netgen/libsrc/occ/python_occ.cpp
Joachim Schoeberl 2422318162 rotation trafo
2021-08-02 09:50:54 +02:00

877 lines
33 KiB
C++

#ifdef NG_PYTHON
#ifdef OCCGEOMETRY
#include <../general/ngpython.hpp>
#include <core/python_ngcore.hpp>
#include "../meshing/python_mesh.hpp"
#include <meshing.hpp>
#include <occgeom.hpp>
#include <gp_Ax1.hxx>
#include <gp_Ax2.hxx>
#include <gp_Ax2d.hxx>
#include <gp_Trsf.hxx>
#include <BRepPrimAPI_MakeSphere.hxx>
#include <BRepPrimAPI_MakeCylinder.hxx>
#include <BRepPrimAPI_MakeBox.hxx>
#include <BRepPrimAPI_MakePrism.hxx>
#include <BRepAlgoAPI_Cut.hxx>
#include <BRepAlgoAPI_Common.hxx>
#include <BRepAlgoAPI_Fuse.hxx>
// #include <XCAFDoc_VisMaterialTool.hxx>
#include <TDF_Attribute.hxx>
#include <Standard_GUID.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <GC_MakeSegment.hxx>
#include <GC_MakeCircle.hxx>
#include <GC_MakeArcOfCircle.hxx>
#include <BRepBuilderAPI_MakeEdge.hxx>
#include <BRepBuilderAPI_MakeWire.hxx>
#include <BRepBuilderAPI_Transform.hxx>
#include <BRepBuilderAPI_MakeFace.hxx>
#include <BRepFilletAPI_MakeFillet.hxx>
#include <BRepOffsetAPI_ThruSections.hxx>
#include <BRepGProp.hxx>
#include <BRepOffsetAPI_MakeThickSolid.hxx>
#include <BRepLib.hxx>
#include <Geom2d_Curve.hxx>
#include <Geom2d_Ellipse.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <GCE2d_MakeSegment.hxx>
#if OCC_VERSION_MAJOR>=7 && OCC_VERSION_MINOR>=4
#define OCC_HAVE_DUMP_JSON
#endif
using namespace netgen;
namespace netgen
{
extern std::shared_ptr<NetgenGeometry> ng_geometry;
}
static string occparameter_description = R"delimiter(
OCC Specific Meshing Parameters
-------------------------------
closeedgefac: Optional[float] = 2.
Factor for meshing close edges, if None it is disabled.
minedgelen: Optional[float] = 0.001
Minimum edge length to be used for dividing edges to mesh points. If
None this is disabled.
)delimiter";
void CreateOCCParametersFromKwargs(OCCParameters& occparam, py::dict kwargs)
{
if(kwargs.contains("minedgelen"))
{
auto val = kwargs.attr("pop")("minedgelen");
if(val.is_none())
occparam.resthminedgelenenable = false;
else
{
occparam.resthminedgelen = py::cast<double>(val);
occparam.resthminedgelenenable = true;
}
}
}
DLL_HEADER void ExportNgOCC(py::module &m)
{
m.attr("occ_version") = OCC_VERSION_COMPLETE;
// not working, since occ - exceptions don't derive from std::exception
// py::register_exception<Standard_Failure>(m, "OCC-Exception");
py::class_<OCCGeometry, shared_ptr<OCCGeometry>, NetgenGeometry> (m, "OCCGeometry", R"raw_string(Use LoadOCCGeometry to load the geometry from a *.step file.)raw_string")
.def(py::init<>())
/*
.def(py::init<const TopoDS_Shape&>(), py::arg("shape"),
"Create Netgen OCCGeometry from existing TopoDS_Shape")
*/
.def(py::init([] (const TopoDS_Shape& shape)
{
auto geo = make_shared<OCCGeometry> (shape);
ng_geometry = geo;
// geo->BuildFMap();
// geo->CalcBoundingBox();
return geo;
}), py::arg("shape"),
"Create Netgen OCCGeometry from existing TopoDS_Shape")
.def(py::init([] (const std::vector<TopoDS_Shape> shapes)
{
BOPAlgo_Builder builder;
for (auto & s : shapes)
builder.AddArgument(s);
builder.Perform();
cout << "glued together" << endl;
