netgen/libsrc/occ/occgeom.cpp

2482 lines
80 KiB
C++

#ifdef OCCGEOMETRY
#include <cstdio>
#include <set>
#include <mystdlib.h>
#include <core/register_archive.hpp>
#include "occ_vertex.hpp"
#include "occ_edge.hpp"
#include "occ_face.hpp"
#include "occ_solid.hpp"
#include "occgeom.hpp"
#include "Partition_Spliter.hxx"
#include <BOPAlgo_Builder.hxx>
#include <BRepBndLib.hxx>
#include <BRepBuilderAPI_Copy.hxx>
#include <BRepBuilderAPI_MakeSolid.hxx>
#include <BRepBuilderAPI_MakeVertex.hxx>
#include <BRepCheck_Analyzer.hxx>
#include <BRepExtrema_DistShapeShape.hxx>
#include <BRepGProp.hxx>
#include <BRepLib.hxx>
#include <BRepOffsetAPI_Sewing.hxx>
#include <BRepTools.hxx>
#include <IGESCAFControl_Reader.hxx>
#include <IGESControl_Writer.hxx>
#include <Interface_InterfaceModel.hxx>
#include <Interface_Static.hxx>
#include <STEPCAFControl_Writer.hxx>
#include <STEPConstruct.hxx>
#include <STEPControl_Writer.hxx>
#include <ShapeAnalysis_CheckSmallFace.hxx>
#include <ShapeAnalysis_DataMapOfShapeListOfReal.hxx>
#include <ShapeAnalysis_ShapeContents.hxx>
#include <ShapeBuild_ReShape.hxx>
#include <ShapeFix_Face.hxx>
#include <ShapeFix_FixSmallFace.hxx>
#include <ShapeFix_Shape.hxx>
#include <ShapeFix_Wire.hxx>
#include <ShapeFix_Wireframe.hxx>
#include <StepBasic_ProductDefinitionRelationship.hxx>
#include <StepRepr_RepresentationItem.hxx>
#include <StlAPI_Writer.hxx>
#include <TopoDS_Shape.hxx>
#include <TransferBRep.hxx>
#include <Transfer_FinderProcess.hxx>
#include <Transfer_TransientProcess.hxx>
#include <XCAFApp_Application.hxx>
#include <XCAFDoc_ColorTool.hxx>
#include <XCAFDoc_DocumentTool.hxx>
#include <XCAFDoc_ShapeTool.hxx>
#include <XCAFPrs.hxx>
#include <XCAFPrs_Style.hxx>
#include <XSControl_TransferReader.hxx>
#include <XSControl_WorkSession.hxx>
#if OCC_VERSION_HEX < 0x070000
// pass
#elif OCC_VERSION_HEX < 0x070200
#include <StlTransfer.hxx>
#include <TopoDS_Iterator.hxx>
#else
#include <TopoDS_Iterator.hxx>
#endif
namespace netgen
{
void LoadOCCInto(OCCGeometry* occgeo, const filesystem::path & filename);
void PrintContents (OCCGeometry * geom);
// Utility function to apply builder and propagate properties
template <typename T>
static TopoDS_Shape Apply(T & builder, TopoDS_Shape & shape) {
auto newshape = builder->Apply(shape);
PropagateProperties(*builder, newshape);
return newshape;
};
TopTools_IndexedMapOfShape OCCGeometry::global_shape_property_indices;
std::vector<ShapeProperties> OCCGeometry::global_shape_properties;
TopTools_IndexedMapOfShape OCCGeometry::global_identification_indices;
std::vector<std::vector<OCCIdentification>> OCCGeometry::global_identifications;
TopoDS_Shape ListOfShapes::Max(gp_Vec dir)
{
double maxval = -1e99;
TopoDS_Shape maxshape;
for (auto shape : *this)
{
GProp_GProps props;
gp_Pnt center;
switch (shape.ShapeType())
{
case TopAbs_VERTEX:
center = BRep_Tool::Pnt (TopoDS::Vertex(shape)); break;
case TopAbs_FACE:
BRepGProp::SurfaceProperties (shape, props);
center = props.CentreOfMass();
break;
default:
BRepGProp::LinearProperties(shape, props);
center = props.CentreOfMass();
}
double val = center.X()*dir.X() + center.Y()*dir.Y() + center.Z() * dir.Z();
if (val > maxval)
{
maxval = val;
maxshape = shape;
}
}
return maxshape;
}
TopoDS_Shape ListOfShapes::Nearest(gp_Pnt pnt)
{
double mindist = 1e99;
TopoDS_Shape nearestshape;
auto vertex = BRepBuilderAPI_MakeVertex (pnt).Vertex();
for (auto shape : *this)
{
double dist = BRepExtrema_DistShapeShape(shape, vertex).Value();
if (dist < mindist)
{
nearestshape = shape;
mindist = dist;
}
}
return nearestshape;
}
ListOfShapes ListOfShapes::SubShapes(TopAbs_ShapeEnum type) const
{
TopTools_MapOfShape check_unique;
ListOfShapes sub;
for(const auto& shape : *this)
for(TopExp_Explorer e(shape, type); e.More(); e.Next())
if(const auto& s = e.Current(); !check_unique.Contains(s))
{
check_unique.Add(s);
sub.push_back(s);
}
return sub;
}
OCCGeometry::OCCGeometry(const TopoDS_Shape& _shape, int aoccdim, bool copy)
{
if(copy)
{
auto filename = GetTempFilename();
step_utils::WriteSTEP(_shape, filename);
LoadOCCInto(this, filename);
dimension = aoccdim;
filesystem::remove(filename);
}
else
{
shape = _shape;
changed = 1;
dimension = aoccdim;
BuildFMap();
CalcBoundingBox();
PrintContents (this);
}
}
const GeometryShape & OCCGeometry :: GetShape(const TopoDS_Shape & shape) const
{
switch (shape.ShapeType())
{
case TopAbs_VERTEX:
return GetVertex(shape);
case TopAbs_EDGE:
return GetEdge(shape);
case TopAbs_FACE:
return GetFace(shape);
default:
throw Exception("unknown shape type");
}
}
const GeometryVertex & OCCGeometry :: GetVertex(const TopoDS_Shape & shape) const
{
return *vertices[vmap.FindIndex(shape)-1];
}
const GeometryEdge & OCCGeometry :: GetEdge(const TopoDS_Shape & shape) const
{
return *edges[emap.FindIndex(shape)-1];
}
const GeometryFace & OCCGeometry :: GetFace(const TopoDS_Shape & shape) const
{
return *faces[fmap.FindIndex(shape)-1];
}
string STEP_GetEntityName(const TopoDS_Shape & theShape, STEPCAFControl_Reader * aReader)
{
const Handle(XSControl_WorkSession)& theSession = aReader->Reader().WS();
const Handle(XSControl_TransferReader)& aTransferReader =
theSession->TransferReader();
Handle(Standard_Transient) anEntity =
aTransferReader->EntityFromShapeResult(theShape, 1);
if (anEntity.IsNull()) // as just mapped
anEntity = aTransferReader->EntityFromShapeResult (theShape,-1);
if (anEntity.IsNull()) // as anything
anEntity = aTransferReader->EntityFromShapeResult (theShape,4);
if (anEntity.IsNull())
{
cout<<"Warning: cannot get entity from shape" <<endl;
return "none";
}
auto aReprItem = Handle(StepRepr_RepresentationItem)::DownCast(anEntity);
if(!aReprItem.IsNull())
return aReprItem->Name()->ToCString();;
auto bReprItem = Handle(StepBasic_ProductDefinitionRelationship)::DownCast(anEntity);
if (!bReprItem.IsNull())
return bReprItem->Description()->ToCString();
cout<<"Warning: unknown entity type " << anEntity->DynamicType() << endl;
return "none";
}
void OCCGeometry :: Analyse(Mesh& mesh,
const MeshingParameters& mparam) const
{
OCCSetLocalMeshSize(*this, mesh, mparam, occparam);
}
bool OCCGeometry :: MeshFace(Mesh& mesh,
const MeshingParameters& mparam, int nr, FlatArray<int, PointIndex> glob2loc) const
{
MeshingParameters local_mp = mparam;
auto face = TopoDS::Face(fmap(nr+1));
if(auto quad_dominated = OCCGeometry::GetProperties(face).quad_dominated; quad_dominated.has_value())
local_mp.quad = *quad_dominated;
bool failed = OCCMeshFace(*this, mesh, glob2loc, local_mp, nr, PARAMETERSPACE, true);
if(failed)
failed = OCCMeshFace(*this, mesh, glob2loc, local_mp, nr, PLANESPACE, false);
if(failed)
{
facemeshstatus[nr] = -1;
PrintError ("Problem in Surface mesh generation");
}
else
{
facemeshstatus[nr] = 1;
}
return failed;
}
void OCCGeometry :: PrintNrShapes ()
{
TopExp_Explorer e;
int count = 0;
for (e.Init(shape, TopAbs_COMPSOLID); e.More(); e.Next()) count++;
cout << "CompSolids: " << count << endl;
cout << "Solids : " << somap.Extent() << endl;
cout << "Shells : " << shmap.Extent() << endl;
cout << "Faces : " << fmap.Extent() << endl;
cout << "Edges : " << emap.Extent() << endl;
cout << "Vertices : " << vmap.Extent() << endl;
}
