netgen/libsrc/geom2d/csg2d.cpp
Matthias Hochsteger 12b2e073ac CSG for 2D
2020-08-19 16:46:32 +02:00

1550 lines
39 KiB
C++

#include <iostream>
#include <cstdlib>
#include <cmath>
#include <string>
#include <set>
#include "csg2d.hpp"
// Polygon clipping algorithm based on:
// Foster, Erich & Hormann, Kai & Popa, Romeo. (2019). Clipping Simple Polygons with Degenerate Intersections. Computers & Graphics: X. 2. 100007. 10.1016/j.cagx.2019.100007.
// extended to handle quadratic spline segments
namespace netgen
{
constexpr static double EPSILON=0.000000001;
void ToggleLabel(EntryExitLabel& status)
{
if (status == ENTRY)
{
status = EXIT;
return;
}
if (status == EXIT)
{
status = ENTRY;
return;
}
}
Spline Split( const Spline & s, double t0, double t1 )
{
if(t0==0.0 && t1==1.0) return s;
Point<2> a = s.StartPI();
if(t0!=0.0)
a = s.GetPoint(t0);
Point<2> c = s.EndPI();
if(t1!=1.0)
c = s.GetPoint(t1);
// Find new midpoints by cutting the tangents at the new end points
auto tang0 = s.GetTangent(t0);
auto tang1 = s.GetTangent(t1);
netgen::Mat<2,2> m, minv;
m(0,0) = tang0[0];
m(1,0) = tang0[1];
m(0,1) = -tang1[0];
m(1,1) = -tang1[1];
CalcInverse(m, minv);
Vec<2> lam = minv*(c-a);
Point<2> b = a+lam[0]*tang0;
auto res = Spline{a, b, c};
// compute weight of new spline such that p lies on it
Point<2> p = s.GetPoint(0.5*(t0+t1));
double A = (p[1]-a[1])*(b[0]-p[0]) - (p[0]-a[0])*(b[1]-p[1]);
double B = (p[1]-c[1])*(b[0]-p[0]) - (p[0]-c[0])*(b[1]-p[1]);
double det = sqrt(-A*B);
double tt = (B-det)/(A+det);
auto v = b-p;
int dim = fabs(v[0]) > fabs(v[1]) ? 0 : 1;
double weight = fabs(tt*(p[dim]-a[dim])/v[dim] + 1.0/tt*(p[dim]-c[dim])/v[dim]);
res.SetWeight(weight);
return res;
}
Vertex * Vertex :: Insert(Point<2> p, double lam)
{
auto vnew = make_unique<Vertex>(p);
vnew->lam = lam;
Vertex * current = this;
if(lam > -1.0)
{
do {
current = current->next;
} while (!current->is_source && current->lam < lam);
}
else
current = current->next;
auto pre = current->prev;
vnew->bc = pre->bc;
pre->next = vnew.get();
vnew->prev = pre;
vnew->next = current;
vnew->pnext = std::move(current->prev->pnext);
current->prev = vnew.get();
pre->pnext = std::move(vnew);
return pre->next;
}
IntersectionType ClassifyNonOverlappingIntersection( double alpha, double beta )
{
// classify alpha
bool alpha_is_0 = false;
bool alpha_in_0_1 = false;
if ( (alpha > EPSILON) && (alpha < 1.0-EPSILON) )
alpha_in_0_1 = true;
else
if (fabs(alpha) <= EPSILON)
alpha_is_0 = true;
// classify beta
bool beta_is_0 = false;
bool beta_in_0_1 = false;
if ( (beta > EPSILON) && (beta < 1.0-EPSILON) )
beta_in_0_1 = true;
else
if (fabs(beta) <= EPSILON)
beta_is_0 = true;
// distinguish intersection types
if (alpha_in_0_1 && beta_in_0_1)
return (X_INTERSECTION);
if (alpha_is_0 && beta_in_0_1)
return (T_INTERSECTION_Q);
if (beta_is_0 && alpha_in_0_1)
return (T_INTERSECTION_P);
if (alpha_is_0 && beta_is_0)
return (V_INTERSECTION);
return NO_INTERSECTION;
}
IntersectionType ClassifyOverlappingIntersection( double alpha, double beta )
{
// classify alpha
bool alpha_is_0 = false;
bool alpha_in_0_1 = false;
bool alpha_not_in_0_1 = false;
if ( (alpha > EPSILON) && (alpha < 1.0-EPSILON) )
alpha_in_0_1 = true;
else
if (fabs(alpha) <= EPSILON)
alpha_is_0 = true;
else
alpha_not_in_0_1 = true;
// classify beta
bool beta_is_0 = false;
bool beta_in_0_1 = false;
bool beta_not_in_0_1 = false;
if ( (beta > EPSILON) && (beta < 1.0-EPSILON) )
beta_in_0_1 = true;
else
if (fabs(alpha) <= EPSILON)
beta_is_0 = true;
else
beta_not_in_0_1 = true;
// distinguish intersection types
if (alpha_in_0_1 && beta_in_0_1)
return (X_OVERLAP);
if (alpha_not_in_0_1 && beta_in_0_1)
