(2) = pi1;
el33.PNum(3) = pi5;
el33.PNum(4) = pi4;
el33.SetIndex (mattyp);
bad2 = CalcBad (points, el31, 0) +
CalcBad (points, el32, 0) +
CalcBad (points, el33, 0);
// if (!LegalTet(el31) || !LegalTet(el32) ||
// !LegalTet(el33))
// bad2 += 1e4;
int swap = (bad2 < bad1);
INDEX_2 hi2b(pi4, pi5);
hi2b.Sort();
if ( ((bad2 < 1e6) || (bad2 < 10 * bad1)) &&
boundaryedges->Used (hi2b) )
swap = 1;
if (swap)
{
(*mycout) << "2->3 " << flush;
volelements.Elem(eli1) = el31;
volelements.Elem(eli2) = el32;
volelements.Append (el33);
original.Clear (eli1);
original.Clear (eli2);
}
}
}
(*mycout) << endl;
if (goal == OPT_QUALITY)
{
bad1 = CalcTotalBad (points, volelements);
(*testout) << "Total badness = " << bad1 << endl;
}
// FindOpenElements ();
(*testout) << "swapimprove2 done" << "\n";
}
*/
}