#ifdef OCC_HAVE_HISTORY
Handle(BRepTools_History) history = builder.History ();
for (auto & s : shapes)
for (TopExp_Explorer e(s, TopAbs_SOLID); e.More(); e.Next())
if (auto name = OCCGeometry::global_shape_properties[e.Current().TShape()].name)
{
TopTools_ListOfShape modlist = history->Modified(e.Current());
for (auto mods : modlist)
OCCGeometry::global_shape_properties[mods.TShape()].name = *name;
}
#endif // OCC_HAVE_HISTORY
auto geo = make_shared<OCCGeometry> (builder.Shape());
ng_geometry = geo;
// geo->BuildFMap();
// geo->CalcBoundingBox();
return geo;
}), py::arg("shape"),
"Create Netgen OCCGeometry from existing TopoDS_Shape")
.def(py::init([] (const string& filename)
{
shared_ptr<OCCGeometry> geo;
if(EndsWith(filename, ".step") || EndsWith(filename, ".stp"))
geo.reset(LoadOCC_STEP(filename.c_str()));
else if(EndsWith(filename, ".brep"))
geo.reset(LoadOCC_BREP(filename.c_str()));
else if(EndsWith(filename, ".iges"))
geo.reset(LoadOCC_IGES(filename.c_str()));
else
throw Exception("Cannot load file " + filename + "\nValid formats are: step, stp, brep, iges");
ng_geometry = geo;
return geo;
}), py::arg("filename"),
"Load OCC geometry from step, brep or iges file")
.def(NGSPickle<OCCGeometry>())
.def("Glue", &OCCGeometry::GlueGeometry)
.def("Heal",[](OCCGeometry & self, double tolerance, bool fixsmalledges, bool fixspotstripfaces, bool sewfaces, bool makesolids, bool splitpartitions)
{
self.tolerance = tolerance;
self.fixsmalledges = fixsmalledges;
self.fixspotstripfaces = fixspotstripfaces;
self.sewfaces = sewfaces;
self.makesolids = makesolids;
self.splitpartitions = splitpartitions;
self.HealGeometry();
self.BuildFMap();
},py::arg("tolerance")=1e-3, py::arg("fixsmalledges")=true, py::arg("fixspotstripfaces")=true, py::arg("sewfaces")=true, py::arg("makesolids")=true, py::arg("splitpartitions")=false,R"raw_string(Heal the OCCGeometry.)raw_string",py::call_guard<py::gil_scoped_release>())
.def("SetFaceMeshsize", [](OCCGeometry& self, size_t fnr, double meshsize)
{
self.SetFaceMaxH(fnr, meshsize);
}, "Set maximum meshsize for face fnr. Face numbers are 0 based.")
.def("_visualizationData", [] (shared_ptr<OCCGeometry> occ_geo)
{
std::vector<float> vertices;
std::vector<int> trigs;
std::vector<float> normals;
std::vector<float> min = {std::numeric_limits<float>::max(),
std::numeric_limits<float>::max(),
std::numeric_limits<float>::max()};
std::vector<float> max = {std::numeric_limits<float>::lowest(),
std::numeric_limits<float>::lowest(),
std::numeric_limits<float>::lowest()};
std::vector<string> surfnames;
auto box = occ_geo->GetBoundingBox();
for(int i = 0; i < 3; i++)
{
min[i] = box.PMin()[i];
max[i] = box.PMax()[i];
}
occ_geo->BuildVisualizationMesh(0.01);
gp_Pnt2d uv;
gp_Pnt pnt;
gp_Vec n;
gp_Pnt p[3];
int count = 0;
for (int i = 1; i <= occ_geo->fmap.Extent(); i++)
{
surfnames.push_back("occ_surface" + to_string(i));
auto face = TopoDS::Face(occ_geo->fmap(i));
auto surf = BRep_Tool::Surface(face);
TopLoc_Location loc;
BRepAdaptor_Surface sf(face, Standard_False);
BRepLProp_SLProps prop(sf, 1, 1e-5);
Handle(Poly_Triangulation) triangulation = BRep_Tool::Triangulation (face, loc);
if (triangulation.IsNull())