return (T_OVERLAP_Q);
if (beta_not_in_0_1 && alpha_in_0_1)
return (T_OVERLAP_P);
if (alpha_is_0 && beta_is_0)
return (V_OVERLAP);
return NO_INTERSECTION;
}
IntersectionType intersect(const Point<2> P1, const Point<2> P2, const Point<2> Q1, const Point<2> Q2, double& alpha, double& beta)
{
double AP1 = Area(P1,Q1,Q2);
double AP2 = Area(P2,Q1,Q2);
if (fabs(AP1-AP2) > EPSILON)
{
// (P1,P2) and (Q1,Q2) are not parallel
double AQ1 = Area(Q1,P1,P2);
double AQ2 = Area(Q2,P1,P2);
alpha = AP1 / (AP1-AP2);
beta = AQ1 / (AQ1-AQ2);
return ClassifyNonOverlappingIntersection(alpha, beta);
}
else
if (fabs(AP1) < EPSILON)
{
// (P1,P2) and (Q1,Q2) are collinear
auto dP = P2-P1;
auto dQ = Q2-Q1;
auto PQ = Q1-P1;
alpha = (PQ*dP) / (dP*dP);
beta = -(PQ*dQ) / (dQ*dQ);
return ClassifyOverlappingIntersection(alpha, beta);
}
return NO_INTERSECTION;
}
IntersectionType IntersectSplineSegment( const Spline & s, const Point<2> & r0, const Point<2> & r1, double& alpha, double& beta )
{
Point<2> p0 = s.StartPI();
Point<2> p1 = s.TangentPoint();
Point<2> p2 = s.EndPI();
auto vr = r1-r0;
double a0 = vr[1]*(p0[0] - r0[0]) - vr[0]*(p0[1] - r0[1]);
double a1 = vr[1]*(p1[0] - r0[0]) - vr[0]*(p1[1] - r0[1]);
double a2 = vr[1]*(p2[0] - r0[0]) - vr[0]*(p2[1] - r0[1]);
a1 *= s.GetWeight();
double a_ = a0-a1+a2;
double b_ = a1-2*a0;
double c_ = a0;
double det = b_*b_ - 4*a_*c_;
if(det<0.0)
return NO_INTERSECTION;
double sqrt_det = sqrt(det);
double t1 = 1.0/(2*a_) * (-b_ + sqrt_det);
double t2 = 1.0/(2*a_) * (-b_ - sqrt_det);
double t = min(t1,t2);
if(t<alpha)
t = max(t1,t2);
if(t+EPSILON<alpha)
return NO_INTERSECTION;
alpha = t;
int dim = fabs(vr[0]) > fabs(vr[1]) ? 0 : 1;
beta = 1.0/vr[dim] * (s.GetPoint(t)[dim] - r0[dim]);
return ClassifyNonOverlappingIntersection(alpha, beta);
}
IntersectionType IntersectSplineSegment1( const Spline & s, const Point<2> & r0, const Point<2> & r1, double& alpha, double& beta )
{
Point<2> p0 = s.StartPI();
Point<2> p1 = s.TangentPoint();
Point<2> p2 = s.EndPI();
auto vr = r1-r0;
double a0 = vr[1]*(p0[0] - r0[0]) - vr[0]*(p0[1] - r0[1]);
double a1 = vr[1]*(p1[0] - r0[0]) - vr[0]*(p1[1] - r0[1]);
double a2 = vr[1]*(p2[0] - r0[0]) - vr[0]*(p2[1] - r0[1]);
a1 *= s.GetWeight();
double a_ = a0-a1+a2;
double b_ = a1-2*a0;
double c_ = a0;
double det = b_*b_ - 4*a_*c_;
if(det<0.0)
return NO_INTERSECTION;
double sqrt_det = sqrt(det);
double vbeta[2];
vbeta[0] = 1.0/(2*a_) * (-b_ + sqrt_det);
vbeta[1] = 1.0/(2*a_) * (-b_ - sqrt_det);
int dim = fabs(vr[0]) > fabs(vr[1]) ? 0 : 1;
double valpha[2];
valpha[0] = 1.0/vr[dim] * (s.GetPoint(vbeta[0])[dim] - r0[dim]);
valpha[1] = 1.0/vr[dim] * (s.GetPoint(vbeta[1])[dim] - r0[dim]);
IntersectionType vtype[2];
vtype[0] = ClassifyNonOverlappingIntersection(valpha[0], vbeta[0]);
vtype[1] = ClassifyNonOverlappingIntersection(valpha[1], vbeta[1]);
if(valpha[0]>valpha[1])
{
swap(valpha[0], valpha[1]);
swap(vbeta[0], vbeta[1]);
swap(vtype[0], vtype[1]);
}
int choice = 0;
if(vtype[0]==NO_INTERSECTION && vtype[1]!=NO_INTERSECTION)
choice = 1;
if(valpha[0] < alpha+EPSILON)
choice = 1;
if(valpha[choice] < alpha+EPSILON)
return NO_INTERSECTION;
alpha = valpha[choice];
beta = vbeta[choice];
return vtype[choice];
}
bool IsOverlapping( Spline p, Spline s, double & alpha, double & beta, IntersectionType & type )
{
auto p_mid = Center(p.StartPI(), p.EndPI());
auto s_mid = Center(s.StartPI(), s.EndPI());
double lam0 = -1e3*EPSILON;
double lam1 = -1e3*EPSILON;
alpha=-1e8;
beta=-1e8;
// Check if s.p0 lies on p and vice versa, also check if tangents are in same direction (TODO: TEST)
// If so, assume overlapping splines
// TODO: Better checks! False positives could happen here!
