netgen/libsrc/core/simd_generic.hpp
2023-07-28 11:55:26 +02:00

783 lines
24 KiB
C++

#ifndef NETGEN_CORE_SIMD_GENERIC_HPP
#define NETGEN_CORE_SIMD_GENERIC_HPP
/**************************************************************************/
/* File: simd_base.hpp */
/* Author: Joachim Schoeberl, Matthias Hochsteger */
/* Date: 25. Mar. 16 */
/**************************************************************************/
#include <type_traits>
#include <functional>
#include <tuple>
#include <cmath>
#include "array.hpp"
namespace ngcore
{
#if defined __AVX512F__
#define NETGEN_DEFAULT_SIMD_SIZE 8
#elif defined __AVX__
#define NETGEN_DEFAULT_SIMD_SIZE 4
#else
#define NETGEN_DEFAULT_SIMD_SIZE 2
#endif
constexpr int GetDefaultSIMDSize() {
return NETGEN_DEFAULT_SIMD_SIZE;
}
constexpr bool IsNativeSIMDSize(int n) {
if(n==1) return true;
if(n==2) return true;
#if defined __AVX__
if(n==4) return true;
#endif
#if defined __AVX512F__
if(n==8) return true;
#endif
return false;
}
// split n = k+l such that k is the largest natively supported simd size < n
constexpr int GetLargestNativeSIMDPart(int n) {
int k = n-1;
while(!IsNativeSIMDSize(k))
k--;
return k;
}
template <typename T, int N=GetDefaultSIMDSize()> class SIMD;
class mask64;
////////////////////////////////////////////////////////////////////////////
namespace detail {
template <typename T, size_t N, size_t... I>
auto array_range_impl(std::array<T, N> const& arr,
size_t first,
std::index_sequence<I...>)
-> std::array<T, sizeof...(I)> {
return {arr[first + I]...};
}
template <size_t S, typename T, size_t N>
auto array_range(std::array<T, N> const& arr, size_t first) {
return array_range_impl(arr, first, std::make_index_sequence<S>{});
}
} // namespace detail
////////////////////////////////////////////////////////////////////////////
// mask
template <>
class SIMD<mask64,1>
{
int64_t mask;
public:
SIMD (int64_t i)
: mask(i > 0 ? -1 : 0) { ; }
bool Data() const { return mask; }
static constexpr int Size() { return 1; }
auto operator[] (int /* i */) const { return mask; }
};
template <int N>
class alignas(GetLargestNativeSIMDPart(N)*sizeof(int64_t)) SIMD<mask64,N>
{
static constexpr int N1 = GetLargestNativeSIMDPart(N);
static constexpr int N2 = N-N1;
SIMD<mask64,N1> lo;
SIMD<mask64,N2> hi;
public:
SIMD (int64_t i) : lo(i), hi(i-N1 ) { ; }
SIMD (SIMD<mask64,N1> lo_, SIMD<mask64,N2> hi_) : lo(lo_), hi(hi_) { ; }
SIMD<mask64,N1> Lo() const { return lo; }
SIMD<mask64,N2> Hi() const { return hi; }
static constexpr int Size() { return N; }
};
template<int N>
NETGEN_INLINE SIMD<mask64,N> operator&& (SIMD<mask64,N> a, SIMD<mask64,N> b)
{
if constexpr(N==1) return a.Data() && b.Data();
else return { a.Lo() && b.Lo(), a.Hi() && b.Hi() };
}
////////////////////////////////////////////////////////////////////////////
// int64
template<>
class SIMD<int64_t,1>
{
int64_t data;
public:
static constexpr int Size() { return 1; }
SIMD () {}
SIMD (const SIMD &) = default;
SIMD & operator= (const SIMD &) = default;
SIMD (int val) : data{val} {}
SIMD (int64_t val) : data{val} {}
SIMD (size_t val) : data(val) {}
explicit SIMD (std::array<int64_t, 1> arr)
: data{arr[0]}
{}