void PrintContents (OCCGeometry * geom)
{
ShapeAnalysis_ShapeContents cont;
cont.Clear();
cont.Perform(geom->shape);
(*testout) << "OCC CONTENTS" << endl;
(*testout) << "============" << endl;
(*testout) << "SOLIDS : " << cont.NbSolids() << endl;
(*testout) << "SHELLS : " << cont.NbShells() << endl;
(*testout) << "FACES : " << cont.NbFaces() << endl;
(*testout) << "WIRES : " << cont.NbWires() << endl;
(*testout) << "EDGES : " << cont.NbEdges() << endl;
(*testout) << "VERTICES : " << cont.NbVertices() << endl;
TopExp_Explorer e;
int count = 0;
for (e.Init(geom->shape, TopAbs_COMPOUND); e.More(); e.Next())
count++;
(*testout) << "Compounds: " << count << endl;
count = 0;
for (e.Init(geom->shape, TopAbs_COMPSOLID); e.More(); e.Next())
count++;
(*testout) << "CompSolids: " << count << endl;
(*testout) << endl;
cout << IM(3) << "Highest entry in topology hierarchy: " << endl;
if (count)
cout << IM(3) << count << " composite solid(s)" << endl;
else
if (geom->somap.Extent())
cout << IM(3) << geom->somap.Extent() << " solid(s)" << endl;
else
if (geom->shmap.Extent())
cout << IM(3) << geom->shmap.Extent() << " shells(s)" << endl;
else
if (geom->fmap.Extent())
cout << IM(3) << geom->fmap.Extent() << " face(s)" << endl;
else
if (geom->wmap.Extent())
cout << IM(3) << geom->wmap.Extent() << " wire(s)" << endl;
else
if (geom->emap.Extent())
cout << IM(3) << geom->emap.Extent() << " edge(s)" << endl;
else
if (geom->vmap.Extent())
cout << IM(3) << geom->vmap.Extent() << " vertices(s)" << endl;
else
cout << IM(3) << "no entities" << endl;
}
void OCCGeometry :: GlueGeometry()
{
PrintMessage(1, "OCC Glue Geometry");
/*
//
BRep_Builder builder;
TopoDS_Shape my_fuse;
int cnt = 0;
for (TopExp_Explorer exp_solid(shape, TopAbs_SOLID); exp_solid.More(); exp_solid.Next())
{
cout << "cnt = " << cnt << endl;
if (cnt == 0)
my_fuse = exp_solid.Current();
else
// my_fuse = BRepAlgoAPI_Fuse (my_fuse, exp_solid.Current());
my_fuse = QANewModTopOpe_Glue::QANewModTopOpe_Glue(my_fuse, exp_solid.Current());
cnt++;
}
cout << "remove" << endl;
// for (int i = 1; i <= somap.Size(); i++)
// builder.Remove (shape, somap(i));
cout << "now add" << endl;
// builder.Add (shape, my_fuse);
shape = my_fuse;
cout << "build fmap" << endl;
BuildFMap();
*/
// from
// https://www.opencascade.com/doc/occt-7.4.0/overview/html/occt_user_guides__boolean_operations.html
BOPAlgo_Builder aBuilder;
// Setting arguments
TopTools_ListOfShape aLSObjects;
for (TopExp_Explorer exp_solid(shape, TopAbs_SOLID); exp_solid.More(); exp_solid.Next())
aLSObjects.Append (exp_solid.Current());
aBuilder.SetArguments(aLSObjects);
// Setting options for GF
// Set parallel processing mode (default is false)
// Standard_Boolean bRunParallel = Standard_True;
// aBuilder.SetRunParallel(bRunParallel);
// Set Fuzzy value (default is Precision::Confusion())
// Standard_Real aFuzzyValue = 1.e-5;
// aBuilder.SetFuzzyValue(aFuzzyValue);
// Set safe processing mode (default is false)
// Standard_Boolean bSafeMode = Standard_True;
// aBuilder.SetNonDestructive(bSafeMode);
// Set Gluing mode for coinciding arguments (default is off)
// BOPAlgo_GlueEnum aGlue = BOPAlgo_GlueShift;
// aBuilder.SetGlue(aGlue);
// Disabling/Enabling the check for inverted solids (default is true)
// Standard Boolean bCheckInverted = Standard_False;
// aBuilder.SetCheckInverted(bCheckInverted);
// Set OBB usage (default is false)
// Standard_Boolean bUseOBB = Standard_True;
// aBuilder.SetUseOBB(buseobb);
// Perform the operation
aBuilder.Perform();
// Check for the errors
#if OCC_VERSION_HEX >= 0x070200
if (aBuilder.HasErrors())
{
cout << "builder has errors" << endl;
return;
}
// Check for the warnings
if (aBuilder.HasWarnings())
{
// treatment of the warnings
;
}
#endif
#ifdef OCC_HAVE_HISTORY
Handle(BRepTools_History) history = aBuilder.History ();
for (TopExp_Explorer e(shape, TopAbs_SOLID); e.More(); e.Next())
{
if (auto name = OCCGeometry::GetProperties(e.Current()).name)
for (auto mods : history->Modified(e.Current()))
OCCGeometry::GetProperties(mods).name = *name;
}
#endif // OCC_HAVE_HISTORY
// result of the operation
shape = aBuilder.Shape();
BuildFMap();
}
void OCCGeometry :: HealGeometry ()
{
int nrc = 0, nrcs = 0,
nrso = somap.Extent(),
nrsh = shmap.Extent(),
nrf = fmap.Extent(),
nrw = wmap.Extent(),
nre = emap.Extent(),
nrv = vmap.Extent();
TopExp_Explorer exp0;
TopExp_Explorer exp1;
for (exp0.Init(shape, TopAbs_COMPOUND); exp0.More(); exp0.Next()) nrc++;
for (exp0.Init(shape, TopAbs_COMPSOLID); exp0.More(); exp0.Next()) nrcs++;
double surfacecont = 0;
{
Handle(ShapeBuild_ReShape) rebuild = new ShapeBuild_ReShape;
Apply(rebuild, shape);
for (exp1.Init (shape, TopAbs_EDGE); exp1.More(); exp1.Next())
{
TopoDS_Edge edge = TopoDS::Edge(exp1.Current());
if ( BRep_Tool::Degenerated(edge) )
rebuild->Remove(edge);
}
shape = Apply(rebuild, shape);
}
BuildFMap();
for (exp0.Init (shape, TopAbs_FACE); exp0.More(); exp0.Next())
{
TopoDS_Face face = TopoDS::Face(exp0.Current());
GProp_GProps system;
BRepGProp::SurfaceProperties(face, system);
surfacecont += system.Mass();
}
cout << "Starting geometry healing procedure (tolerance: " << tolerance << ")" << endl
<< "-----------------------------------" << endl;
{
cout << endl << "- repairing faces" << endl;
Handle(ShapeFix_Face) sff;
Handle(ShapeBuild_ReShape) rebuild = new ShapeBuild_ReShape;
Apply(rebuild, shape);
for (exp0.Init (shape, TopAbs_FACE); exp0.More(); exp0.Next())
{
TopoDS_Face face = TopoDS::Face (exp0.Current());
auto props = GetProperties(face);
sff = new ShapeFix_Face (face);
sff->FixAddNaturalBoundMode() = Standard_True;
sff->FixSmallAreaWireMode() = Standard_True;
sff->Perform();
if(sff->Status(ShapeExtend_DONE1) ||
sff->Status(ShapeExtend_DONE2) ||
sff->Status(ShapeExtend_DONE3) ||
sff->Status(ShapeExtend_DONE4) ||
sff->Status(ShapeExtend_DONE5))
{
cout << "repaired face " << fmap.FindIndex(face) << " ";
if(sff->Status(ShapeExtend_DONE1))
cout << "(some wires are fixed)" <<endl;
else if(sff->Status(ShapeExtend_DONE2))
cout << "(orientation of wires fixed)" <<endl;
else if(sff->Status(ShapeExtend_DONE3))
cout << "(missing seam added)" <<endl;
else if(sff->Status(ShapeExtend_DONE4))
cout << "(small area wire removed)" <<endl;
else if(sff->Status(ShapeExtend_DONE5))
cout << "(natural bounds added)" <<endl;
TopoDS_Face newface = sff->Face();
rebuild->Replace(face, newface);
}
// Set the original properties of the face to the newly created
// face (after the healing process)
// GetProperties(face);
}
shape = Apply(rebuild, shape);
}
{
Handle(ShapeBuild_ReShape) rebuild = new ShapeBuild_ReShape;
Apply(rebuild, shape);
for (exp1.Init (shape, TopAbs_EDGE); exp1.More(); exp1.Next())
{
TopoDS_Edge edge = TopoDS::Edge(exp1.Current());
if ( BRep_Tool::Degenerated(edge) )
rebuild->Remove(edge);
}
shape = Apply(rebuild, shape);
}
if (fixsmalledges)
{
cout << endl << "- fixing small edges" << endl;
Handle(ShapeFix_Wire) sfw;
Handle(ShapeBuild_ReShape) rebuild = new ShapeBuild_ReShape;
Apply(rebuild, shape);
for (exp0.Init (shape, TopAbs_FACE); exp0.More(); exp0.Next())
{
TopoDS_Face face = TopoDS::Face(exp0.Current());
for (exp1.Init (face, TopAbs_WIRE); exp1.More(); exp1.Next())