IntersectSplineSegment1( p, s.StartPI(), p_mid, lam0, alpha );
IntersectSplineSegment1( s, p.StartPI(), s_mid, lam1, beta );
auto tang0 = s.GetTangent(0.);
auto tang1 = p.GetTangent(alpha);
double err = tang0*tang1;
err*=err;
err *= 1.0/(tang0.Length2()*tang1.Length2());
if(fabs(lam0) < 1e3*EPSILON && fabs(lam1) < 1e3*EPSILON /*&& err < EPSILON*/)
{
type = ClassifyOverlappingIntersection( alpha, beta );
return true;
}
return false;
}
bool IsInsideTrig( const array<Point<2>,3> & t, Point<2> r )
{
int w = 0;
Point<2> trig[4] = {t[0],t[1],t[2],t[0]};
for(auto i : Range(3))
w += CalcSide(trig[i], trig[i+1], r);
return ( (w % 2) != 0 );
}
IntersectionType IntersectTrig( Point<2> p0, Point<2> p1, const array<Point<2>,3> & trig)
{
Point<2> lt[4] = { trig[0], trig[1], trig[2], trig[0] };
double alpha, beta;
for(auto i : IntRange(3))
{
auto type = intersect(p0, p1, lt[i], lt[i+1], alpha, beta);
if(type != NO_INTERSECTION)
return type;
}
return NO_INTERSECTION;
}
bool IntersectTrigs( const array<Point<2>,3> & trig0, const array<Point<2>,3> & trig1)
{
Point<2> lt0[4] = { trig0[0], trig0[1], trig0[2], trig0[0] };
for(auto i : IntRange(3))
{
if(IntersectTrig(lt0[i], lt0[i+1], trig1))
return true;
if(IsInsideTrig(trig0, trig1[i]))
return true;
if(IsInsideTrig(trig1, trig0[i]))
return true;
}
return false;
}
bool BisectIntersect( Spline p, Spline s, double &t0, double &t1, double &s0, double &s1, int depth=-50)
{
if(depth==0)
{
s0 = s1;
t0 = t1;
return true;
}
bool side = depth%2==0;
double & lam0 = side ? t0 : s0;
double & lam1 = side ? t1 : s1;
Spline & spline = side ? p : s;
Spline & spline_other = side ? s : p;
double lam_mid = 0.5*(lam0+lam1);
auto left = Split(spline, lam0, lam_mid);
auto right = Split(spline, lam_mid, lam1);
double & lam0_other = side ? s0 : t0;
double & lam1_other = side ? s1 : t1;
auto curr = Split(spline_other, lam0_other, lam1_other);
bool left_hull_intersecting = IntersectTrigs( {left.StartPI(), left.TangentPoint(), left.EndPI()}, {curr.StartPI(), curr.TangentPoint(), curr.EndPI()});
bool right_hull_intersecting = IntersectTrigs( {right.StartPI(), right.TangentPoint(), right.EndPI()}, {curr.StartPI(), curr.TangentPoint(), curr.EndPI()});
// TODO: Additionaly check if one spline intersects with convex hull of other?
// // Check if one spline intersects with convex hull of spline
// if(left_hull_intersecting)
// {
// double a,b;
// left_hull_intersecting = left.Intersect( curr.p0, curr.p1, a, b );
// left_hull_intersecting |= left.Intersect( curr.p1, curr.p2, a, b );
// left_hull_intersecting |= left.Intersect( curr.p2, curr.p0, a, b );
// }
//
// if(right_hull_intersecting)
// {
// double a,b;
// right_hull_intersecting = right.Intersect( curr.p0, curr.p1, a, b );
// right_hull_intersecting |= right.Intersect( curr.p1, curr.p2, a, b );
// right_hull_intersecting |= right.Intersect( curr.p2, curr.p0, a, b );
// }
if(!left_hull_intersecting && !right_hull_intersecting)
return false;
if(left_hull_intersecting && right_hull_intersecting)
{
// cout << "intersect both sides " << endl;
double temp_lam;
temp_lam = lam1;
lam1 = lam_mid;
double t0_ = t0;
double t1_ = t1;
double s0_ = s0;
double s1_ = s1;
// cout << "recursive bisect " << t0 << ',' << t1 << ',' << s0 << ',' << s1 << endl;
bool first_intersecting = BisectIntersect(p, s, t0_, t1_, s0_, s1_, depth+1);
if(first_intersecting)
{
t0 = t0_;
t1 = t1_;
s0 = s0_;
s1 = s1_;
return true;
}
else
{
// cout << "search other side " << endl;
// no first intersection -> search other side
lam1 = temp_lam;
left_hull_intersecting = false;
}
}
if(left_hull_intersecting)
lam1 = lam_mid;
else
lam0 = lam_mid;
return BisectIntersect(p, s, t0, t1, s0, s1, depth+1);
}
bool NewtonIntersect( Spline p, Spline s, double & alpha, double & beta )
{
Point<2> p0, s0;
Vec<2> dp, ds, ddp, dds;
p.GetDerivatives(alpha, p0, dp, ddp);
s.GetDerivatives(beta, s0, ds, dds);
netgen::Mat<2,2> m, minv;
m(0,0) = dp[0];
m(1,0) = dp[1];
m(0,1) = -ds[0];
m(1,1) = -ds[1];
CalcInverse(m, minv);
Vec<2> res = s0-p0;
Vec<2> h = minv*res;
alpha +=h[0];
beta +=h[1];
return true;
}
IntersectionType Intersect( Spline p, Spline s, double &alpha, double &beta)
{
bool is_convex_hull_intersecting = IntersectTrigs( {p.StartPI(), p.TangentPoint(), p.EndPI()}, {s.StartPI(), s.TangentPoint(), s.EndPI()});
if(!is_convex_hull_intersecting)
return NO_INTERSECTION;
{
// Check if splines overlap
double alpha_ = alpha;
double beta_ = beta;
IntersectionType overlap_type;