int64_t operator[] (int i) const { return ((int64_t*)(&data))[i]; }
auto Data() const { return data; }
static SIMD FirstInt(int64_t n0=0) { return {n0}; }
template <int I>
int64_t Get()
{
static_assert(I==0);
return data;
}
};
template<int N>
class alignas(GetLargestNativeSIMDPart(N)*sizeof(int64_t)) SIMD<int64_t,N>
{
static constexpr int N1 = GetLargestNativeSIMDPart(N);
static constexpr int N2 = N-N1;
SIMD<int64_t,N1> lo;
SIMD<int64_t,N2> high;
public:
static constexpr int Size() { return N; }
SIMD () {}
SIMD (const SIMD &) = default;
SIMD & operator= (const SIMD &) = default;
SIMD (int val) : lo{val}, high{val} { ; }
SIMD (int64_t val) : lo{val}, high{val} { ; }
SIMD (size_t val) : lo{val}, high{val} { ; }
SIMD (SIMD<int64_t,N1> lo_, SIMD<int64_t,N2> high_) : lo(lo_), high(high_) { ; }
explicit SIMD( std::array<int64_t, N> arr )
: lo(detail::array_range<N1>(arr, 0)),
high(detail::array_range<N2>(arr, N1))
{}
template<typename ...T>
explicit SIMD(const T... vals)
: lo(detail::array_range<N1>(std::array<int64_t, N>{vals...}, 0)),
high(detail::array_range<N2>(std::array<int64_t, N>{vals...}, N1))
{
static_assert(sizeof...(vals)==N, "wrong number of arguments");
}
template<typename T, typename std::enable_if<std::is_convertible<T, std::function<int64_t(int)>>::value, int>::type = 0>
SIMD (const T & func)
{
for(auto i : IntRange(N1))
lo[i] = func(i);
for(auto i : IntRange(N2))
high[i] = func(N1+i);
}
auto Lo() const { return lo; }
auto Hi() const { return high; }
int64_t operator[] (int i) const { return ((int64_t*)(&lo))[i]; }
/*
operator tuple<int64_t&,int64_t&,int64_t&,int64_t&> ()
{ return tuple<int64_t&,int64_t&,int64_t&,int64_t&>((*this)[0], (*this)[1], (*this)[2], (*this)[3]); }
*/
/*
static SIMD FirstInt() { return { 0, 1, 2, 3 }; }
*/
static SIMD FirstInt(int64_t n0=0) { return {SIMD<int64_t,N1>::FirstInt(n0), SIMD<int64_t,N2>::FirstInt(n0+N1)}; }
template <int I>
int64_t Get()
{
static_assert(I>=0 && I<N, "Index out of range");
if constexpr(I<N1) return lo.template Get<I>();
else return high.template Get<I-N1>();
}
};
////////////////////////////////////////////////////////////////////////////
// double
template<>
class SIMD<double,1>
{
double data;
public:
static constexpr int Size() { return 1; }
SIMD () {}
SIMD (const SIMD &) = default;
SIMD & operator= (const SIMD &) = default;
SIMD (double val) { data = val; }
SIMD (int val) { data = val; }
SIMD (size_t val) { data = val; }
SIMD (double const * p) { data = *p; }
SIMD (double const * p, SIMD<mask64,1> mask) { data = mask.Data() ? *p : 0.0; }
explicit SIMD (std::array<double, 1> arr)
: data{arr[0]}
{}
template <typename T, typename std::enable_if<std::is_convertible<T,std::function<double(int)>>::value,int>::type = 0>
SIMD (const T & func)
{
data = func(0);
}
template <typename T, typename std::enable_if<std::is_convertible<T,std::function<double(int)>>::value,int>::type = 0>
SIMD & operator= (const T & func)
{
data = func(0);
return *this;
}
void Store (double * p) { *p = data; }
void Store (double * p, SIMD<mask64,1> mask) { if (mask.Data()) *p = data; }
double operator[] (int i) const { return ((double*)(&data))[i]; }
double Data() const { return data; }