{
TopoDS_Wire oldwire = TopoDS::Wire(exp1.Current());
sfw = new ShapeFix_Wire (oldwire, face ,tolerance);
sfw->ModifyTopologyMode() = Standard_True;
sfw->ClosedWireMode() = Standard_True;
bool replace = false;
replace = sfw->FixReorder() || replace;
replace = sfw->FixConnected() || replace;
if (sfw->FixSmall (Standard_False, tolerance) && ! (sfw->StatusSmall(ShapeExtend_FAIL1) ||
sfw->StatusSmall(ShapeExtend_FAIL2) ||
sfw->StatusSmall(ShapeExtend_FAIL3)))
{
cout << "Fixed small edge in wire " << wmap.FindIndex (oldwire) << endl;
replace = true;
}
else if (sfw->StatusSmall(ShapeExtend_FAIL1))
cerr << "Failed to fix small edge in wire " << wmap.FindIndex (oldwire)
<< ", edge cannot be checked (no 3d curve and no pcurve)" << endl;
else if (sfw->StatusSmall(ShapeExtend_FAIL2))
cerr << "Failed to fix small edge in wire " << wmap.FindIndex (oldwire)
<< ", edge is null-length and has different vertives at begin and end, and lockvtx is True or ModifiyTopologyMode is False" << endl;
else if (sfw->StatusSmall(ShapeExtend_FAIL3))
cerr << "Failed to fix small edge in wire " << wmap.FindIndex (oldwire)
<< ", CheckConnected has failed" << endl;
replace = sfw->FixEdgeCurves() || replace;
replace = sfw->FixDegenerated() || replace;
replace = sfw->FixSelfIntersection() || replace;
replace = sfw->FixLacking(Standard_True) || replace;
if(replace)
{
TopoDS_Wire newwire = sfw->Wire();
rebuild->Replace(oldwire, newwire);
}
//delete sfw; sfw = NULL;
}
}
shape = Apply(rebuild, shape);
{
BuildFMap();
Handle(ShapeBuild_ReShape) rebuild = new ShapeBuild_ReShape;
Apply(rebuild, shape);
for (exp1.Init (shape, TopAbs_EDGE); exp1.More(); exp1.Next())
{
TopoDS_Edge edge = TopoDS::Edge(exp1.Current());
if (vmap.FindIndex(TopExp::FirstVertex (edge)) ==
vmap.FindIndex(TopExp::LastVertex (edge)))
{
GProp_GProps system;
BRepGProp::LinearProperties(edge, system);
if (system.Mass() < tolerance)
{
cout << "removing degenerated edge " << emap.FindIndex(edge)
<< " from vertex " << vmap.FindIndex(TopExp::FirstVertex (edge))
<< " to vertex " << vmap.FindIndex(TopExp::LastVertex (edge)) << endl;
rebuild->Remove(edge);
}
}
}
shape = Apply(rebuild, shape);
//delete rebuild; rebuild = NULL;
}
{
Handle(ShapeBuild_ReShape) rebuild = new ShapeBuild_ReShape;
Apply(rebuild, shape);
for (exp1.Init (shape, TopAbs_EDGE); exp1.More(); exp1.Next())
{
TopoDS_Edge edge = TopoDS::Edge(exp1.Current());
if ( BRep_Tool::Degenerated(edge) )
rebuild->Remove(edge);
}
shape = Apply(rebuild, shape);
}
Handle(ShapeFix_Wireframe) sfwf = new ShapeFix_Wireframe;
sfwf->SetPrecision(tolerance);
sfwf->Load (shape);
sfwf->ModeDropSmallEdges() = Standard_True;
sfwf->SetPrecision(boundingbox.Diam());
if (sfwf->FixWireGaps())
{
cout << endl << "- fixing wire gaps" << endl;
if (sfwf->StatusWireGaps(ShapeExtend_OK)) cout << "no gaps found" << endl;
if (sfwf->StatusWireGaps(ShapeExtend_DONE1)) cout << "some 2D gaps fixed" << endl;
if (sfwf->StatusWireGaps(ShapeExtend_DONE2)) cout << "some 3D gaps fixed" << endl;
if (sfwf->StatusWireGaps(ShapeExtend_FAIL1)) cout << "failed to fix some 2D gaps" << endl;
if (sfwf->StatusWireGaps(ShapeExtend_FAIL2)) cout << "failed to fix some 3D gaps" << endl;
}
sfwf->SetPrecision(tolerance);
{
for (exp1.Init (shape, TopAbs_EDGE); exp1.More(); exp1.Next())
{
TopoDS_Edge edge = TopoDS::Edge(exp1.Current());
if ( BRep_Tool::Degenerated(edge) )
cout << "degenerated edge at position 4" << endl;
}
}
if (sfwf->FixSmallEdges())
{
cout << endl << "- fixing wire frames" << endl;
if (sfwf->StatusSmallEdges(ShapeExtend_OK)) cout << "no small edges found" << endl;
if (sfwf->StatusSmallEdges(ShapeExtend_DONE1)) cout << "some small edges fixed" << endl;
if (sfwf->StatusSmallEdges(ShapeExtend_FAIL1)) cout << "failed to fix some small edges" << endl;
}
auto newshape = sfwf->Shape();
PropagateProperties(*sfwf->Context(), newshape);
shape = newshape;
//delete sfwf; sfwf = NULL;
//delete rebuild; rebuild = NULL;
}
{
for (exp1.Init (shape, TopAbs_EDGE); exp1.More(); exp1.Next())
{
TopoDS_Edge edge = TopoDS::Edge(exp1.Current());
if ( BRep_Tool::Degenerated(edge) )
cout << "degenerated edge at position 5" << endl;
}
}
if (fixspotstripfaces)
{
cout << endl << "- fixing spot and strip faces" << endl;
Handle(ShapeFix_FixSmallFace) sffsm = new ShapeFix_FixSmallFace();
sffsm -> Init (shape);
sffsm -> SetPrecision (tolerance);
sffsm -> Perform();
auto newshape = sffsm -> FixShape();
PropagateProperties(*sffsm->Context(), newshape);
shape = newshape;
//delete sffsm; sffsm = NULL;
}
{
for (exp1.Init (shape, TopAbs_EDGE); exp1.More(); exp1.Next())
{
TopoDS_Edge edge = TopoDS::Edge(exp1.Current());
if ( BRep_Tool::Degenerated(edge) )
cout << "degenerated edge at position 6" << endl;
}
}
if (sewfaces)
{
cout << endl << "- sewing faces" << endl;
BRepOffsetAPI_Sewing sewedObj(tolerance);
for (exp0.Init (shape, TopAbs_FACE); exp0.More(); exp0.Next())
{
TopoDS_Face face = TopoDS::Face (exp0.Current());
sewedObj.Add (face);
}
sewedObj.Perform();
PropagateProperties(sewedObj, shape);
if (!sewedObj.SewedShape().IsNull())
shape = sewedObj.SewedShape();
else
cout << " not possible";
}
{
Handle(ShapeBuild_ReShape) rebuild = new ShapeBuild_ReShape;
rebuild->Apply(shape);
for (exp1.Init (shape, TopAbs_EDGE); exp1.More(); exp1.Next())
{
TopoDS_Edge edge = TopoDS::Edge(exp1.Current());
if ( BRep_Tool::Degenerated(edge) )
rebuild->Remove(edge);
}
shape = Apply(rebuild, shape);
}
if (makesolids)
{
cout << endl << "- making solids" << endl;
BRepBuilderAPI_MakeSolid ms;
int count = 0;
for (exp0.Init(shape, TopAbs_SHELL); exp0.More(); exp0.Next())
{
count++;
ms.Add (TopoDS::Shell(exp0.Current()));
}
if (!count)
{
cout << " not possible (no shells)" << endl;
}
else
{
BRepCheck_Analyzer ba(ms);
if (ba.IsValid ())
{
Handle(ShapeFix_Shape) sfs = new ShapeFix_Shape;
sfs->Init (ms);
sfs->SetPrecision(tolerance);
sfs->SetMaxTolerance(tolerance);
sfs->Perform();
shape = sfs->Shape();
for (exp0.Init(shape, TopAbs_SOLID); exp0.More(); exp0.Next())
{
TopoDS_Solid solid = TopoDS::Solid(exp0.Current());
TopoDS_Solid newsolid = solid;
BRepLib::OrientClosedSolid (newsolid);
Handle(ShapeBuild_ReShape) rebuild = new ShapeBuild_ReShape;
// rebuild->Apply(shape);
rebuild->Replace(solid, newsolid);
TopoDS_Shape newshape = rebuild->Apply(shape, TopAbs_COMPSOLID);//, 1);
// TopoDS_Shape newshape = rebuild->Apply(shape);
shape = newshape;
}
//delete sfs; sfs = NULL;
}
else
cout << " not possible" << endl;
}
}
if (splitpartitions)
{
cout << "- running SALOME partition splitter" << endl;
TopExp_Explorer e2;
Partition_Spliter ps;
int count = 0;
for (e2.Init (shape, TopAbs_SOLID);
e2.More(); e2.Next())
{
count++;
ps.AddShape (e2.Current());
}
ps.Compute();
shape = ps.Shape();
cout << " before: " << count << " solids" << endl;
count = 0;
for (e2.Init (shape, TopAbs_SOLID);
e2.More(); e2.Next()) count++;
cout << " after : " << count << " solids" << endl;
}
BuildFMap();
{
for (exp1.Init (shape, TopAbs_EDGE); exp1.More(); exp1.Next())
{
TopoDS_Edge edge = TopoDS::Edge(exp1.Current());
if ( BRep_Tool::Degenerated(edge) )
cout << "degenerated edge at position 8" << endl;
}
}
double newsurfacecont = 0;
for (exp0.Init (shape, TopAbs_FACE); exp0.More(); exp0.Next())