bool have_overlap = IsOverlapping( p, s, alpha_, beta_, overlap_type );
if(have_overlap)
{
alpha = alpha_;
beta = beta_;
return overlap_type;
}
}
// Bisection
double t1 = 1.0;
double s1 = 1.0;
bool have_intersection = false;
if(alpha>0.0) // alpha > 0 means, we have found one intersection already
{
// reverse parametrization of first spline to make sure, we find the second intersection first
auto p_ = Spline{p.EndPI(), p.TangentPoint(), p.StartPI(), p.GetWeight()};
t1 = 1.0-alpha;
alpha = 0.0;
beta = 0.0;
have_intersection = BisectIntersect(p_,s,alpha,t1,beta,s1);
alpha = 1.0-alpha;
}
else
have_intersection = BisectIntersect(p,s,alpha,t1,beta,s1);
if(have_intersection)
{
for(auto i : IntRange(10))
NewtonIntersect(p, s, alpha, beta);
return ClassifyNonOverlappingIntersection( alpha, beta );
}
return NO_INTERSECTION;
}
IntersectionType intersect(const Edge& edgeP, const Edge& edgeQ, double& alpha, double& beta)
{
const Point<2>& P1 = *edgeP.v0;
const Point<2>& P2 = *edgeP.v1;
const Point<2>& Q1 = *edgeQ.v0;
const Point<2>& Q2 = *edgeQ.v1;
if(edgeP.v0->spline)
{
if(edgeQ.v0->spline)
return Intersect(*edgeP.v0->spline, *edgeQ.v0->spline, alpha, beta);
else
return IntersectSplineSegment(*edgeP.v0->spline, Q1, Q2, alpha, beta);
}
else
{
if(edgeQ.v0->spline)
return IntersectSplineSegment1(*edgeQ.v0->spline, P1, P2, alpha, beta);
else
return intersect(P1, P2, Q1, Q2, alpha, beta);
}
}
void AddIntersectionPoint(Edge edgeP, Edge edgeQ, IntersectionType i, double alpha, double beta)
{
Point<2> I;
Vertex* I_P;
Vertex* I_Q;
Vertex* P1 = edgeP.v0;
Vertex* Q1 = edgeQ.v0;
switch(i)
{
case X_INTERSECTION:
if(edgeP.v0->spline)
I = edgeP.v0->spline->GetPoint(alpha);
else
I = *edgeP.v0 + alpha*(*edgeP.v1 - *edgeP.v0);
I_P = edgeP.v0->Insert(I, alpha);
I_Q = edgeQ.v0->Insert(I, beta);
I_P->Link(I_Q);
break;
case X_OVERLAP:
I_Q = edgeQ.v0->Insert(*P1, beta);
P1->Link( I_Q);
I_P = edgeP.v0->Insert(*Q1, alpha);
I_P->Link( Q1);
break;
case T_INTERSECTION_Q:
case T_OVERLAP_Q:
I_Q = edgeQ.v0->Insert(*P1, beta);
P1->Link( I_Q);
break;
case T_INTERSECTION_P:
case T_OVERLAP_P:
I_P = edgeP.v0->Insert(*Q1, alpha);
I_P->Link( Q1);
break;
case V_INTERSECTION:
case V_OVERLAP:
P1->Link(Q1);
break;
default:
break;
}
}
void ComputeIntersections(Solid2d & sp, Solid2d & sq)
{
auto & PP = sp.polys;
auto & QQ = sq.polys;
for (Polygon2d& P : PP)
for (Edge edgeP : P.Edges(SOURCE))
for (Polygon2d& Q : QQ)
for (Edge edgeQ : Q.Edges(SOURCE))
{
double alpha = 0.0;
double beta = 0.0;
IntersectionType i = intersect(edgeP, edgeQ, alpha, beta);
AddIntersectionPoint(edgeP, edgeQ, i, alpha, beta);
if(i==X_INTERSECTION && (edgeP.v0->spline || edgeQ.v0->spline))
{
double alpha1 = alpha+1e2*EPSILON;
double beta1 = 0.0; //beta+1e2*EPSILON;
// search for possible second intersection
i = intersect(edgeP, edgeQ, alpha1, beta1);
// cout << "second intersection " << i << ',' << alpha1 << ',' << beta1 << ',' << alpha1-alpha << ',' << beta1-beta << endl;
if(i!=NO_INTERSECTION && alpha+EPSILON<alpha1)
{
// Add midpoint of two intersection points to avoid false overlap detection of splines
// TODO: Check if this is really necessary
auto alpha_mid = 0.5*(alpha+alpha1);
auto beta_mid = 0.5*(beta+beta1);
Point<2> MP;
if(edgeP.v0->spline)
{
MP = edgeP.v0->spline->GetPoint(alpha_mid);
edgeP.v0->Insert(MP, alpha_mid);
}
else
MP = edgeQ.v0->spline->GetPoint(beta_mid);
if(edgeQ.v0->spline)
edgeQ.v0->Insert(MP, beta_mid);
AddIntersectionPoint(edgeP, edgeQ, i, alpha1, beta1);
}
}
}
// Split splines at new vertices
auto split_spline_at_vertex = [](Vertex *v)
{
if(!v->spline)
return;
Spline ori{*v->spline};
Vertex * curr = v;
do
{
auto next = curr->next;
if(!curr->is_source || !next->is_source)
{
double t0 = curr->is_source ? 0.0 : curr->lam;
double t1 = next->is_source ? 1.0 : next->lam;
curr->spline = Split(ori, t0, t1);
}
curr = next;
} while(!curr->is_source);
};
for (Polygon2d& P : PP)
for (Vertex* v : P.Vertices(SOURCE))
split_spline_at_vertex(v);
for (Polygon2d& Q : QQ)
for (Vertex* v : Q.Vertices(SOURCE))
split_spline_at_vertex(v);
}
enum RelativePositionType
{
LEFT,
RIGHT,
IS_P_m,
IS_P_p
};
RelativePositionType oracle(bool prev, Vertex* P1, Vertex* P2, Vertex* P3)
{
Vertex* Q;
Point<2> q;
if(prev)
{
Q = P2->neighbour->prev;
q = *Q;
if(Q->spline)
q = Q->spline->TangentPoint();
}
else
{
Q = P2->neighbour->next;
q = *Q;
if(P2->spline)
q = P2->neighbour->spline->TangentPoint();
}
// is Q linked to P1 ?
if ( P1->is_intersection && (P1->neighbour == Q) )
return(IS_P_m);
// is Q linked to P2 ?