template <int I>
double Get()
{
static_assert(I==0);
return data;
}
};
template<int N>
class alignas(GetLargestNativeSIMDPart(N)*sizeof(double)) SIMD<double, N>
{
static constexpr int N1 = GetLargestNativeSIMDPart(N);
static constexpr int N2 = N-N1;
SIMD<double, N1> lo;
SIMD<double, N2> high;
public:
static constexpr int Size() { return N; }
SIMD () {}
SIMD (const SIMD &) = default;
SIMD (SIMD<double,N1> lo_, SIMD<double,N2> hi_) : lo(lo_), high(hi_) { ; }
template <typename T, typename std::enable_if<std::is_convertible<T,std::function<double(int)>>::value,int>::type = 0>
SIMD (const T & func)
{
double *p = (double*)this;
for(auto i : IntRange(N))
p[i] = func(i);
}
template <typename T, typename std::enable_if<std::is_convertible<T,std::function<double(int)>>::value,int>::type = 0>
SIMD & operator= (const T & func)
{
double *p = (double*)this;
for(auto i : IntRange(N))
p[i] = func(i);
return *this;
}
SIMD & operator= (const SIMD &) = default;
SIMD (double val) : lo{val}, high{val} { ; }
SIMD (int val) : lo{val}, high{val} { ; }
SIMD (size_t val) : lo{val}, high{val} { ; }
SIMD (double const * p) : lo{p}, high{p+N1} { ; }
SIMD (double const * p, SIMD<mask64,N> mask)
: lo{p, mask.Lo()}, high{p+N1, mask.Hi()}
{ }
SIMD (double * p) : lo{p}, high{p+N1} { ; }
SIMD (double * p, SIMD<mask64,N> mask)
: lo{p, mask.Lo()}, high{p+N1, mask.Hi()}
{ }
explicit SIMD( std::array<double, N> arr )
: lo(detail::array_range<N1>(arr, 0)),
high(detail::array_range<N2>(arr, N1))
{}
template<typename ...T>
explicit SIMD(const T... vals)
: lo(detail::array_range<N1>(std::array<double, N>{vals...}, 0)),
high(detail::array_range<N2>(std::array<double, N>{vals...}, N1))
{
static_assert(sizeof...(vals)==N, "wrong number of arguments");
}
void Store (double * p) { lo.Store(p); high.Store(p+N1); }
void Store (double * p, SIMD<mask64,N> mask)
{
lo.Store(p, mask.Lo());
high.Store(p+N1, mask.Hi());
}
auto Lo() const { return lo; }
auto Hi() const { return high; }
double operator[] (int i) const { return ((double*)(&lo))[i]; }
template<typename=std::enable_if<N==2>>
operator std::tuple<double&,double&> ()
{
double *p = (double*)this;
return std::tuple<double&,double&>(p[0], p[1]);
}
template<typename=std::enable_if<N==4>>
operator std::tuple<double&,double&,double&,double&> ()
{ return std::tuple<double&,double&,double&,double&>((*this)[0], (*this)[1], (*this)[2], (*this)[3]); }
template <int I>
double Get()
{
static_assert(I>=0 && I<N, "Index out of range");
if constexpr(I<N1) return lo.template Get<I>();
else return high.template Get<I-N1>();
}
auto Data() const { return *this; }
};
// Generic operators for any arithmetic type/simd width
template <typename T, int N>
NETGEN_INLINE SIMD<T,N> operator+ (SIMD<T,N> a, SIMD<T,N> b) {
if constexpr(N==1) return a.Data()+b.Data();
else return { a.Lo()+b.Lo(), a.Hi()+b.Hi() };
}
template <typename T, int N>
NETGEN_INLINE SIMD<T,N> operator- (SIMD<T,N> a, SIMD<T,N> b) {
if constexpr(N==1) return a.Data()-b.Data();
else return { a.Lo()-b.Lo(), a.Hi()-b.Hi() };
}
template <typename T, int N>
NETGEN_INLINE SIMD<T,N> operator- (SIMD<T,N> a) {
if constexpr(N==1) return -a.Data();