{
TopoDS_Face face = TopoDS::Face(exp0.Current());
GProp_GProps system;
BRepGProp::SurfaceProperties(face, system);
newsurfacecont += system.Mass();
}
int nnrc = 0, nnrcs = 0,
nnrso = somap.Extent(),
nnrsh = shmap.Extent(),
nnrf = fmap.Extent(),
nnrw = wmap.Extent(),
nnre = emap.Extent(),
nnrv = vmap.Extent();
for (exp0.Init(shape, TopAbs_COMPOUND); exp0.More(); exp0.Next()) nnrc++;
for (exp0.Init(shape, TopAbs_COMPSOLID); exp0.More(); exp0.Next()) nnrcs++;
cout << "-----------------------------------" << endl;
cout << "Compounds : " << nnrc << " (" << nrc << ")" << endl;
cout << "Composite solids: " << nnrcs << " (" << nrcs << ")" << endl;
cout << "Solids : " << nnrso << " (" << nrso << ")" << endl;
cout << "Shells : " << nnrsh << " (" << nrsh << ")" << endl;
cout << "Wires : " << nnrw << " (" << nrw << ")" << endl;
cout << "Faces : " << nnrf << " (" << nrf << ")" << endl;
cout << "Edges : " << nnre << " (" << nre << ")" << endl;
cout << "Vertices : " << nnrv << " (" << nrv << ")" << endl;
cout << endl;
cout << "Total surface area : " << newsurfacecont << " (" << surfacecont << ")" << endl;
cout << endl;
}
// For 2d geometries, make sure all faces have a normal vector with positive z-component
void OCCGeometry :: FixFaceOrientation()
{
if(dimension!=2) return;
bool needs_fix = false;
Handle(ShapeBuild_ReShape) rebuild = new ShapeBuild_ReShape;
for (auto face : GetFaces(shape))
{
auto occface = OCCFace(face);
auto normal = occface.GetNormal(occ2ng(GetVertices(face)[0]));
if(normal[2] < 0) {
needs_fix = true;
// Need do copy the face, otherwise replace is ignored
BRepBuilderAPI_Copy copy(face);
auto newface = copy.Shape().Reversed();
GetProperties(newface).Merge(GetProperties(face));
rebuild->Replace(face, newface);
}
}
if(needs_fix )
shape = Apply(rebuild, shape);
}
void OCCGeometry :: BuildFMap()
{
somap.Clear();
shmap.Clear();
fmap.Clear();
wmap.Clear();
emap.Clear();
vmap.Clear();
TopExp_Explorer exp0, exp1, exp2, exp3, exp4, exp5;
// Check face orientation in 2d geometries
FixFaceOrientation();
for (exp0.Init(shape, TopAbs_COMPOUND);
exp0.More(); exp0.Next())
{
TopoDS_Compound compound = TopoDS::Compound (exp0.Current());
(*testout) << "compound" << endl;
int i = 0;
for (exp1.Init(compound, TopAbs_SHELL);
exp1.More(); exp1.Next())
{
(*testout) << "shell " << ++i << endl;
}
}
for (exp0.Init(shape, TopAbs_SOLID);
exp0.More(); exp0.Next())
{
TopoDS_Solid solid = TopoDS::Solid (exp0.Current());
if (somap.FindIndex(solid) < 1)
{
somap.Add (solid);
for (exp1.Init(solid, TopAbs_SHELL);
exp1.More(); exp1.Next())
{
TopoDS_Shell shell = TopoDS::Shell (exp1.Current());
if (shmap.FindIndex(shell) < 1)
{
shmap.Add (shell);
for (exp2.Init(shell, TopAbs_FACE);
exp2.More(); exp2.Next())
{
TopoDS_Face face = TopoDS::Face(exp2.Current());
if (fmap.FindIndex(face) < 1)
{
fmap.Add (face);
(*testout) << "face " << fmap.FindIndex(face) << " ";
(*testout) << ((face.Orientation() == TopAbs_REVERSED) ? "-" : "+") << ", ";
(*testout) << ((exp2.Current().Orientation() == TopAbs_REVERSED) ? "-" : "+") << endl;
for (exp3.Init(exp2.Current(), TopAbs_WIRE);
exp3.More(); exp3.Next())
{
TopoDS_Wire wire = TopoDS::Wire (exp3.Current());
if (wmap.FindIndex(wire) < 1)
{
wmap.Add (wire);
for (exp4.Init(exp3.Current(), TopAbs_EDGE);
exp4.More(); exp4.Next())
{
TopoDS_Edge edge = TopoDS::Edge(exp4.Current());
if (emap.FindIndex(edge) < 1)
{
emap.Add (edge);
for (exp5.Init(exp4.Current(), TopAbs_VERTEX);
exp5.More(); exp5.Next())
{
TopoDS_Vertex vertex = TopoDS::Vertex(exp5.Current());
if (vmap.FindIndex(vertex) < 1)
vmap.Add (vertex);
}
}
}
}
}
}
}
}
}
}
}
// Free Shells
for (exp1.Init(shape, TopAbs_SHELL, TopAbs_SOLID); exp1.More(); exp1.Next())
{
TopoDS_Shell shell = TopoDS::Shell(exp1.Current());
if (shmap.FindIndex(shell) < 1)
{
shmap.Add (shell);
(*testout) << "shell " << shmap.FindIndex(shell) << " ";
(*testout) << ((shell.Orientation() == TopAbs_REVERSED) ? "-" : "+") << ", ";
(*testout) << ((exp1.Current().Orientation() == TopAbs_REVERSED) ? "-" : "+") << endl;
for (exp2.Init(shell, TopAbs_FACE); exp2.More(); exp2.Next())
{
TopoDS_Face face = TopoDS::Face(exp2.Current());
if (fmap.FindIndex(face) < 1)
{
fmap.Add (face);
for (exp3.Init(face, TopAbs_WIRE); exp3.More(); exp3.Next())
{
TopoDS_Wire wire = TopoDS::Wire (exp3.Current());
if (wmap.FindIndex(wire) < 1)
{
wmap.Add (wire);
for (exp4.Init(wire, TopAbs_EDGE); exp4.More(); exp4.Next())
{
TopoDS_Edge edge = TopoDS::Edge(exp4.Current());
if (emap.FindIndex(edge) < 1)
{
emap.Add (edge);
for (exp5.Init(edge, TopAbs_VERTEX); exp5.More(); exp5.Next())
{
TopoDS_Vertex vertex = TopoDS::Vertex(exp5.Current());
if (vmap.FindIndex(vertex) < 1)
vmap.Add (vertex);
}
}
}
}
}
}
}
}
}
// Free Faces
for (auto face : MyExplorer(shape, TopAbs_FACE, TopAbs_SHELL))
if (!fmap.Contains(face))
{
fmap.Add (face);
for (auto wire : MyExplorer(face, TopAbs_WIRE))
if (!wmap.Contains(wire))
{
wmap.Add (wire);
for (auto edge : MyExplorer(wire, TopAbs_EDGE))
if (!emap.Contains(edge))
{
emap.Add (edge);
for (auto vertex : MyExplorer(edge, TopAbs_VERTEX))
if (!vmap.Contains(vertex))
vmap.Add (vertex);
}
}
}
// Free Wires
for (exp3.Init(shape, TopAbs_WIRE, TopAbs_FACE); exp3.More(); exp3.Next())
{
TopoDS_Wire wire = TopoDS::Wire (exp3.Current());
if (wmap.FindIndex(wire) < 1)
{
wmap.Add (wire);
for (exp4.Init(exp3.Current(), TopAbs_EDGE); exp4.More(); exp4.Next())
{
TopoDS_Edge edge = TopoDS::Edge(exp4.Current());
if (emap.FindIndex(edge) < 1)
{
emap.Add (edge);
for (exp5.Init(exp4.Current(), TopAbs_VERTEX); exp5.More(); exp5.Next())
{
TopoDS_Vertex vertex = TopoDS::Vertex(exp5.Current());
if (vmap.FindIndex(vertex) < 1)
vmap.Add (vertex);
}
}
}
}
}
// Free Edges
/*
for (exp4.Init(shape, TopAbs_EDGE, TopAbs_WIRE); exp4.More(); exp4.Next())
{
TopoDS_Edge edge = TopoDS::Edge(exp4.Current());
if (emap.FindIndex(edge) < 1)
{
emap.Add (edge);
for (exp5.Init(exp4.Current(), TopAbs_VERTEX); exp5.More(); exp5.Next())
{
TopoDS_Vertex vertex = TopoDS::Vertex(exp5.Current());
if (vmap.FindIndex(vertex) < 1)
vmap.Add (vertex);
}
}
}
*/
for (auto edge : MyExplorer(shape, TopAbs_EDGE, TopAbs_WIRE))
if (!emap.Contains(edge))
{
emap.Add (edge);
for (auto vertex : MyExplorer(edge, TopAbs_VERTEX))
if (!vmap.Contains(vertex))
vmap.Add (vertex);
}
// Free Vertices
/*
for (exp5.Init(shape, TopAbs_VERTEX, TopAbs_EDGE); exp5.More(); exp5.Next())
{
TopoDS_Vertex vertex = TopoDS::Vertex(exp5.Current());
if (vmap.FindIndex(vertex) < 1)
vmap.Add (vertex);
}
*/
for (auto vertex : MyExplorer(shape, TopAbs_VERTEX, TopAbs_EDGE))
if (!vmap.Contains(vertex))
vmap.Add (vertex);
facemeshstatus.DeleteAll();
facemeshstatus.SetSize (fmap.Extent());
facemeshstatus = 0;
// Philippose - 15/01/2009
face_maxh.DeleteAll();
face_maxh.SetSize (fmap.Extent());
face_maxh = 1e99; // mparam.maxh;
// Philippose - 15/01/2010
face_maxh_modified.DeleteAll();
face_maxh_modified.SetSize(fmap.Extent());
face_maxh_modified = 0;
// Philippose - 17/01/2009
face_sel_status.DeleteAll();
face_sel_status.SetSize (fmap.Extent());
face_sel_status = 0;
fvispar.SetSize (fmap.Extent());
evispar.SetSize (emap.Extent());
vvispar.SetSize (vmap.Extent());