cout << "cannot visualize face " << i << endl;
trigs.reserve(trigs.size() + triangulation->NbTriangles()*4);
vertices.reserve(vertices.size() + triangulation->NbTriangles()*3*3);
normals.reserve(normals.size() + triangulation->NbTriangles()*3*3);
for (int j = 1; j < triangulation->NbTriangles()+1; j++)
{
auto triangle = (triangulation->Triangles())(j);
for (int k = 1; k < 4; k++)
p[k-1] = (triangulation->Nodes())(triangle(k)).Transformed(loc);
for (int k = 1; k < 4; k++)
{
vertices.insert(vertices.end(),{float(p[k-1].X()), float(p[k-1].Y()), float(p[k-1].Z())});
trigs.insert(trigs.end(),{count, count+1, count+2,i});
count += 3;
uv = (triangulation->UVNodes())(triangle(k));
prop.SetParameters(uv.X(), uv.Y());
if (prop.IsNormalDefined())
n = prop.Normal();
else
{
gp_Vec a(p[0], p[1]);
gp_Vec b(p[0], p[2]);
n = b^a;
}
if (face.Orientation() == TopAbs_REVERSED) n*= -1;
normals.insert(normals.end(),{float(n.X()), float(n.Y()), float(n.Z())});
}
}
}
py::gil_scoped_acquire ac;
py::dict res;
py::list snames;
for(auto name : surfnames)
snames.append(py::cast(name));
res["vertices"] = MoveToNumpy(vertices);
res["triangles"] = MoveToNumpy(trigs);
res["normals"] = MoveToNumpy(normals);
res["surfnames"] = snames;
res["min"] = MoveToNumpy(min);
res["max"] = MoveToNumpy(max);
return res;
}, py::call_guard<py::gil_scoped_release>())
.def("GenerateMesh", [](shared_ptr<OCCGeometry> geo,
MeshingParameters* pars, py::kwargs kwargs)
{
MeshingParameters mp;
OCCParameters occparam;
{
py::gil_scoped_acquire aq;
if(pars)
{
auto mp_kwargs = CreateDictFromFlags(pars->geometrySpecificParameters);
CreateOCCParametersFromKwargs(occparam, mp_kwargs);
mp = *pars;
}
CreateOCCParametersFromKwargs(occparam, kwargs);
CreateMPfromKwargs(mp, kwargs);
}
geo->SetOCCParameters(occparam);
auto mesh = make_shared<Mesh>();
mesh->SetGeometry(geo);
auto result = geo->GenerateMesh(mesh, mp);
if(result != 0)
throw Exception("Meshing failed!");
SetGlobalMesh(mesh);
ng_geometry = geo;
return mesh;
}, py::arg("mp") = nullptr,
py::call_guard<py::gil_scoped_release>(),
(meshingparameter_description + occparameter_description).c_str())
.def_property_readonly("shape", [](const OCCGeometry & self) { return self.GetShape(); })
;
py::enum_<TopAbs_ShapeEnum>(m, "TopAbs_ShapeEnum", "Enumeration of all supported TopoDS_Shapes")
.value("COMPOUND", TopAbs_COMPOUND) .value("COMPSOLID", TopAbs_COMPSOLID)
.value("SOLID", TopAbs_SOLID) .value("SHELL", TopAbs_SHELL)
.value("FACE", TopAbs_FACE) .value("WIRE", TopAbs_WIRE)
.value("EDGE", TopAbs_EDGE) .value("VERTEX", TopAbs_VERTEX)
.value("SHAPE", TopAbs_SHAPE)
.export_values()
;
py::class_<gp_Pnt>(m, "gp_Pnt")
.def(py::init([] (py::tuple pnt)
{
return gp_Pnt(py::cast<double>(pnt[0]),
py::cast<double>(pnt[1]),
py::cast<double>(pnt[2]));
}))
.def(py::init([] (double x, double y, double z) {
return gp_Pnt(x, y, z);
}))
.def_property("x", [](gp_Pnt&p) { return p.X(); }, [](gp_Pnt&p,double x) { p.SetX(x); })
.def_property("y", [](gp_Pnt&p) { return p.Y(); }, [](gp_Pnt&p,double y) { p.SetY(y); })
.def_property("z", [](gp_Pnt&p) { return p.Z(); }, [](gp_Pnt&p,double z) { p.SetZ(z); })
;
py::class_<gp_Vec>(m, "gp_Vec")