if ( P3->is_intersection && (P3->neighbour == Q) )
return(IS_P_p);
Point<2> p1 = *P1;
Point<2> p2 = *P2;
Point<2> p3 = *P3;
if(P1->spline)
p1 = P1->spline->TangentPoint();
if(P2->spline)
p3 = P2->spline->TangentPoint();
// check relative position of Q with respect to chain (P1,P2,P3)
double s1 = Area( q, p1, p2);
double s2 = Area( q, p2, p3);
double s3 = Area( p1, p2, p3);
if (s3 > 0)
{
// chain makes a left turn
if (s1 > 0 && s2 > 0)
return(LEFT);
else
return(RIGHT);
}
else
{
// chain makes a right turn (or is straight)
if (s1 < 0 && s2 < 0)
return(RIGHT);
else
return(LEFT);
}
}
void LabelIntersections(Solid2d & sp, Solid2d & sq, Solid2d & sr, bool UNION)
{
auto & PP = sp.polys;
auto & QQ = sq.polys;
auto & RR = sr.polys;
// 1) initial classification
for (Polygon2d& P : PP)
for (Vertex* I : P.Vertices(INTERSECTION))
{
// determine local configuration at this intersection vertex
Vertex* P_m = I->prev;
Vertex* P_p = I->next;
// check positions of Q- and Q+ relative to (P-, I, P+)
RelativePositionType Q_m_type = oracle(true, P_m, I, P_p);
RelativePositionType Q_p_type = oracle(false, P_m, I, P_p);
// check non-overlapping cases
if ((Q_m_type == LEFT && Q_p_type == RIGHT) ||
(Q_m_type == RIGHT && Q_p_type == LEFT ))
{
I->label = CROSSING;
}
if ((Q_m_type == LEFT && Q_p_type == LEFT ) ||
(Q_m_type == RIGHT && Q_p_type == RIGHT))
{
I->label = BOUNCING;
}
// check overlapping cases
if ( ( (Q_p_type == IS_P_p) && (Q_m_type == RIGHT) ) ||
( (Q_m_type == IS_P_p) && (Q_p_type == RIGHT) ) )
I->label = LEFT_ON;
if ( ( (Q_p_type == IS_P_p) && (Q_m_type == LEFT) ) ||
( (Q_m_type == IS_P_p) && (Q_p_type == LEFT) ) )
I->label = RIGHT_ON;
if ( ( (Q_p_type == IS_P_p) && (Q_m_type == IS_P_m) ) ||
( (Q_m_type == IS_P_p) && (Q_p_type == IS_P_m) ) )
I->label = ON_ON;
if ( ( (Q_m_type == IS_P_m) && (Q_p_type == RIGHT) ) ||
( (Q_p_type == IS_P_m) && (Q_m_type == RIGHT) ) )
I->label = ON_LEFT;
if ( ( (Q_m_type == IS_P_m) && (Q_p_type == LEFT) ) ||
( (Q_p_type == IS_P_m) && (Q_m_type == LEFT) ) )
I->label = ON_RIGHT;
}
// 2) classify intersection chains
for (Polygon2d& P : PP)
for (Vertex* I : P.Vertices(INTERSECTION))
{
// start of an intersection chain ?
if (I->label == LEFT_ON ||
I->label == RIGHT_ON)
{
// remember status of the first chain vertex and vertex itself
RelativePositionType x;
if (I->label == LEFT_ON)
x = LEFT;
else
x = RIGHT;
Vertex* X = I;
// proceed to end of intersection chain and mark all visited vertices as NONE
do {
I->label = NONE;
I = I->next;
} while (I->label == ON_ON);
RelativePositionType y;
if (I->label == ON_LEFT)
y = LEFT;
else
y = RIGHT;
// determine type of intersection chain
IntersectionLabel chainType;
if (x != y)
chainType = DELAYED_CROSSING;
else
chainType = DELAYED_BOUNCING;
// mark both ends of an intersection chain with chainType (i.e., as DELAYED_*)
X->label = chainType;
I->label = chainType;
}
}
// 3) copy labels from P to Q
// loop over intersection vertices of P
for (Polygon2d& P : PP)
for (Vertex* I : P.Vertices(INTERSECTION))
I->neighbour->label = I->label;
// 3.5) check for special cases
set<Polygon2d*> noIntersection[2];
set<Polygon2d*> identical[2];
for (int i=0; i<2; ++i)
{
Array<Polygon2d>* P_or_Q = &PP; // if i=0, then do it for P w.r.t. Q
Array<Polygon2d>* Q_or_P = &QQ;
if (i==1) { // if i=1, then do it for Q w.r.t. P
P_or_Q = &QQ;
Q_or_P = &PP;
}
// loop over all components of P (or Q)
for (Polygon2d& P : *P_or_Q)
if (P.noCrossingVertex(UNION))
{
// P_ has no crossing vertex (but may have bounces or delayed bounces, except for UNION),
// hence it does not intersect with Q_or_P
noIntersection[i].insert(&P); // remember component, and ignore it later in step 4
// is P identical to some component of and Q_or_P?
if (P.allOnOn())
{
identical[i].insert(&P); // -> remember for further processing below
}
else
{
// is P inside Q_or_P?
bool isInside = false;
auto p = P.getNonIntersectionPoint();
for (Polygon2d& Q : *Q_or_P)
if ( Q.IsInside(p) )
isInside = !isInside;
if (isInside ^ UNION)
RR.Append(P); // -> add P to the result
}
}
}
// handle components of P that are identical to some component of Q
for (Polygon2d* P : identical[0])
{
// is P a hole?