fsingular.SetSize (fmap.Extent());
esingular.SetSize (emap.Extent());
vsingular.SetSize (vmap.Extent());
fsingular = esingular = vsingular = false;
NetgenGeometry::Clear();
// Add shapes
for(auto i1 : Range(1, vmap.Extent()+1))
{
auto v = vmap(i1);
auto occ_vertex = make_unique<OCCVertex>(TopoDS::Vertex(v));
occ_vertex->nr = vertices.Size();
if(HaveProperties(v))
occ_vertex->properties = GetProperties(v);
vertices.Append(std::move(occ_vertex));
}
for(auto i1 : Range(1, emap.Extent()+1))
{
auto e = emap(i1);
auto edge = TopoDS::Edge(e);
auto verts = GetVertices(e);
if(verts.size() == 0)
continue;
auto occ_edge = make_unique<OCCEdge>(edge, GetVertex(verts[0]), GetVertex(verts[1]) );
occ_edge->properties = GetProperties(e);
edges.Append(std::move(occ_edge));
}
for(auto i1 : Range(1, fmap.Extent()+1))
{
auto f = fmap(i1);
auto k = faces.Size();
auto occ_face = make_unique<OCCFace>(f);
for(auto e : GetEdges(f))
occ_face->edges.Append( &GetEdge(e) );
if(HaveProperties(f))
occ_face->properties = GetProperties(f);
faces.Append(std::move(occ_face));
if(dimension==2)
for(auto e : GetEdges(f))
{
auto & edge = GetEdge(e);
if(e.Orientation() == TopAbs_REVERSED)
edge.domout = k;
else
edge.domin = k;
}
}
for(auto i1 : Range(1, somap.Extent()+1))
{
auto s = somap(i1);
int k = solids.Size();
auto occ_solid = make_unique<OCCSolid>(s);
if(HaveProperties(s))
occ_solid->properties = GetProperties(s);
solids.Append(std::move(occ_solid));
for(auto f : GetFaces(s))
{
auto & face = static_cast<OCCFace&>(GetFace(f));
if(face.domin==-1)
face.domin = k;
else
face.domout = k;
if(face.Shape().Orientation() == TopAbs_INTERNAL)
face.domout = k;
}
}
// Propagate maxh to children
for(auto& solid : solids)
{
auto& shape = static_cast<OCCSolid&>(*solid).GetShape();
if(!OCCGeometry::HaveProperties(shape))
continue;
for(auto& f : GetFaces(shape))
{
auto& face = GetFace(f);
face.properties.maxh = min2(face.properties.maxh,
GetProperties(shape).maxh);
}
}
for(auto& face : faces)
for(auto& edge : face->edges)
edge->properties.maxh = min2(edge->properties.maxh,
face->properties.maxh);
// Add identifications
auto add_identifications = [&](auto & shapes, auto & shape_map)
{
for(auto i1 : Range(1, shape_map.Extent()+1))
{
auto shape = shape_map(i1);
if(HaveIdentifications(shape))
for(auto & ident : GetIdentifications(shape))
{
if(!shape_map.Contains(ident.from) || !shape_map.Contains(ident.to))
continue;
ShapeIdentification si{
&GetShape(ident.from),
&GetShape(ident.to),
ident.trafo,
ident.type,
ident.name
};
shapes[i1-1]->identifications.Append(si);
}
}
};
add_identifications( vertices, vmap );
add_identifications( edges, emap );
add_identifications( faces, fmap );
bounding_box = ::netgen::GetBoundingBox( shape );
ProcessIdentifications();
}
void OCCGeometry :: SewFaces ()
{
(*testout) << "Trying to sew faces ..." << endl;
cout << "Trying to sew faces ..." << flush;
BRepOffsetAPI_Sewing sewedObj(1);
for (int i = 1; i <= fmap.Extent(); i++)
{
TopoDS_Face face = TopoDS::Face (fmap(i));
sewedObj.Add (face);
}
sewedObj.Perform();
if (!sewedObj.SewedShape().IsNull())
{
shape = sewedObj.SewedShape();
cout << " done" << endl;
}
else
cout << " not possible";
}
void OCCGeometry :: MakeSolid ()
{
TopExp_Explorer exp0;
(*testout) << "Trying to build solids ..." << endl;
cout << "Trying to build solids ..." << flush;
BRepBuilderAPI_MakeSolid ms;
int count = 0;
for (exp0.Init(shape, TopAbs_SHELL); exp0.More(); exp0.Next())
{
count++;
ms.Add (TopoDS::Shell(exp0.Current()));
}
if (!count)
{
cout << " not possible (no shells)" << endl;
return;
}
BRepCheck_Analyzer ba(ms);
if (ba.IsValid ())
{
Handle(ShapeFix_Shape) sfs = new ShapeFix_Shape;
sfs->Init (ms);
sfs->SetPrecision(1e-5);
sfs->SetMaxTolerance(1e-5);
sfs->Perform();
shape = sfs->Shape();
for (exp0.Init(shape, TopAbs_SOLID); exp0.More(); exp0.Next())
{
TopoDS_Solid solid = TopoDS::Solid(exp0.Current());
TopoDS_Solid newsolid = solid;
BRepLib::OrientClosedSolid (newsolid);
Handle(ShapeBuild_ReShape) rebuild = new ShapeBuild_ReShape;
rebuild->Replace(solid, newsolid);
TopoDS_Shape newshape = rebuild->Apply(shape, TopAbs_SHAPE, 1);
shape = newshape;
}
cout << " done" << endl;
}
else
cout << " not possible" << endl;
}
Array<const GeometryVertex*> OCCGeometry :: GetFaceVertices(const GeometryFace& face) const
{
Array<const GeometryVertex*> verts;
const auto& occface = dynamic_cast<const OCCFace&>(face);
for(auto& vert : GetVertices(occface.Shape()))
verts.Append(&GetVertex(vert));
return verts;
}
void OCCGeometry :: BuildVisualizationMesh (double deflection)
{
// cout << IM(5) << "Preparing visualization (deflection = " << deflection << ") ... " << flush;
BuildTriangulation(shape);
// cout << IM(5) << "done" << endl;
}
void OCCGeometry :: CalcBoundingBox ()
{
boundingbox = ::netgen::GetBoundingBox(shape);
(*testout) << "Bounding Box = [" << boundingbox.PMin() << " - " << boundingbox.PMax() << "]" << endl;
SetCenter();
}
// void OCCGeometry :: WriteOCC_STL(char * filename)
// {
// cout << "writing stl..."; cout.flush();
// StlAPI_Writer writer;
// writer.RelativeMode() = Standard_False;
//
// writer.SetDeflection(0.02);
// writer.Write(shape,filename);
//
// cout << "done" << endl;
// }
void LoadOCCInto(OCCGeometry* occgeo, const filesystem::path & filename)
{
static Timer timer_all("LoadOCC"); RegionTimer rtall(timer_all);
static Timer timer_readfile("LoadOCC-ReadFile");
static Timer timer_transfer("LoadOCC-Transfer");
static Timer timer_getnames("LoadOCC-get names");
// Initiate a dummy XCAF Application to handle the STEP XCAF Document
static Handle(XCAFApp_Application) dummy_app = XCAFApp_Application::GetApplication();
// Create an XCAF Document to contain the STEP file itself
Handle(TDocStd_Document) step_doc;
// Check if a STEP File is already open under this handle, if so, close it to prevent
// Segmentation Faults when trying to create a new document
if(dummy_app->NbDocuments() > 0)
{
dummy_app->GetDocument(1,step_doc);
dummy_app->Close(step_doc);
}
dummy_app->NewDocument ("STEP-XCAF",step_doc);
timer_readfile.Start();
STEPCAFControl_Reader reader;
// Enable transfer of colours
reader.SetColorMode(Standard_True);
reader.SetNameMode(Standard_True);
Standard_Integer stat = reader.ReadFile(filename.string().c_str());
timer_readfile.Stop();
timer_transfer.Start();
if(stat != IFSelect_RetDone)
{
throw NgException("Couldn't load OCC geometry");
}
reader.Transfer(step_doc);
timer_transfer.Stop();
// Read in the shape(s) and the colours present in the STEP File
auto step_shape_contents = XCAFDoc_DocumentTool::ShapeTool(step_doc->Main());
TDF_LabelSequence step_shapes;
step_shape_contents->GetShapes(step_shapes);
// For the STEP File Reader in OCC, the 1st Shape contains the entire
// compound geometry as one shape
auto main_shape = step_shape_contents->GetShape(step_shapes.Value(1));
step_utils::LoadProperties(main_shape, reader, step_doc);
occgeo->shape = main_shape;
occgeo->changed = 1;
occgeo->BuildFMap();
occgeo->CalcBoundingBox();
PrintContents (occgeo);
}
// Philippose - 23/02/2009
/* Special IGES File load function including the ability
to extract individual surface colours via the extended
OpenCascade XDE and XCAF Feature set.