.def(py::init([] (py::tuple vec)
{
return gp_Vec(py::cast<double>(vec[0]),
py::cast<double>(vec[1]),
py::cast<double>(vec[2]));
}))
.def(py::init([] (double x, double y, double z) {
return gp_Vec(x, y, z);
}))
;
py::class_<gp_Dir>(m, "gp_Dir")
.def(py::init([] (py::tuple dir)
{
return gp_Dir(py::cast<double>(dir[0]),
py::cast<double>(dir[1]),
py::cast<double>(dir[2]));
}))
;
py::class_<gp_Ax1>(m, "gp_Ax1")
.def(py::init([](gp_Pnt p, gp_Dir d) {
return gp_Ax1(p,d);
}))
;
py::class_<gp_Ax2>(m, "gp_Ax2")
.def(py::init([](gp_Pnt p, gp_Dir d) {
return gp_Ax2(p,d);
}))
;
py::class_<gp_Pnt2d>(m, "gp_Pnt2d")
.def(py::init([] (py::tuple pnt)
{
return gp_Pnt2d(py::cast<double>(pnt[0]),
py::cast<double>(pnt[1]));
}))
.def(py::init([] (double x, double y) {
return gp_Pnt2d(x, y);
}))
;
py::class_<gp_Vec2d>(m, "gp_Vec2d")
.def(py::init([] (py::tuple vec)
{
return gp_Vec2d(py::cast<double>(vec[0]),
py::cast<double>(vec[1]));
}))
.def(py::init([] (double x, double y) {
return gp_Vec2d(x, y);
}))
;
py::class_<gp_Dir2d>(m, "gp_Dir2d")
.def(py::init([] (py::tuple dir)
{
return gp_Dir2d(py::cast<double>(dir[0]),
py::cast<double>(dir[1]));
}))
.def(py::init([] (double x, double y) {
return gp_Dir2d(x, y);
}))
;
py::class_<gp_Ax2d>(m, "gp_Ax2d")
.def(py::init([](gp_Pnt2d p, gp_Dir2d d) {
return gp_Ax2d(p,d);
}))
;
py::class_<gp_Trsf>(m, "gp_Trsf")
.def(py::init<>())
.def("SetMirror", [] (gp_Trsf & trafo, const gp_Ax1 & ax) { trafo.SetMirror(ax); return trafo; })
.def_static("Mirror", [] (const gp_Ax1 & ax) { gp_Trsf trafo; trafo.SetMirror(ax); return trafo; })
.def_static("Rotation", [] (const gp_Ax1 & ax, double ang) { gp_Trsf trafo; trafo.SetRotation(ax, ang); return trafo; })
.def("__call__", [] (gp_Trsf & trafo, const TopoDS_Shape & shape) {
return BRepBuilderAPI_Transform(shape, trafo).Shape();
})
;
py::implicitly_convertible<py::tuple, gp_Pnt>();
py::implicitly_convertible<py::tuple, gp_Vec>();
py::implicitly_convertible<py::tuple, gp_Dir>();
py::class_<TopoDS_Shape> (m, "TopoDS_Shape")
.def("__str__", [] (const TopoDS_Shape & shape)
{
stringstream str;
#ifdef OCC_HAVE_DUMP_JSON
shape.DumpJson(str);
#endif // OCC_HAVE_DUMP_JSON
return str.str();
})
.def("ShapeType", [] (const TopoDS_Shape & shape)
{ return shape.ShapeType(); })
.def_property_readonly("type", [](const TopoDS_Shape & shape)
{ return shape.ShapeType(); })
.def("SubShapes", [] (const TopoDS_Shape & shape, TopAbs_ShapeEnum & type)
{
py::list sub;
TopExp_Explorer e;
for (e.Init(shape, type); e.More(); e.Next())
{
switch (type)
{
case TopAbs_FACE:
sub.append(TopoDS::Face(e.Current())); break;
default:
sub.append(e.Current());
}
}
return sub;
})
.def("Properties", [] (const TopoDS_Shape & shape)
{
GProp_GProps props;
switch (shape.ShapeType())
{
case TopAbs_FACE:
BRepGProp::SurfaceProperties (shape, props); break;
default:
BRepGProp::LinearProperties(shape, props);
// throw Exception("Properties implemented only for FACE");
}
double mass = props.Mass();
gp_Pnt center = props.CentreOfMass();
return tuple( py::cast(mass), py::cast(center) );
})
.def("bc", [](const TopoDS_Shape & shape, const string & name)
{
for (TopExp_Explorer e(shape, TopAbs_FACE); e.More(); e.Next())