else return { -a.Lo(), -a.Hi() };
}
template <typename T, int N>
NETGEN_INLINE SIMD<T,N> operator* (SIMD<T,N> a, SIMD<T,N> b) {
if constexpr(N==1) return a.Data()*b.Data();
else return { a.Lo()*b.Lo(), a.Hi()*b.Hi() };
}
template <typename T, int N>
NETGEN_INLINE SIMD<T,N> operator/ (SIMD<T,N> a, SIMD<T,N> b) {
if constexpr(N==1) return a.Data()/b.Data();
else return { a.Lo()/b.Lo(), a.Hi()/b.Hi() };
}
template <typename T, int N>
NETGEN_INLINE SIMD<mask64,N> operator< (SIMD<T,N> a, SIMD<T,N> b)
{
if constexpr(N==1) return a.Data() < b.Data();
else return { a.Lo()<b.Lo(), a.Hi()<b.Hi() };
}
template <typename T, int N>
NETGEN_INLINE SIMD<mask64,N> operator<= (SIMD<T,N> a, SIMD<T,N> b)
{
if constexpr(N==1) return a.Data() <= b.Data();
else return { a.Lo()<=b.Lo(), a.Hi()<=b.Hi() };
}
template <typename T, int N>
NETGEN_INLINE SIMD<mask64,N> operator> (SIMD<T,N> a, SIMD<T,N> b)
{
if constexpr(N==1) return a.Data() > b.Data();
else return { a.Lo()>b.Lo(), a.Hi()>b.Hi() };
}
template <typename T, int N>
NETGEN_INLINE SIMD<mask64,N> operator>= (SIMD<T,N> a, SIMD<T,N> b)
{
if constexpr(N==1) return a.Data() >= b.Data();
else return { a.Lo()>=b.Lo(), a.Hi()>=b.Hi() };
}
template <typename T, int N>
NETGEN_INLINE SIMD<mask64,N> operator== (SIMD<T,N> a, SIMD<T,N> b)
{
if constexpr(N==1) return a.Data() == b.Data();
else return { a.Lo()==b.Lo(), a.Hi()==b.Hi() };
}
template <typename T, int N>
NETGEN_INLINE SIMD<mask64,N> operator!= (SIMD<T,N> a, SIMD<T,N> b)
{
if constexpr(N==1) return a.Data() != b.Data();
else return { a.Lo()!=b.Lo(), a.Hi()!=b.Hi() };
}
// int64_t operators with scalar operand (implement overloads to allow implicit casts for second operand)
template <int N>
NETGEN_INLINE SIMD<int64_t,N> operator+ (SIMD<int64_t,N> a, int64_t b) { return a+SIMD<int64_t,N>(b); }
template <int N>
NETGEN_INLINE SIMD<int64_t,N> operator+ (int64_t a, SIMD<int64_t,N> b) { return SIMD<int64_t,N>(a)+b; }
template <int N>
NETGEN_INLINE SIMD<int64_t,N> operator- (int64_t a, SIMD<int64_t,N> b) { return SIMD<int64_t,N>(a)-b; }
template <int N>
NETGEN_INLINE SIMD<int64_t,N> operator- (SIMD<int64_t,N> a, int64_t b) { return a-SIMD<int64_t,N>(b); }
template <int N>
NETGEN_INLINE SIMD<int64_t,N> operator* (int64_t a, SIMD<int64_t,N> b) { return SIMD<int64_t,N>(a)*b; }
template <int N>
NETGEN_INLINE SIMD<int64_t,N> operator* (SIMD<int64_t,N> b, int64_t a) { return SIMD<int64_t,N>(a)*b; }
template <int N>
NETGEN_INLINE SIMD<int64_t,N> operator/ (SIMD<int64_t,N> a, int64_t b) { return a/SIMD<int64_t,N>(b); }
template <int N>
NETGEN_INLINE SIMD<int64_t,N> operator/ (int64_t a, SIMD<int64_t,N> b) { return SIMD<int64_t,N>(a)/b; }
template <int N>
NETGEN_INLINE SIMD<int64_t,N> & operator+= (SIMD<int64_t,N> & a, SIMD<int64_t,N> b) { a=a+b; return a; }
template <int N>
NETGEN_INLINE SIMD<int64_t,N> & operator+= (SIMD<int64_t,N> & a, int64_t b) { a+=SIMD<int64_t,N>(b); return a; }
template <int N>
NETGEN_INLINE SIMD<int64_t,N> & operator-= (SIMD<int64_t,N> & a, SIMD<int64_t,N> b) { a = a-b; return a; }
template <int N>
NETGEN_INLINE SIMD<int64_t,N> & operator-= (SIMD<int64_t,N> & a, int64_t b) { a-=SIMD<int64_t,N>(b); return a; }