*/
OCCGeometry *LoadOCC_IGES(const filesystem::path & filename)
{
OCCGeometry *occgeo;
occgeo = new OCCGeometry;
// Initiate a dummy XCAF Application to handle the IGES XCAF Document
static Handle(XCAFApp_Application) dummy_app = XCAFApp_Application::GetApplication();
// Create an XCAF Document to contain the IGES file itself
Handle(TDocStd_Document) iges_doc;
// Check if a IGES File is already open under this handle, if so, close it to prevent
// Segmentation Faults when trying to create a new document
if(dummy_app->NbDocuments() > 0)
{
dummy_app->GetDocument(1,iges_doc);
dummy_app->Close(iges_doc);
}
dummy_app->NewDocument ("IGES-XCAF",iges_doc);
IGESCAFControl_Reader reader;
Standard_Integer stat = reader.ReadFile(filename.string().c_str());
if(stat != IFSelect_RetDone)
{
throw NgException("Couldn't load occ");
}
// Enable transfer of colours
reader.SetColorMode(Standard_True);
reader.SetNameMode(Standard_True);
reader.Transfer(iges_doc);
// Read in the shape(s) and the colours present in the IGES File
Handle(XCAFDoc_ShapeTool) iges_shape_contents = XCAFDoc_DocumentTool::ShapeTool(iges_doc->Main());
Handle(XCAFDoc_ColorTool) iges_colour_contents = XCAFDoc_DocumentTool::ColorTool(iges_doc->Main());
TDF_LabelSequence iges_shapes;
iges_shape_contents->GetShapes(iges_shapes);
// List out the available colours in the IGES File as Colour Names
// TDF_LabelSequence all_colours;
// iges_colour_contents->GetColors(all_colours);
// PrintMessage(1,"Number of colours in IGES File: ",all_colours.Length());
// for(int i = 1; i <= all_colours.Length(); i++)
// {
// Quantity_Color col;
// stringstream col_rgb;
// iges_colour_contents->GetColor(all_colours.Value(i),col);
// col_rgb << " : (" << col.Red() << "," << col.Green() << "," << col.Blue() << ")";
// PrintMessage(1, "Colour [", i, "] = ",col.StringName(col.Name()),col_rgb.str());
// }
// For the IGES Reader, all the shapes can be exported as one compound shape
// using the "OneShape" member
auto shape = reader.OneShape();
auto shapeTool = XCAFDoc_DocumentTool::ShapeTool(iges_doc->Main());
// load colors
for (auto typ : {TopAbs_SOLID, TopAbs_FACE, TopAbs_EDGE })
for (TopExp_Explorer e(shape, typ); e.More(); e.Next())
{
TDF_Label label;
shapeTool->Search(e.Current(), label);
if(label.IsNull())
continue;
XCAFPrs_IndexedDataMapOfShapeStyle set;
TopLoc_Location loc;
XCAFPrs::CollectStyleSettings(label, loc, set);
XCAFPrs_Style aStyle;
set.FindFromKey(e.Current(), aStyle);
auto & prop = OCCGeometry::GetProperties(e.Current());
if(aStyle.IsSetColorSurf())
prop.col = step_utils::ReadColor(aStyle.GetColorSurfRGBA());
}
// load names
auto workSession = reader.WS();
auto model = workSession->Model();
auto transProc = workSession->TransferReader()->TransientProcess();
Standard_Integer nb = model->NbEntities();
for (Standard_Integer i = 1; i <= nb; i++)
{
Handle(Standard_Transient) entity = model->Value(i);
auto item = Handle(StepRepr_RepresentationItem)::DownCast(entity);
if(item.IsNull())
continue;
TopoDS_Shape shape = TransferBRep::ShapeResult(transProc->Find(item));
string name = item->Name()->ToCString();
if (!transProc->IsBound(item))
continue;
OCCGeometry::GetProperties(shape).name = name;
}
occgeo->shape = shape;
occgeo->changed = 1;
occgeo->BuildFMap();
occgeo->CalcBoundingBox();
PrintContents (occgeo);
return occgeo;
}
// Philippose - 29/01/2009
/* Special STEP File load function including the ability
to extract individual surface colours via the extended
OpenCascade XDE and XCAF Feature set.
*/
OCCGeometry * LoadOCC_STEP (const filesystem::path & filename)
{
OCCGeometry * occgeo;
occgeo = new OCCGeometry;
LoadOCCInto(occgeo, filename);
return occgeo;
}
OCCGeometry *LoadOCC_BREP (const filesystem::path & filename)
{
OCCGeometry * occgeo;
occgeo = new OCCGeometry;
BRep_Builder aBuilder;
Standard_Boolean result = BRepTools::Read(occgeo->shape, filename.string().c_str(), aBuilder);
if(!result)
{
delete occgeo;
return NULL;
}
occgeo->changed = 1;
occgeo->BuildFMap();
occgeo->CalcBoundingBox();
PrintContents (occgeo);
return occgeo;
}
void OCCGeometry :: Save (const filesystem::path & filename) const
{
string ext = ToLower(filename.extension());
auto s_filename = filename.string();
auto c_filename = s_filename.c_str();
if (ext == ".igs")
{
IGESControl_Writer writer("millimeters", 1);
writer.AddShape (shape);
writer.Write (c_filename);
}
else if (ext == ".stp")
{
step_utils::WriteSTEP(*this, filename);
}
else if (ext == ".stl")
{
StlAPI_Writer writer;
writer.ASCIIMode() = Standard_True;
writer.Write (shape, c_filename);
}
else if (ext == ".stlb")
{
StlAPI_Writer writer;
writer.ASCIIMode() = Standard_False;
writer.Write (shape, c_filename);
}
throw NgException ("Unknown target format: " + filename);
}
void OCCGeometry :: SaveToMeshFile (ostream & ost) const
{
auto ss = make_shared<stringstream>();
TextOutArchive out(ss);
NetgenGeometry *geo = const_cast<OCCGeometry*>(this);
out & geo;
ost << "TextOutArchive" << endl;
ost << ss->str().size() << endl;
ost << ss->str();
}
void OCCGeometry :: DoArchive(Archive& ar)
{
constexpr int current_format_version = 0;
int format_version = current_format_version;
auto netgen_version = GetLibraryVersion("netgen");
ar & netgen_version & format_version;
if(ar.Output())
{
std::stringstream ss;
#if OCC_VERSION_HEX < 0x070600
BRepTools::Write(shape, ss);
#else
BRepTools::Write(shape, ss, false, false, TopTools_FormatVersion_VERSION_1);
#endif
ar << ss.str();
}
else
{
if(format_version>current_format_version)
throw Exception("Loading OCCGeometry from archive: unknown format version "
+ ToString(format_version)
+ ", written by netgen version "
+ ToString(netgen_version));
std::string str;
ar & str;
stringstream ss(str);
BRep_Builder builder;
BRepTools::Read(shape, ss, builder);
}
TopTools_IndexedMapOfShape shape_map;
Array<TopoDS_Shape> shape_list;
ar & dimension;
for (auto typ : { TopAbs_SOLID, TopAbs_FACE, TopAbs_EDGE })
for (TopExp_Explorer e(shape, typ); e.More(); e.Next())
{
auto ds = e.Current();
if(shape_map.FindIndex(ds) == 0)
{
shape_map.Add(ds);
shape_list.Append(ds);
}
}
for (auto s : shape_list)
{
bool has_properties = HaveProperties(s);
ar & has_properties;
if(has_properties)
ar & GetProperties(s);
bool has_identifications = HaveIdentifications(s);
ar & has_identifications;
if(has_identifications)
{
auto & idents = GetIdentifications(s);
auto n_idents = idents.size();
ar & n_idents;
idents.resize(n_idents);
for(auto i : Range(n_idents))
{
auto & id = idents[i];
int id_from, id_to;
if(ar.Output())
{
id_from = shape_map.FindIndex(id.from)-1;
id_to = shape_map.FindIndex(id.to)-1;
}
ar & id_from & id_to;
// trafo is now optional -> special treatment necessary for backward compatibility
if(ar.Output() || netgen_version >= "v6.2.2403-34-g571cbbe4")
ar & id.trafo;
else
{
auto trafo = Transformation<3>();
ar & trafo;
id.trafo = trafo;
}
ar & id.name;
if(ar.Input())
{
id.from = shape_list[id_from];
id.to = shape_list[id_to];
}
}
}
}
if(ar.Input())
{
changed = 1;
BuildFMap();
CalcBoundingBox();
}
}
const char * shapesname[] =
{" ", "CompSolids", "Solids", "Shells",
"Faces", "Wires", "Edges", "Vertices"};
const char * shapename[] =
{" ", "CompSolid", "Solid", "Shell",
"Face", "Wire", "Edge", "Vertex"};
const char * orientationstring[] =
{"+", "-", "i", "e"};
void OCCGeometry :: RecursiveTopologyTree (const TopoDS_Shape & sh,
stringstream & str,
TopAbs_ShapeEnum l,
bool isfree,
const char * lname)
{
if (l > TopAbs_VERTEX) return;
TopExp_Explorer e;
int count = 0;
int count2 = 0;
if (isfree)
e.Init(sh, l, TopAbs_ShapeEnum(l-1));
else
e.Init(sh, l);
for (; e.More(); e.Next())
{
count++;
stringstream lname2;
lname2 << lname << "/" << shapename[l] << count;
str << lname2.str() << " ";
switch (e.Current().ShapeType())
{
case TopAbs_SOLID:
count2 = somap.FindIndex(TopoDS::Solid(e.Current())); break;
case TopAbs_SHELL:
count2 = shmap.FindIndex(TopoDS::Shell(e.Current())); break;
case TopAbs_FACE:
count2 = fmap.FindIndex(TopoDS::Face(e.Current())); break;
case TopAbs_WIRE:
count2 = wmap.FindIndex(TopoDS::Wire(e.Current())); break;
case TopAbs_EDGE:
count2 = emap.FindIndex(TopoDS::Edge(e.Current())); break;
case TopAbs_VERTEX:
count2 = vmap.FindIndex(TopoDS::Vertex(e.Current())); break;
default:
cout << "RecursiveTopologyTree: Case " << e.Current().ShapeType() << " not handled" << endl;
}
int nrsubshapes = 0;
if (l <= TopAbs_WIRE)
{
TopExp_Explorer e2;
for (e2.Init (e.Current(), TopAbs_ShapeEnum (l+1));
e2.More(); e2.Next())
nrsubshapes++;
}
str << "{" << shapename[l] << " " << count2;
if(HaveProperties(e.Current()))
{
const auto& props = GetProperties(e.Current());
if(props.name || props.maxh < 1e99)
str << " - ";
if(props.name)
str << props.GetName();
if(props.maxh < 1e99)
str << " maxh(" << props.maxh << ")";
}
if (l <= TopAbs_EDGE)
{
str << " (" << orientationstring[e.Current().Orientation()];
if (nrsubshapes != 0) str << ", " << nrsubshapes;
str << ") } ";
}
else
str << " } ";
RecursiveTopologyTree (e.Current(), str, TopAbs_ShapeEnum (l+1),
false, (char*)lname2.str().c_str());
}
}
void OCCGeometry :: GetTopologyTree (stringstream & str)