OCCGeometry::global_shape_properties[e.Current().TShape()].name = name;
return shape;
})
.def("mat", [](const TopoDS_Shape & shape, const string & name)
{
for (TopExp_Explorer e(shape, TopAbs_SOLID); e.More(); e.Next())
OCCGeometry::global_shape_properties[e.Current().TShape()].name = name;
return shape;
})
.def_property("name", [](const TopoDS_Shape & self) {
if (auto name = OCCGeometry::global_shape_properties[self.TShape()].name)
return *name;
else
return string();
}, [](const TopoDS_Shape & self, string name) {
OCCGeometry::global_shape_properties[self.TShape()].name = name;
})
.def_property("col", [](const TopoDS_Shape & self) {
auto it = OCCGeometry::global_shape_properties.find(self.TShape());
Vec<3> col(0.2, 0.2, 0.2);
if (it != OCCGeometry::global_shape_properties.end() && it->second.col)
col = *it->second.col; // .value();
return std::vector<double> ( { col(0), col(1), col(2) } );
}, [](const TopoDS_Shape & self, std::vector<double> c) {
Vec<3> col(c[0], c[1], c[2]);
OCCGeometry::global_shape_properties[self.TShape()].col = col;
})
.def("__add__", [] (const TopoDS_Shape & shape1, const TopoDS_Shape & shape2) {
return BRepAlgoAPI_Fuse(shape1, shape2).Shape();
})
.def("__mul__", [] (const TopoDS_Shape & shape1, const TopoDS_Shape & shape2) {
// return BRepAlgoAPI_Common(shape1, shape2).Shape();
BRepAlgoAPI_Common builder(shape1, shape2);
#ifdef OCC_HAVE_HISTORY
Handle(BRepTools_History) history = builder.History ();
/*
// work in progress ...
TopTools_ListOfShape modlist = history->Modified(shape1);
for (auto s : modlist)
cout << "modified from list el: " << s.ShapeType() << endl;
*/
for (auto & s : { shape1, shape2 })
for (TopExp_Explorer e(s, TopAbs_FACE); e.More(); e.Next())
{
auto & prop = OCCGeometry::global_shape_properties[e.Current().TShape()];
for (auto smod : history->Modified(e.Current()))
OCCGeometry::global_shape_properties[smod.TShape()].Merge(prop);
}
#endif // OCC_HAVE_HISTORY
return builder.Shape();
})
.def("__sub__", [] (const TopoDS_Shape & shape1, const TopoDS_Shape & shape2) {
// return BRepAlgoAPI_Cut(shape1, shape2).Shape();
BRepAlgoAPI_Cut builder(shape1, shape2);
#ifdef OCC_HAVE_HISTORY
Handle(BRepTools_History) history = builder.History ();
for (auto s : { shape1, shape2 })
for (TopExp_Explorer e(s, TopAbs_FACE); e.More(); e.Next())
{
/*
const string & name = OCCGeometry::global_shape_names[e.Current().TShape()];
for (auto s : history->Modified(e.Current()))
OCCGeometry::global_shape_names[s.TShape()] = name;
*/
/*
auto it = OCCGeometry::global_shape_cols.find(e.Current().TShape());
if (it != OCCGeometry::global_shape_cols.end())
for (auto s : history->Modified(e.Current()))
OCCGeometry::global_shape_cols[s.TShape()] = it->second;
*/
auto propit = OCCGeometry::global_shape_properties.find(e.Current().TShape());
if (propit != OCCGeometry::global_shape_properties.end())
for (auto s : history->Modified(e.Current()))
OCCGeometry::global_shape_properties[s.TShape()].Merge(propit->second);
}
/*
for (TopExp_Explorer e(shape2, TopAbs_FACE); e.More(); e.Next())
{
auto it = OCCGeometry::global_shape_cols[e.Current().TShape()];
if (it != OCCGeometry::global_shape_cols.end())
for (auto s : history->Modified(e.Current()))