bool P_isHole = false;
for (Polygon2d& P_ : PP)
if ( ( P_.first.get() != P->first.get() ) && (P_.IsInside(*P->first)) )
P_isHole = !P_isHole;
for (Polygon2d* Q : identical[1])
for (Vertex* V : Q->Vertices(ALL))
if (V == P->first->neighbour) { // found Q that matches P
// is Q a hole?
bool Q_isHole = false;
for (Polygon2d& Q_ : QQ)
if ( ( Q_.first.get() != Q->first.get() ) && (Q_.IsInside(*Q->first)) )
Q_isHole = !Q_isHole;
// if P and Q are both holes or both are not holes
if (P_isHole == Q_isHole)
RR.Append(*P); // -> add P to the result
goto next_P;
}
next_P: ;
}
// 4) set entry/exit flags
set<Vertex*> split[2]; // split vertex candidates for P and Q
set<Vertex*> crossing[2]; // CROSSING vertex candidates for P and Q
for (int i=0; i<2; ++i)
{
Array<Polygon2d>* P_or_Q = &PP; // if i=0, then do it for P w.r.t. Q
Array<Polygon2d>* Q_or_P = &QQ;
if (i==1) { // if i=1, then do it for Q w.r.t. P
P_or_Q = &QQ;
Q_or_P = &PP;
}
// loop over all components of P (or Q)
for (Polygon2d& P : *P_or_Q)
{
// ignore P if it does not intersect with Q_or_P (detected in step 3.5 above)
if(noIntersection[i].find(&P) != noIntersection[i].end())
continue;
// start at a non-intersection vertex of P
Vertex* V = P.getNonIntersectionVertex();
// check if it is inside or outside Q (or P)
// and set ENTRY/EXIT status accordingly
EntryExitLabel status = ENTRY;
for (Polygon2d& Q : *Q_or_P)
if (Q.IsInside(*V))
ToggleLabel(status);
// starting at V, loop over those vertices of P, that are either
// a crossing intersection or marked as ends of an intersection chain
bool first_chain_vertex = true; // needed for dealing with crossing chains
for (Vertex* I : P.Vertices(INTERSECTION, V))
{
// in the case of normal crossings, we...
if (I->label == CROSSING)
{
// mark vertex with current ENTRY/EXIT status
I->enex = status;
// toggle status from ENTRY to EXIT or vice versa
ToggleLabel(status);
}
// identify split vertex candidates (INTERIOR bouncing vertices)
if ( (I->label == BOUNCING) && ((status == EXIT) ^ UNION) )
split[i].insert(I);
//
// in the case of a delayed crossing chain, we
// mark both end points of the chain with the current ENTRY/EXIT status,
// toggling the status only at the end last chain vertex,
// and, in case of a delayed EXIT crossing, the first vertex
// or, in case of a delayed ENTRY crossing, the last vertex,
// of the chain as CROSSING
//
if (I->label == DELAYED_CROSSING)
{
// mark vertex with current ENTRY/EXIT status
I->enex = status;
if (first_chain_vertex) { // are we at the first vertex of a delayed crossing chain?
if ((status == EXIT) ^ UNION)
I->label = CROSSING; // mark first vertex as CROSSING
first_chain_vertex = false;
}
else { // here we are at the last vertex of a delayed crossing chain
if ((status == ENTRY) ^ UNION)
I->label = CROSSING; // mark last vertex as CROSSING
first_chain_vertex = true;
// toggle status from ENTRY to EXIT or vice versa (only for last chain vertex)
ToggleLabel(status);
}
}
//
// in the case of a delayed bouncing chain, we
// mark both end points of the chain with the current ENTRY/EXIT status
// toggling the status at both end points of the chain,
// and, in case of a delayed INTERIOR bouncing, both end points
// of the chain as CROSSING candidates
//
if (I->label == DELAYED_BOUNCING)
{
// mark vertex with current ENTRY/EXIT status
I->enex = status;
if (first_chain_vertex) { // are we at the first vertex of a delayed crossing chain?
if ((status == EXIT) ^ UNION)
crossing[i].insert(I); // mark first EXIT vertex as CROSSING candidate
first_chain_vertex = false;
}
else { // here we are at the last vertex of a delayed crossing chain
if ((status == ENTRY) ^ UNION)
crossing[i].insert(I); // mark last ENTRY vertex as CROSSING candidate
first_chain_vertex = true;
}
// toggle status from ENTRY to EXIT or vice versa (for first AND last chain vertex)
ToggleLabel(status);
}
}
}
}
// 5) handle split vertex pairs
// loop over P's split candidates
for (Vertex* I_P : split[0])
{
Vertex* I_Q = I_P->neighbour;
// check if the neighbour on Q is also a split candidate
if (split[1].find(I_Q) != split[1].end())
{
// compute areas to compare local orientation
double sP = Area( *I_P->prev, *I_P, *I_P->next);
double sQ = Area( *I_Q->prev, *I_Q, *I_Q->next);
// add duplicate vertices to P and Q
auto V_P = I_P->Insert(*I_P);
V_P->spline = I_P->spline;
auto V_Q = I_Q->Insert(*I_Q);
V_Q->spline = I_Q->spline;
// link vertices correctly
if (sP*sQ > 0) { // same local orientation
I_P->Link( V_Q);
I_Q->Link( V_P);
}