{
cout << "Building topology tree ... " << flush;
RecursiveTopologyTree (shape, str, TopAbs_COMPSOLID, false, "CompSolids");
RecursiveTopologyTree (shape, str, TopAbs_SOLID, true, "FreeSolids");
RecursiveTopologyTree (shape, str, TopAbs_SHELL, true, "FreeShells");
RecursiveTopologyTree (shape, str, TopAbs_FACE, true, "FreeFaces");
RecursiveTopologyTree (shape, str, TopAbs_WIRE, true, "FreeWires");
RecursiveTopologyTree (shape, str, TopAbs_EDGE, true, "FreeEdges");
RecursiveTopologyTree (shape, str, TopAbs_VERTEX, true, "FreeVertices");
str << flush;
// cout << "done" << endl;
}
void OCCGeometry :: CheckIrregularEntities(stringstream & str)
{
ShapeAnalysis_CheckSmallFace csm;
csm.SetTolerance (1e-6);
TopTools_DataMapOfShapeListOfShape mapEdges;
ShapeAnalysis_DataMapOfShapeListOfReal mapParam;
TopoDS_Compound theAllVert;
int spotfaces = 0;
int stripsupportfaces = 0;
int singlestripfaces = 0;
int stripfaces = 0;
int facessplitbyvertices = 0;
int stretchedpinfaces = 0;
int smoothpinfaces = 0;
int twistedfaces = 0;
// int edgessamebutnotidentified = 0;
cout << "checking faces ... " << flush;
int i;
for (i = 1; i <= fmap.Extent(); i++)
{
TopoDS_Face face = TopoDS::Face (fmap(i));
TopoDS_Edge e1, e2;
if (csm.CheckSpotFace (face))
{
if (!spotfaces++)
str << "SpotFace {Spot face} ";
(*testout) << "Face " << i << " is a spot face" << endl;
str << "SpotFace/Face" << i << " ";
str << "{Face " << i << " } ";
}
if (csm.IsStripSupport (face))
{
if (!stripsupportfaces++)
str << "StripSupportFace {Strip support face} ";
(*testout) << "Face " << i << " has strip support" << endl;
str << "StripSupportFace/Face" << i << " ";
str << "{Face " << i << " } ";
}
if (csm.CheckSingleStrip(face, e1, e2))
{
if (!singlestripfaces++)
str << "SingleStripFace {Single strip face} ";
(*testout) << "Face " << i << " is a single strip (edge " << emap.FindIndex(e1)
<< " and edge " << emap.FindIndex(e2) << " are identical)" << endl;
str << "SingleStripFace/Face" << i << " ";
str << "{Face " << i << " (edge " << emap.FindIndex(e1)
<< " and edge " << emap.FindIndex(e2) << " are identical)} ";
}
if (csm.CheckStripFace(face, e1, e2))
{
if (!stripfaces++)
str << "StripFace {Strip face} ";
(*testout) << "Face " << i << " is a strip (edge " << emap.FindIndex(e1)
<< " and edge " << emap.FindIndex(e2)
<< " are identical)" << endl;
str << "StripFace/Face" << i << " ";
str << "{Face " << i << " (edge " << emap.FindIndex(e1)
<< " and edge " << emap.FindIndex(e2) << " are identical)} ";
}
if (int count = csm.CheckSplittingVertices(face, mapEdges, mapParam, theAllVert))
{
if (!facessplitbyvertices++)
str << "FaceSplitByVertices {Face split by vertices} ";
(*testout) << "Face " << i << " is split by " << count
<< " vertex/vertices " << endl;
str << "FaceSplitByVertices/Face" << i << " ";
str << "{Face " << i << " (split by " << count << "vertex/vertices)} ";
}
int whatrow, sens;
if (int type = csm.CheckPin (face, whatrow, sens))
{
if (type == 1)
{
if (!smoothpinfaces++)
str << "SmoothPinFace {Smooth pin face} ";
(*testout) << "Face " << i << " is a smooth pin" << endl;
str << "SmoothPinFace/Face" << i << " ";
str << "{Face " << i << " } ";
}
else
{
if (!stretchedpinfaces++)
str << "StretchedPinFace {Stretched pin face} ";
(*testout) << "Face " << i << " is a stretched pin" << endl;
str << "StretchedPinFace/Face" << i << " ";
str << "{Face " << i << " } ";
}
}
double paramu, paramv;
if (csm.CheckTwisted (face, paramu, paramv))
{
if (!twistedfaces++)
str << "TwistedFace {Twisted face} ";
(*testout) << "Face " << i << " is twisted" << endl;
str << "TwistedFace/Face" << i << " ";
str << "{Face " << i << " } ";
}
}
cout << "done" << endl;
cout << "checking edges ... " << flush;
// double dmax;
// int cnt = 0;
NgArray <double> edgeLengths;
NgArray <int> order;
edgeLengths.SetSize (emap.Extent());
order.SetSize (emap.Extent());
for (i = 1; i <= emap.Extent(); i++)
{
TopoDS_Edge edge1 = TopoDS::Edge (emap(i));
GProp_GProps system;
BRepGProp::LinearProperties(edge1, system);
edgeLengths[i-1] = system.Mass();
}
Sort (edgeLengths, order);
str << "ShortestEdges {Shortest edges} ";
for (i = 1; i <= min(20, emap.Extent()); i++)
{
str << "ShortestEdges/Edge" << i;
str << " {Edge " << order[i-1] << " (L=" << edgeLengths[order[i-1]-1] << ")} ";
}
str << flush;
cout << "done" << endl;
}
void OCCGeometry :: GetUnmeshedFaceInfo (stringstream & str)
{
for (int i = 1; i <= fmap.Extent(); i++)
{
if (facemeshstatus[i-1] == -1)
str << "Face" << i << " {Face " << i << " } ";
}
str << flush;
}
void OCCGeometry :: GetNotDrawableFaces (stringstream & str)
{
for (int i = 1; i <= fmap.Extent(); i++)
{
if (!fvispar[i-1].IsDrawable())
str << "Face" << i << " {Face " << i << " } ";
}
str << flush;
}
bool OCCGeometry :: ErrorInSurfaceMeshing ()
{
for (int i = 1; i <= fmap.Extent(); i++)
if (facemeshstatus[i-1] == -1)
return true;
return false;
}
bool IsMappedShape(const Transformation<3> & trafo, const TopoDS_Shape & me, const TopoDS_Shape & you)
{
if(me.ShapeType() != you.ShapeType()) return false;
Bnd_Box bbox;
BRepBndLib::Add(me, bbox);
BRepBndLib::Add(you, bbox);
BoxTree<3> tree( occ2ng(bbox.CornerMin()), occ2ng(bbox.CornerMax()) );
Point<3> c_me = occ2ng(Center(me));
Point<3> c_you = occ2ng(Center(you));
if(tree.GetTolerance() < Dist(trafo(c_me), c_you))
return false;
TopTools_IndexedMapOfShape vmap;
std::vector<optional<TopoDS_Shape>> verts;
auto verts_me = GetVertices(me);
auto verts_you = GetVertices(you);
if(verts_me.size() != verts_you.size())
return false;
for (auto i : Range(verts_me.size()))
{
auto s = verts_me[i];
if(vmap.FindIndex(s) > 0)
continue;
auto p = trafo(occ2ng(s));
tree.Insert( p, i );
vmap.Add(s);
verts.push_back(nullopt);
}
for (auto vert : verts_you)
{
auto s = vert;
auto p = occ2ng(s);
bool vert_mapped = false;
tree.GetFirstIntersecting( p, p, [&](size_t i ) {
vmap.Add(verts_me[i]);
verts[vmap.FindIndex(verts_me[i])-1] = s;
vert_mapped = true;
return true;
});
if(!vert_mapped)
return false;
}
return true;
}
void Identify(const TopoDS_Shape & me, const TopoDS_Shape & you, string name, Identifications::ID_TYPE type, std::optional<std::variant<gp_Trsf, gp_GTrsf>> opt_trafo)
{
Transformation<3> trafo;
if(opt_trafo)
{
trafo = occ2ng(*opt_trafo);
}
else
{
auto v = occ2ng(Center(you)) - occ2ng(Center(me));
trafo = Transformation<3>(v);
}
ListOfShapes list_me, list_you;
list_me.push_back(me);
list_you.push_back(you);
Identify(list_me, list_you, name, type, trafo);
}
void Identify(const ListOfShapes & me, const ListOfShapes & you, string name, Identifications::ID_TYPE type, Transformation<3> trafo)
{
ListOfShapes id_me;
ListOfShapes id_you;
if(auto faces_me = me.Faces(); faces_me.size()>0)
{
id_me = faces_me;
id_you = you.Faces();
}
else if(auto edges_me = me.Edges(); edges_me.size()>0)
{
id_me = edges_me;
id_you = you.Edges();
}
else
{
id_me = me.Vertices();
id_you = you.Vertices();
}
for(auto shape_me : id_me)
for(auto shape_you : id_you)
{
if(!IsMappedShape(trafo, shape_me, shape_you))
continue;
OCCGeometry::GetIdentifications(shape_me).push_back
(OCCIdentification { shape_me, shape_you, trafo, name, type });
}
}
void OCCParameters :: Print(ostream & ost) const
{
ost << "OCC Parameters:" << endl
<< "minimum edge length: " << resthminedgelenenable
<< ", min len = " << resthminedgelen << endl;
}
DLL_HEADER extern OCCParameters occparam;
OCCParameters occparam;
// int OCCGeometry :: GenerateMesh (shared_ptr<Mesh> & mesh, MeshingParameters & mparam)
// {
// return OCCGenerateMesh (*this, mesh, mparam, occparam);
// }
static RegisterClassForArchive<OCCGeometry, NetgenGeometry> regnggeo;
namespace step_utils
{
void LoadProperties(const TopoDS_Shape & shape,
const STEPCAFControl_Reader & reader,
const Handle(TDocStd_Document) step_doc)
{
static Timer t("step_utils::LoadProperties"); RegionTimer rt(t);
auto workSession = reader.Reader().WS();
auto model = workSession->Model();
auto transferReader = workSession->TransferReader();
auto transProc = transferReader->TransientProcess();
auto shapeTool = XCAFDoc_DocumentTool::ShapeTool(step_doc->Main());
// load colors
for (auto typ : { TopAbs_SOLID, TopAbs_FACE, TopAbs_EDGE })
for (TopExp_Explorer e(shape, typ); e.More(); e.Next())
{
TDF_Label label;
shapeTool->Search(e.Current(), label);
if(label.IsNull())
continue;
XCAFPrs_IndexedDataMapOfShapeStyle set;
TopLoc_Location loc;
XCAFPrs::CollectStyleSettings(label, loc, set);
XCAFPrs_Style aStyle;
set.FindFromKey(e.Current(), aStyle);
auto & prop = OCCGeometry::GetProperties(e.Current());
if(aStyle.IsSetColorSurf())
prop.col = step_utils::ReadColor(aStyle.GetColorSurfRGBA());
}
// load names
Standard_Integer nb = model->NbEntities();
for (Standard_Integer i = 1; i <= nb; i++)
{
Handle(Standard_Transient) entity = model->Value(i);
auto item = Handle(StepRepr_RepresentationItem)::DownCast(entity);
if(item.IsNull())
continue;
TopoDS_Shape shape = TransferBRep::ShapeResult(transProc->Find(item));
string name = item->Name()->ToCString();
if (!transProc->IsBound(item))
continue;
OCCGeometry::GetProperties(shape).name = name;
}
// load custom data (maxh etc.)