OCCGeometry::global_shape_cols[s.TShape()] = it->second;
}
*/
#endif // OCC_HAVE_HISTORY
return builder.Shape();
})
.def("Find", [](const TopoDS_Shape & shape, gp_Pnt p)
{
// find sub-shape contianing point
// BRepClass_FaceClassifier::Perform (p);
})
.def("MakeTriangulation", [](const TopoDS_Shape & shape)
{
BRepTools::Clean (shape);
double deflection = 0.01;
BRepMesh_IncrementalMesh (shape, deflection, true);
})
.def("Triangulation", [](const TopoDS_Shape & shape)
{
// extracted from vsocc.cpp
TopoDS_Face face;
try
{
face = TopoDS::Face(shape);
}
catch (Standard_Failure & e)
{
e.Print (cout);
throw NgException ("Triangulation: shape is not a face");
}
/*
BRepTools::Clean (shape);
double deflection = 0.01;
BRepMesh_IncrementalMesh (shape, deflection, true);
*/
Handle(Geom_Surface) surf = BRep_Tool::Surface (face);
TopLoc_Location loc;
Handle(Poly_Triangulation) triangulation = BRep_Tool::Triangulation (face, loc);
if (triangulation.IsNull())
{
BRepTools::Clean (shape);
double deflection = 0.01;
BRepMesh_IncrementalMesh (shape, deflection, true);
triangulation = BRep_Tool::Triangulation (face, loc);
}
// throw Exception("Don't have a triangulation, call 'MakeTriangulation' first");
int ntriangles = triangulation -> NbTriangles();
Array< std::array<Point<3>,3> > triangles;
for (int j = 1; j <= ntriangles; j++)
{
Poly_Triangle triangle = (triangulation -> Triangles())(j);
std::array<Point<3>,3> pts;
for (int k = 0; k < 3; k++)
pts[k] = occ2ng( (triangulation -> Nodes())(triangle(k+1)).Transformed(loc) );
triangles.Append ( pts );
}
// return MoveToNumpyArray(triangles);
return triangles;
})
;
py::class_<TopoDS_Edge, TopoDS_Shape> (m, "TopoDS_Edge");
py::class_<TopoDS_Wire, TopoDS_Shape> (m, "TopoDS_Wire");
py::class_<TopoDS_Face, TopoDS_Shape> (m, "TopoDS_Face")
/*
.def("surf", [] (TopoDS_Face face) -> Handle(Geom_Surface)
{
Handle(Geom_Surface) surf = BRep_Tool::Surface (face);
return surf;
})
*/
;
py::class_<TopoDS_Solid, TopoDS_Shape> (m, "TopoDS_Solid");
py::class_<Handle(Geom2d_Curve)> (m, "Geom2d_Curve")
.def("Trim", [](Handle(Geom2d_Curve) curve, double u1, double u2) -> Handle(Geom2d_Curve)
{
return new Geom2d_TrimmedCurve (curve, u1, u2);
})
.def("Value", [](Handle(Geom2d_Curve) curve, double s) {
return curve->Value(s);
})
;
m.def("Sphere", [] (gp_Pnt cc, double r) {
return BRepPrimAPI_MakeSphere (cc, r).Solid();
});
m.def("Cylinder", [] (gp_Pnt cpnt, gp_Dir cdir, double r, double h) {
return BRepPrimAPI_MakeCylinder (gp_Ax2(cpnt, cdir), r, h).Solid();
});
m.def("Cylinder", [] (gp_Ax2 ax, double r, double h) {
return BRepPrimAPI_MakeCylinder (ax, r, h).Solid();
});
m.def("Box", [] (gp_Pnt cp1, gp_Pnt cp2) {
return BRepPrimAPI_MakeBox (cp1, cp2).Solid();
});
m.def("Prism", [] (const TopoDS_Shape & face, gp_Vec vec) {
return BRepPrimAPI_MakePrism (face, vec).Shape();
});
// Handle(Geom2d_Ellipse) anEllipse1 = new Geom2d_Ellipse(anAx2d, aMajor, aMinor);
m.def("Ellipse", [] (const gp_Ax2d & ax, double major, double minor) -> Handle(Geom2d_Curve)
{
return new Geom2d_Ellipse(ax, major, minor);
});
m.def("Segment", [](gp_Pnt2d p1, gp_Pnt2d p2) -> Handle(Geom2d_Curve) {