else { // different local orientation
V_P->Link( V_Q);
}
// mark all four vertices correctly
if (!UNION)
{
I_P->enex = EXIT;
V_P->enex = ENTRY;
I_Q->enex = EXIT;
V_Q->enex = ENTRY;
}
else
{
I_P->enex = ENTRY;
V_P->enex = EXIT;
I_Q->enex = ENTRY;
V_Q->enex = EXIT;
}
I_P->label = CROSSING;
V_P->label = CROSSING;
I_Q->label = CROSSING;
V_Q->label = CROSSING;
}
}
// 6) handle CROSSING vertex candidates
// loop over P's CROSSING candidates
for (Vertex* I_P : crossing[0])
{
Vertex* I_Q = I_P->neighbour;
// check if the neighbour on Q is also a CROSSING candidate
if (crossing[1].find(I_Q) != crossing[1].end())
{
// mark CROSSING candidate pair as such
I_P->label = CROSSING;
I_Q->label = CROSSING;
}
}
}
void CreateResult(Solid2d & sp, Solid2d & sr, bool UNION)
{
auto & PP = sp.polys;
auto & RR = sr.polys;
//
// for all crossing vertices
//
// NOTE: all crossing vertices that are visited while contructing a
// component of the result polygon are marked as "not intersection",
// so that they cannot serve as start vertex of another component
//
for (Polygon2d& P : PP)
{
for (Vertex* I : P.Vertices(CROSSING_INTERSECTION))
{
Polygon2d R; // result polygon component
Vertex* V = I; // start traversal at I
V->is_intersection = false; // mark visited vertices
do {
EntryExitLabel status = V->enex;
ToggleLabel(status);
while ( !(V->enex == status)) // ... we arrive at a vertex with opposite entry/exit flag, or
{
auto & vnew = R.AppendVertex(*V);
if ((status == EXIT) ^ UNION)
{
vnew.bc = V->bc;
if(V->spline)
vnew.spline = *V->spline;
else
vnew.spline = nullopt;
V = V->next; // move forward from an ENTRY vertex to the next EXIT vertex
V->is_intersection = false; // mark visited vertices
}
else
{
V = V->prev; // move backward from an EXIT vertex to the next ENTRY vertex
if(V->spline)
{
auto & s = *V->spline;
vnew.spline = Spline{s.EndPI(), s.TangentPoint(), s.StartPI(), s.GetWeight()};
}
else
vnew.spline = nullopt;
vnew.bc = V->bc;
V->is_intersection = false; // mark visited vertices
}
if(V == I)
break;
}
if (V != I)
{
V = V->neighbour; // switch from P to Q or vice versa
V->is_intersection = false; // mark visited vertices
}
} while (V != I); // the result polygon component is complete,
// if we are back to the initial vertex I
RR.Append(R);
}
}
}
void CleanUpResult(Solid2d & sr)
{
auto & RR = sr.polys;
for (Polygon2d& R : RR)
{
while ( (R.first.get() != NULL) && (fabs(Area(*R.first->prev,*R.first,*R.first->next)) < EPSILON) )
R.Remove(R.first.get());
if (R.first.get() != NULL)
for (Vertex* V : R.Vertices(ALL))
if (!V->spline && !V->prev->spline && fabs(Area(*V->prev,*V,*V->next)) < EPSILON)
{
R.Remove(V);
}
}
for (int i = RR.Size()-1; i>=0; i--)
if(RR[i].Size()==0)
RR.RemoveElement(i);
}
void RemoveDuplicates(Solid2d & sr)
{
for(auto & poly : sr.polys)
{
if(poly.first==nullptr) continue;
Vertex * last = poly.first->prev;
for(auto v : poly.Vertices(ALL))
{
if(Dist2(*v, *last)<EPSILON*EPSILON)
poly.Remove(last);
last = v;
}
}
}
Polygon2d RectanglePoly(double x0, double x1, double y0, double y1, string bc)
{
Polygon2d r;
r.Append( {x0, y0} );
r.Append( {x1, y0} );
r.Append( {x1, y1} );
r.Append( {x0, y1} );
r.SetBC(bc);
return r;
}
Solid2d Rectangle(double x0, double x1, double y0, double y1, string name, string bc)
{
Solid2d s;
s.name = name;
s.polys.Append(RectanglePoly(x0,x1,y0,y1, bc));
s.SetBC(bc);
return s;
}
Solid2d Circle(double x, double y, double r, string name, string bc)
{
Solid2d s;
s.name = name;
Polygon2d poly;
Point<2> ps[] =
{
{x+r, y+0},
{x+r, y+r},
{x+0, y+r},
{x-r, y+r},
{x-r, y+0},
{x-r, y-r},
{x+0, y-r},
{x+r, y-r}
};
for (auto i : IntRange(4))
{
int i0 = 2*i;
int i1 = (i0+1)%8;
int i2 = (i0+2)%8;
auto & v0 = poly.Append( ps[i0] );
v0.spline = { ps[i0], ps[i1], ps[i2] };
}
s.polys.Append(poly);
s.SetBC(bc);
return s;
}
Solid2d AddIntersectionPoints ( Solid2d s1, Solid2d s2 )
{
ComputeIntersections(s1, s2);
RemoveDuplicates(s1);
return s1;
}
Solid2d ClipSolids ( Solid2d s1, Solid2d s2, bool intersect)
{
static Timer t1("intersection");
static Timer t2("label");
static Timer t3("cut");
static Timer t4("cleanup");
for(auto & poly : s1.polys)
for(auto v : poly.Vertices(ALL))
{
v->is_source = true;
v->neighbour = nullptr;
v->lam = -1.0;
v->is_intersection = false;
v->label = NONE;
v->enex = NEITHER;
}
for(auto & poly : s2.polys)
for(auto v : poly.Vertices(ALL))
{
v->is_source = true;
v->neighbour = nullptr;
v->lam = -1.0;
v->is_intersection = false;
v->label = NONE;
v->enex = NEITHER;
}
Solid2d res;
res.name = s1.name;
t1.Start();