for (Standard_Integer i = 1; i <= nb; i++)
{
Handle(Standard_Transient) entity = model->Value(i);
auto item = Handle(StepRepr_CompoundRepresentationItem)::DownCast(entity);
if(item.IsNull())
continue;
auto shape_item = item->ItemElementValue(1);
TopoDS_Shape shape = TransferBRep::ShapeResult(transProc->Find(shape_item));
string name = item->Name()->ToCString();
if(name == "netgen_geometry_identification")
ReadIdentifications(item, transProc);
if(name != "netgen_geometry_properties")
continue;
auto & prop = OCCGeometry::GetProperties(shape);
auto nprops = item->NbItemElement();
for(auto i : Range(2, nprops+1))
{
auto prop_item = item->ItemElementValue(i);
string prop_name = prop_item->Name()->ToCString();
if(prop_name=="maxh")
prop.maxh = Handle(StepRepr_ValueRepresentationItem)::DownCast(prop_item)
->ValueComponentMember()->Real();
if(prop_name=="hpref")
prop.hpref = Handle(StepRepr_ValueRepresentationItem)::DownCast(prop_item)
->ValueComponentMember()->Real();
}
}
}
void WriteProperties(const Handle(Interface_InterfaceModel) model, const Handle(Transfer_FinderProcess) finder, const TopoDS_Shape & shape)
{
static const ShapeProperties default_props;
Handle(StepRepr_RepresentationItem) item = STEPConstruct::FindEntity(finder, shape);
if(!item)
return;
auto prop = OCCGeometry::GetProperties(shape);
if(auto n = prop.name)
item->SetName(MakeName(*n));
Array<Handle(StepRepr_RepresentationItem)> props;
props.Append(item);
if(auto maxh = prop.maxh; maxh != default_props.maxh)
props.Append( MakeReal(maxh, "maxh") );
if(auto hpref = prop.hpref; hpref != default_props.hpref)
props.Append( MakeReal(hpref, "hpref") );
if(props.Size()>1)
{
for(auto & item : props.Range(1, props.Size()))
model->AddEntity(item);
auto compound = MakeCompound(props, "netgen_geometry_properties");
model->AddEntity(compound);
}
WriteIdentifications(model, shape, finder);
}
void WriteIdentifications(const Handle(Interface_InterfaceModel) model, const TopoDS_Shape & shape, const Handle(Transfer_FinderProcess) finder)
{
Handle(StepRepr_RepresentationItem) item = STEPConstruct::FindEntity(finder, shape);
if(!OCCGeometry::HaveIdentifications(shape))
return;
auto & identifications = OCCGeometry::GetIdentifications(shape);
if(identifications.size()==0)
return;
// auto n = identifications.size();
Array<Handle(StepRepr_RepresentationItem)> ident_items;
ident_items.Append(item);
for(auto & ident : identifications)
{
const auto& to = STEPConstruct::FindEntity(finder, ident.from == shape ? ident.to : ident.from);
if(to.IsNull())
continue;
Array<Handle(StepRepr_RepresentationItem)> items;
items.Append(MakeReal(ident.from == shape ? 1 : 0));
items.Append(to);
Transformation<3> trafo;
if(ident.trafo) trafo = *ident.trafo;
auto & m = trafo.GetMatrix();
for(auto i : Range(9))
items.Append(MakeReal(m(i)));
auto & v = trafo.GetVector();
for(auto i : Range(3))
items.Append(MakeReal(v(i)));
items.Append(MakeInt(ident.type));
for(auto & item : items.Range(0, items.Size()))
model->AddEntity(item);
ident_items.Append(MakeCompound(items, ident.name));
}
for(auto & item : ident_items.Range(1, ident_items.Size()))
model->AddEntity(item);
auto comp = MakeCompound(ident_items, "netgen_geometry_identification");
model->AddEntity(comp);
}
void ReadIdentifications(Handle(StepRepr_RepresentationItem) item, Handle(Transfer_TransientProcess) transProc)
{
auto idents = Handle(StepRepr_CompoundRepresentationItem)::DownCast(item);
auto n = idents->NbItemElement();
std::vector<OCCIdentification> result;
auto shape_origin = TransferBRep::ShapeResult(transProc->Find(idents->ItemElementValue(1)));
for(auto i : Range(2,n+1))
{
auto id_item = Handle(StepRepr_CompoundRepresentationItem)::DownCast(idents->ItemElementValue(i));
OCCIdentification ident;
ident.name = id_item->Name()->ToCString();
auto is_from = ReadReal(id_item->ItemElementValue(1));
if(is_from)
{
ident.from = shape_origin;
ident.to = TransferBRep::ShapeResult(transProc->Find(id_item->ItemElementValue(2)));
}
else
{
ident.from = TransferBRep::ShapeResult(
transProc->Find(id_item->ItemElementValue(2)));
ident.to = shape_origin;
}
Transformation<3> trafo;
auto & m = trafo.GetMatrix();
for(auto i : Range(9))
m(i) = ReadReal(id_item->ItemElementValue(3+i));
auto & v = trafo.GetVector();
for(auto i : Range(3))
v(i) = ReadReal(id_item->ItemElementValue(12+i));
if(FlatVector(9, &trafo.GetMatrix()(0,0)).L2Norm() != .0 && trafo.GetVector().Length2() != .0)
ident.trafo = trafo;
ident.type = Identifications::ID_TYPE(ReadInt(id_item->ItemElementValue(15)));
result.push_back(ident);
}
OCCGeometry::GetIdentifications(shape_origin) = result;
}
void WriteSTEP(const TopoDS_Shape & shape, const filesystem::path & filename)
{
Interface_Static::SetCVal("write.step.schema", "AP242IS");
Interface_Static::SetIVal("write.step.assembly",1);
Handle(XCAFApp_Application) app = XCAFApp_Application::GetApplication();
Handle(TDocStd_Document) doc;
app->NewDocument("STEP-XCAF", doc);
Handle(XCAFDoc_ShapeTool) shapetool = XCAFDoc_DocumentTool::ShapeTool(doc->Main());
Handle(XCAFDoc_ColorTool) colortool = XCAFDoc_DocumentTool::ColorTool(doc->Main());
TDF_Label label = shapetool->NewShape();
shapetool->SetShape(label, shape);
Handle(XSControl_WorkSession) session = new XSControl_WorkSession;
STEPCAFControl_Writer writer(session);
const Handle(Interface_InterfaceModel) model = session->Model();
// Set colors (BEFORE transferring shape into step data structures)
for (auto typ : { TopAbs_SOLID, TopAbs_FACE, TopAbs_EDGE })
for (TopExp_Explorer e(shape, typ); e.More(); e.Next())
{
auto prop = OCCGeometry::GetProperties(e.Current());
if(auto col = prop.col)
colortool->SetColor(e.Current(), step_utils::MakeColor(*col), XCAFDoc_ColorGen);
}
// Transfer shape into step data structures -> now we can manipulate/add step representation items
writer.Transfer(doc, STEPControl_AsIs);
// Write all other properties
auto finder = session->TransferWriter()->FinderProcess();
for (auto typ : { TopAbs_SOLID, TopAbs_FACE, TopAbs_EDGE })
for (TopExp_Explorer e(shape, typ); e.More(); e.Next())
WriteProperties(model, finder, e.Current());
writer.Write(filename.string().c_str());
}
} // namespace step_utils
}
#endif