Handle(Geom2d_TrimmedCurve) curve = GCE2d_MakeSegment(p1, p2);
return curve;
// return BRepBuilderAPI_MakeEdge(curve).Edge();
// return GCE2d_MakeSegment(p1, p2);
});
m.def("Glue", [] (const std::vector<TopoDS_Shape> shapes) -> TopoDS_Shape
{
BOPAlgo_Builder builder;
for (auto & s : shapes)
{
for (TopExp_Explorer e(s, TopAbs_SOLID); e.More(); e.Next())
builder.AddArgument(e.Current());
if (s.ShapeType() == TopAbs_FACE)
builder.AddArgument(s);
}
builder.Perform();
#ifdef OCC_HAVE_HISTORY
Handle(BRepTools_History) history = builder.History ();
for (auto & s : shapes)
for (TopExp_Explorer e(s, TopAbs_SOLID); e.More(); e.Next())
{
auto prop = OCCGeometry::global_shape_properties[e.Current().TShape()];
for (auto mods : history->Modified(e.Current()))
OCCGeometry::global_shape_properties[mods.TShape()].Merge(prop);
}
/*
{
auto name = OCCGeometry::global_shape_names[e.Current().TShape()];
for (auto mods : history->Modified(e.Current()))
OCCGeometry::global_shape_names[mods.TShape()] = name;
}
*/
#endif // OCC_HAVE_HISTORY
return builder.Shape();
});
m.def("Glue", [] (TopoDS_Shape shape) -> TopoDS_Shape
{
BOPAlgo_Builder builder;
for (TopExp_Explorer e(shape, TopAbs_SOLID); e.More(); e.Next())
builder.AddArgument(e.Current());
builder.Perform();
if (builder.HasErrors())
builder.DumpErrors(cout);
if (builder.HasWarnings())
builder.DumpWarnings(cout);
#ifdef OCC_HAVE_HISTORY
Handle(BRepTools_History) history = builder.History ();
for (TopExp_Explorer e(shape, TopAbs_SOLID); e.More(); e.Next())
{
auto prop = OCCGeometry::global_shape_properties[e.Current().TShape()];
for (auto mods : history->Modified(e.Current()))
OCCGeometry::global_shape_properties[mods.TShape()].Merge(prop);
}
#endif // OCC_HAVE_HISTORY
return builder.Shape();
});
// py::class_<Handle(Geom_TrimmedCurve)> (m, "Geom_TrimmedCurve")
// ;
m.def("Segment", [](gp_Pnt p1, gp_Pnt p2) {
Handle(Geom_TrimmedCurve) curve = GC_MakeSegment(p1, p2);
return BRepBuilderAPI_MakeEdge(curve).Edge();
});
m.def("Circle", [](gp_Pnt c, gp_Dir n, double r) {
Handle(Geom_Circle) curve = GC_MakeCircle (c, n, r);
return BRepBuilderAPI_MakeEdge(curve).Edge();
});
m.def("ArcOfCircle", [](gp_Pnt p1, gp_Pnt p2, gp_Pnt p3) {
Handle(Geom_TrimmedCurve) curve = GC_MakeArcOfCircle(p1, p2, p3);
return BRepBuilderAPI_MakeEdge(curve).Edge();
});
m.def("Edge", [](Handle(Geom2d_Curve) curve2d, TopoDS_Face face) {
auto edge = BRepBuilderAPI_MakeEdge(curve2d, BRep_Tool::Surface (face)).Edge();
BRepLib::BuildCurves3d(edge);
return edge;
});
m.def("Wire", [](std::vector<TopoDS_Shape> edges) {
BRepBuilderAPI_MakeWire builder;
for (auto s : edges)
switch (s.ShapeType())
{
case TopAbs_EDGE:
builder.Add(TopoDS::Edge(s)); break;
case TopAbs_WIRE:
builder.Add(TopoDS::Wire(s)); break;
default:
throw Exception("can make wire only from edges and wires");
}
return builder.Wire();
});
m.def("Face", [](TopoDS_Wire wire) {
return BRepBuilderAPI_MakeFace(wire).Face();
});
m.def("MakeFillet", [](TopoDS_Shape shape, std::vector<TopoDS_Shape> edges, double r) {
BRepFilletAPI_MakeFillet mkFillet(shape);
for (auto e : edges)
mkFillet.Add (r, TopoDS::Edge(e));
return mkFillet.Shape();
});
m.def("MakeThickSolid", [](TopoDS_Shape body, std::vector<TopoDS_Shape> facestoremove,