template <int N>
NETGEN_INLINE SIMD<int64_t,N> & operator*= (SIMD<int64_t,N> & a, SIMD<int64_t,N> b) { a=a*b; return a; }
template <int N>
NETGEN_INLINE SIMD<int64_t,N> & operator*= (SIMD<int64_t,N> & a, int64_t b) { a*=SIMD<int64_t,N>(b); return a; }
template <int N>
NETGEN_INLINE SIMD<int64_t,N> & operator/= (SIMD<int64_t,N> & a, SIMD<int64_t,N> b) { a = a/b; return a; }
// double operators with scalar operand (implement overloads to allow implicit casts for second operand)
template <int N>
NETGEN_INLINE SIMD<double,N> operator+ (SIMD<double,N> a, double b) { return a+SIMD<double,N>(b); }
template <int N>
NETGEN_INLINE SIMD<double,N> operator+ (double a, SIMD<double,N> b) { return SIMD<double,N>(a)+b; }
template <int N>
NETGEN_INLINE SIMD<double,N> operator- (double a, SIMD<double,N> b) { return SIMD<double,N>(a)-b; }
template <int N>
NETGEN_INLINE SIMD<double,N> operator- (SIMD<double,N> a, double b) { return a-SIMD<double,N>(b); }
template <int N>
NETGEN_INLINE SIMD<double,N> operator* (double a, SIMD<double,N> b) { return SIMD<double,N>(a)*b; }
template <int N>
NETGEN_INLINE SIMD<double,N> operator* (SIMD<double,N> b, double a) { return SIMD<double,N>(a)*b; }
template <int N>
NETGEN_INLINE SIMD<double,N> operator/ (SIMD<double,N> a, double b) { return a/SIMD<double,N>(b); }
template <int N>
NETGEN_INLINE SIMD<double,N> operator/ (double a, SIMD<double,N> b) { return SIMD<double,N>(a)/b; }
template <int N>
NETGEN_INLINE SIMD<double,N> & operator+= (SIMD<double,N> & a, SIMD<double,N> b) { a=a+b; return a; }
template <int N>
NETGEN_INLINE SIMD<double,N> & operator+= (SIMD<double,N> & a, double b) { a+=SIMD<double,N>(b); return a; }
template <int N>
NETGEN_INLINE SIMD<double,N> & operator-= (SIMD<double,N> & a, SIMD<double,N> b) { a = a-b; return a; }
template <int N>
NETGEN_INLINE SIMD<double,N> & operator-= (SIMD<double,N> & a, double b) { a-=SIMD<double,N>(b); return a; }
template <int N>
NETGEN_INLINE SIMD<double,N> & operator*= (SIMD<double,N> & a, SIMD<double,N> b) { a=a*b; return a; }
template <int N>
NETGEN_INLINE SIMD<double,N> & operator*= (SIMD<double,N> & a, double b) { a*=SIMD<double,N>(b); return a; }
template <int N>
NETGEN_INLINE SIMD<double,N> & operator/= (SIMD<double,N> & a, SIMD<double,N> b) { a = a/b; return a; }
// double functions
template <int N>
NETGEN_INLINE SIMD<double,N> L2Norm2 (SIMD<double,N> a) { return a*a; }
template <int N>
NETGEN_INLINE SIMD<double,N> Trans (SIMD<double,N> a) { return a; }
template <int N>
NETGEN_INLINE double HSum (SIMD<double,N> a)
{
if constexpr(N==1)
return a.Data();
else
return HSum(a.Lo()) + HSum(a.Hi());
}
template<typename T, int N>
NETGEN_INLINE SIMD<T,N> IfPos (SIMD<T,N> a, SIMD<T,N> b, SIMD<T,N> c)
{
if constexpr(N==1) return a.Data()>0.0 ? b : c;
else return { IfPos(a.Lo(), b.Lo(), c.Lo()), IfPos(a.Hi(), b.Hi(), c.Hi())};
}
template<typename T, int N>
NETGEN_INLINE SIMD<T,N> IfZero (SIMD<T,N> a, SIMD<T,N> b, SIMD<T,N> c)
{
if constexpr(N==1) return a.Data()==0.0 ? b : c;
else return { IfZero(a.Lo(), b.Lo(), c.Lo()), IfZero(a.Hi(), b.Hi(), c.Hi())};
}
template<typename T, int N>
NETGEN_INLINE SIMD<T,N> If (SIMD<mask64,N> a, SIMD<T,N> b, SIMD<T,N> c)