ComputeIntersections(s1, s2);
t1.Stop();
t2.Start();
LabelIntersections(s1, s2, res, !intersect);
t2.Stop();
t3.Start();
CreateResult(s1, res, !intersect);
t3.Stop();
t4.Start();
CleanUpResult(res);
RemoveDuplicates(res);
t4.Stop();
return res;
}
Solid2d Solid2d :: operator+(Solid2d & other)
{
if(polys.Size()==0)
return other;
auto res = ClipSolids(*this, other, false);
res.name = name;
return res;
}
Solid2d Solid2d :: operator*(Solid2d & other)
{
auto res = ClipSolids(*this, other, true);
res.name = name;
return res;
}
Solid2d Solid2d :: operator-(Solid2d other)
{
// TODO: Check dimensions of solids with bounding box
other.Append(RectanglePoly(-1e8, 1e8, -1e8, 1e8, "JUST_FOR_CLIPPING"));
auto res = ClipSolids(*this, other);
for (auto i : Range(other.polys))
{
auto & first = *other.polys[i].first;
if(first[0] == -1e8)
other.polys.DeleteElement(i);
}
res.name = name;
return res;
}
bool Solid2d :: IsInside( Point<2> r ) const
{
int w = 0;
for(auto & poly : polys)
for(auto v : poly.Vertices(ALL))
w += CalcSide(*v, *v->next, r);
return ( (w % 2) != 0 );
}
bool Solid2d :: IsLeftInside( const Vertex & p0 )
{
auto & p1 = *p0.next;
auto v = p1-p0;
auto n = Vec<2>{v[1], -v[0]};
auto q = p0 + 0.5*v + 1e-6*n;
return IsInside(q);
}
bool Solid2d :: IsRightInside( const Vertex & p0 )
{
auto & p1 = *p0.next;
auto v = p1-p0;
auto n = Vec<2>{-v[1], v[0]};
auto q = p0 + 0.5*v + 1e-6*n;
return IsInside(q);
}
shared_ptr<netgen::SplineGeometry2d> CSG2d :: GenerateSplineGeometry()
{
static Timer t_intersections("CSG2d - AddIntersections()");
static Timer tall("CSG2d - GenerateSplineGeometry()");
RegionTimer rt(tall);
struct Seg
{
int p0;
int p1;
int left;
int right;
int bc;
int p2;
double weight;
};
auto geo = std::make_shared<netgen::SplineGeometry2d>();
std::map<std::tuple<int,int,int>, Seg> seg_map;
std::map<string, int> bcmap;
Array<int> points;
// Cut each solid with each other one to add all possible intersection points and have conforming edges from both domains
// TODO: OPTIMIZE!!!
// Idea: Find edges with just one neighbor (either leftdomain or rightdomain unset after the marking below) -> just cut those edges with each other
t_intersections.Start();
for(auto & s1 : solids)
for(auto & s2 : solids)
if(&s1!=&s2)
s1 = AddIntersectionPoints(s1,s2);
t_intersections.Stop();
// Add geometry points to SplineGeometry
netgen::Box<2> box;
for(auto & s : solids)
for(auto & poly : s.polys)
for(auto v : poly.Vertices(ALL))
box.Add(*v);
netgen::BoxTree <2, int> ptree(box);
auto getPoint = [&](Point<2> p )
{
int res = -1;
ptree.GetFirstIntersecting(p, p, [&] (int pi)
{
res = pi;
return true;
});
return res;
};
auto insertPoint = [&](Point<2> p )
{
int pi = getPoint(p);
if(pi==-1)
{
// not found -> insert to tree
netgen::GeomPoint<2> gp(p);
gp.name = "";
geo->geompoints.Append(gp);
ptree.Insert(p,p,geo->geompoints.Size()-1);
}
};
for(auto & s : solids)
for(auto & poly : s.polys)
for(auto v : poly.Vertices(ALL))
{
box.Add(*v);
insertPoint(*v);
if(v->spline)
insertPoint(v->spline->TangentPoint());
}
// Generate segments from polygon edges and find left/right domain of each segment
int dom = 0;
for(auto & s : solids)
{
dom++;
geo->SetMaterial(dom, s.name);
for(auto & poly : s.polys)
{
for(auto v : poly.Vertices(ALL))
{
auto & p0 = *v;
auto & p1 = *v->next;
auto pi0 = getPoint(p0);
auto pi1 = getPoint(p1);
int pi2 = -1;
double weight = 0.0;
if(v->spline)
{
auto p2 = v->spline->TangentPoint();
pi2 = getPoint(p2);
weight = v->spline->GetWeight();
}
bool flip = false;
if(pi1<pi0)
{
flip = true;
Swap(pi1,pi0);
}
auto li = s.IsLeftInside(p0);
auto ri = s.IsRightInside(p0);
if(li!=ri)
{
auto & ls = seg_map[{pi0,pi1,pi2}];
ls.p0 = pi0;
ls.p1 = pi1;
ls.p2 = pi2;
ls.weight = weight;
if(s.IsLeftInside(p0) == flip)
ls.left = dom;
else
ls.right = dom;
if(bcmap.count(p0.bc)==0)
bcmap[p0.bc] = bcmap.size()+1;
ls.bc = bcmap[p0.bc];
}
}
}
}
for(auto & [name, bc] : bcmap)
{
geo->SetBCName(bc, name);
}
for(auto const &m : seg_map)
{
auto ls = m.second;
netgen::SplineSegExt * seg;
if(ls.p2!=-1)
{
// spline segment
auto * seg3 = new netgen::SplineSeg3<2>( geo->GetPoint(ls.p0), geo->GetPoint(ls.p2), geo->GetPoint(ls.p1), ls.weight );
seg = new netgen::SplineSegExt(*seg3);
}
else
{
// line segment
auto * l = new netgen::LineSeg<2>(geo->GetPoint(ls.p0), geo->GetPoint(ls.p1));
seg = new netgen::SplineSegExt(*l);
}
seg->leftdom = ls.left;
seg->rightdom = ls.right;
seg->bc = ls.bc;
seg->reffak = 1;
seg->copyfrom = -1;
seg->hmax = 1e99;
geo->AppendSegment(seg);
}
return geo;
}
}