double offset, double tol) {
TopTools_ListOfShape faces;
for (auto f : facestoremove)
faces.Append(f);
BRepOffsetAPI_MakeThickSolid maker;
maker.MakeThickSolidByJoin(body, faces, offset, tol);
return maker.Shape();
});
m.def("ThruSections", [](std::vector<TopoDS_Shape> wires)
{
BRepOffsetAPI_ThruSections aTool(Standard_True);
for (auto shape : wires)
aTool.AddWire(TopoDS::Wire(shape));
aTool.CheckCompatibility(Standard_False);
return aTool.Shape();
});
m.def("LoadOCCGeometry",[] (const string & filename)
{
cout << "WARNING: LoadOCCGeometry is deprecated! Just use the OCCGeometry(filename) constructor. It is able to read brep and iges files as well!" << endl;
ifstream ist(filename);
OCCGeometry * instance = new OCCGeometry();
instance = LoadOCC_STEP(filename.c_str());
ng_geometry = shared_ptr<OCCGeometry>(instance, NOOP_Deleter);
return ng_geometry;
},py::call_guard<py::gil_scoped_release>());
m.def("TestXCAF", [] (TopoDS_Shape shape) {
/*static*/ Handle(XCAFApp_Application) app = XCAFApp_Application::GetApplication();
cout << endl << endl << endl;
cout << "app = " << *reinterpret_cast<void**>(&app) << endl;
Handle(TDocStd_Document) doc;
cout << "nbdocs = " << app->NbDocuments() << endl;
if(app->NbDocuments() > 0)
{
app->GetDocument(1,doc);
// app->Close(doc);
}
else
app->NewDocument ("STEP-XCAF",doc);
Handle(XCAFDoc_ShapeTool) shape_tool = XCAFDoc_DocumentTool::ShapeTool(doc->Main());
Handle(XCAFDoc_MaterialTool) material_tool = XCAFDoc_DocumentTool::MaterialTool(doc->Main());
// Handle(XCAFDoc_VisMaterialTool) vismaterial_tool = XCAFDoc_DocumentTool::VisMaterialTool(doc->Main());
cout << "handle(shape) = " << *(void**)(void*)(&(shape.TShape())) << endl;
TDF_LabelSequence doc_shapes;
shape_tool->GetShapes(doc_shapes);
cout << "shape tool nbentities: " << doc_shapes.Size() << endl;
TDF_Label label = shape_tool -> FindShape(shape);
cout << "shape label = " << endl << label << endl;
if (label.IsNull()) return;
cout << "nbattr = " << label.NbAttributes() << endl;
if (!label.IsNull())
{
Handle(TDF_Attribute) attribute;
cout << "create guid" << endl;
// Standard_GUID guid("c4ef4200-568f-11d1-8940-080009dc3333");
Standard_GUID guid("2a96b608-ec8b-11d0-bee7-080009dc3333");
cout << "have guid" << endl;
cout << "find attrib " << label.FindAttribute(guid, attribute) << endl;
cout << "attrib = " << attribute << endl;
cout << "tag = " << label.Tag() << endl;
cout << "father.tag = " << label.Father().Tag() << endl;
cout << "Data = " << label.Data() << endl;
cout << "nbchild = " << label.NbChildren() << endl;
for (auto i : Range(label.NbChildren()))
{
TDF_Label child = label.FindChild(i+1);
cout << "child[" << i << "] = " << child << endl;
cout << "find attrib " << child.FindAttribute(guid, attribute) << endl;
cout << "attrib = " << attribute << endl;
}
// cout << "findshape = " << shape_tool -> FindShape(shape) << endl;
cout << "IsMaterial = " << material_tool->IsMaterial(label) << endl;
// cout << "IsVisMaterial = " << vismaterial_tool->IsMaterial(label) << endl;
}
}, py::arg("shape")=TopoDS_Shape());
}
PYBIND11_MODULE(libNgOCC, m) {
ExportNgOCC(m);
}
#endif // OCCGEOMETRY
#endif // NG_PYTHON