{
if constexpr(N==1) return a.Data() ? b : c;
else return { If(a.Lo(), b.Lo(), c.Lo()), If(a.Hi(), b.Hi(), c.Hi())};
}
// a*b+c
template <typename T1, typename T2, typename T3>
NETGEN_INLINE auto FMA(T1 a, T2 b, T3 c)
{
return c+a*b;
}
template <typename T1, typename T2, typename T3>
NETGEN_INLINE auto FNMA(T1 a, T2 b, T3 c)
{
return c-a*b;
}
// update form of fma
template <int N>
void FMAasm (SIMD<double,N> a, SIMD<double,N> b, SIMD<double,N> & sum)
{
sum = FMA(a,b,sum);
}
// update form of fms
template <int N>
void FNMAasm (SIMD<double,N> a, SIMD<double,N> b, SIMD<double,N> & sum)
{
// sum -= a*b;
sum = FNMA(a,b,sum);
}
template <int i, typename T, int N>
T get(SIMD<T,N> a) { return a.template Get<i>(); }
template <int NUM, typename FUNC>
NETGEN_INLINE void Iterate2 (FUNC f)
{
if constexpr (NUM > 1) Iterate2<NUM-1> (f);
if constexpr (NUM >= 1) f(std::integral_constant<int,NUM-1>());
}
template <typename T, int N>
ostream & operator<< (ostream & ost, SIMD<T,N> simd)
{
/*
ost << simd[0];
for (int i = 1; i < simd.Size(); i++)
ost << " " << simd[i];
*/
Iterate2<simd.Size()> ([&] (auto I) {
if (I.value != 0) ost << " ";
ost << get<I.value>(simd);
});
return ost;
}
using std::sqrt;
template <int N>
NETGEN_INLINE ngcore::SIMD<double,N> sqrt (ngcore::SIMD<double,N> a) {
return ngcore::SIMD<double,N>([a](int i)->double { return sqrt(a[i]); } );
}
using std::fabs;
template <int N>
NETGEN_INLINE ngcore::SIMD<double,N> fabs (ngcore::SIMD<double,N> a) {
return ngcore::SIMD<double,N>([a](int i)->double { return fabs(a[i]); } );
}
using std::floor;
template <int N>
NETGEN_INLINE ngcore::SIMD<double,N> floor (ngcore::SIMD<double,N> a) {
return ngcore::SIMD<double,N>([a](int i)->double { return floor(a[i]); } );
}
using std::ceil;
template <int N>
NETGEN_INLINE ngcore::SIMD<double,N> ceil (ngcore::SIMD<double,N> a) {
return ngcore::SIMD<double,N>([a](int i)->double { return ceil(a[i]); } );
}
using std::exp;
template <int N>
NETGEN_INLINE ngcore::SIMD<double,N> exp (ngcore::SIMD<double,N> a) {
return ngcore::SIMD<double,N>([a](int i)->double { return exp(a[i]); } );
}
using std::log;
template <int N>
NETGEN_INLINE ngcore::SIMD<double,N> log (ngcore::SIMD<double,N> a) {
return ngcore::SIMD<double,N>([a](int i)->double { return log(a[i]); } );
}
using std::erf;
template <int N>
NETGEN_INLINE ngcore::SIMD<double,N> erf (ngcore::SIMD<double,N> a) {
return ngcore::SIMD<double,N>([a](int i)->double { return erf(a[i]); } );
}
using std::pow;
template <int N>
NETGEN_INLINE ngcore::SIMD<double,N> pow (ngcore::SIMD<double,N> a, double x) {
return ngcore::SIMD<double,N>([a,x](int i)->double { return pow(a[i],x); } );
}
template <int N>
NETGEN_INLINE ngcore::SIMD<double,N> pow (ngcore::SIMD<double,N> a, ngcore::SIMD<double,N> b) {
return ngcore::SIMD<double,N>([a,b](int i)->double { return pow(a[i],b[i]); } );
}
using std::sin;
template <int N>
NETGEN_INLINE ngcore::SIMD<double,N> sin (ngcore::SIMD<double,N> a) {
return ngcore::SIMD<double,N>([a](int i)->double { return sin(a[i]); } );
}
using std::cos;
template <int N>
NETGEN_INLINE ngcore::SIMD<double,N> cos (ngcore::SIMD<double,N> a) {
return ngcore::SIMD<double,N>([a](int i)->double { return cos(a[i]); } );
}
using std::tan;
template <int N>
NETGEN_INLINE ngcore::SIMD<double,N> tan (ngcore::SIMD<double,N> a) {
return ngcore::SIMD<double,N>([a](int i)->double { return tan(a[i]); } );
}
using std::atan;
template <int N>
NETGEN_INLINE ngcore::SIMD<double,N> atan (ngcore::SIMD<double,N> a) {
return ngcore::SIMD<double,N>([a](int i)->double { return atan(a[i]); } );
}
using std::atan2;
template <int N>
NETGEN_INLINE ngcore::SIMD<double,N> atan2 (ngcore::SIMD<double,N> y, ngcore::SIMD<double,N> x) {
return ngcore::SIMD<double,N>([y,x](int i)->double { return atan2(y[i], x[i]); } );
}
using std::acos;
template <int N>
NETGEN_INLINE ngcore::SIMD<double,N> acos (ngcore::SIMD<double,N> a) {
return ngcore::SIMD<double,N>([a](int i)->double { return acos(a[i]); } );
}
using std::asin;
template <int N>
NETGEN_INLINE ngcore::SIMD<double,N> asin (ngcore::SIMD<double,N> a) {
return ngcore::SIMD<double,N>([a](int i)->double { return asin(a[i]); } );
}
using std::sinh;
template <int N>
NETGEN_INLINE ngcore::SIMD<double,N> sinh (ngcore::SIMD<double,N> a) {
return ngcore::SIMD<double,N>([a](int i)->double { return sinh(a[i]); } );
}
using std::cosh;
template <int N>
NETGEN_INLINE ngcore::SIMD<double,N> cosh (ngcore::SIMD<double,N> a) {
return ngcore::SIMD<double,N>([a](int i)->double { return cosh(a[i]); } );
}
template<int N, typename T>
using MultiSIMD = SIMD<T, N*GetDefaultSIMDSize()>;
template<int N>
NETGEN_INLINE auto Unpack (SIMD<double,N> a, SIMD<double,N> b)
{
if constexpr(N==1)
{
return std::make_tuple(SIMD<double,N>{a.Data()}, SIMD<double,N>{b.Data()} );
}
else if constexpr(N==2)
{
return std::make_tuple(SIMD<double,N>{ a.Lo(), b.Lo() },
SIMD<double,N>{ a.Hi(), b.Hi() });
}
else
{
auto [a1,b1] = Unpack(a.Lo(), b.Lo());
auto [a2,b2] = Unpack(a.Hi(), b.Hi());
return std::make_tuple(SIMD<double,N>{ a1, a2 },
SIMD<double,N>{ b1, b2 });
}
}
// TODO: specialize for AVX, ...
template<int N>
NETGEN_INLINE auto SwapPairs (SIMD<double,N> a)
{
if constexpr(N==1) {
// static_assert(false);
return a;
}
else if constexpr(N==2) {
return SIMD<double,N> (a.Hi(), a.Lo());
}
else {
return SIMD<double,N> (SwapPairs(a.Lo()), SwapPairs(a.Hi()));
}
}
template<int N>
NETGEN_INLINE auto HSum128 (SIMD<double,N> a)
{
if constexpr(N==1) {
// static_assert(false);
return a;
}
else if constexpr(N==2) {
return a;
}
else {
return HSum128(a.Lo()) + HSum128(a.Hi());
}
}
// TODO: specialize for AVX, ...
// a*b+-c (even: -, odd: +)
template<int N>
NETGEN_INLINE auto FMAddSub (SIMD<double,N> a, SIMD<double,N> b, SIMD<double,N> c)
{
if constexpr(N==1) {
// static_assert(false);
return a*b-c;
}
else if constexpr(N==2) {
return SIMD<double,N> (a.Lo()*b.Lo()-c.Lo(),
a.Hi()*b.Hi()+c.Hi());
}
else {
return SIMD<double,N> (FMAddSub(a.Lo(), b.Lo(), c.Lo()),
FMAddSub(a.Hi(), b.Hi(), c.Hi()));
}
}
}
namespace std
{
// structured binding support
template <typename T, int N >
struct tuple_size<ngcore::SIMD<T,N>> : std::integral_constant<std::size_t, N> {};
template<size_t N, typename T, int M> struct tuple_element<N,ngcore::SIMD<T,M>> { using type = T; };
}
#endif // NETGEN_CORE_SIMD_GENERIC_HPP