netgen/libsrc/stlgeom/python_stl.cpp

238 lines
8.3 KiB
C++

#ifdef NG_PYTHON
#include <../general/ngpython.hpp>
#include <core/python_ngcore.hpp>
#include <stlgeom.hpp>
#include "../meshing/python_mesh.hpp"
#ifdef WIN32
#define DLL_HEADER __declspec(dllexport)
#endif
using namespace netgen;
namespace netgen
{
//extern shared_ptr<Mesh> mesh;
extern shared_ptr<NetgenGeometry> ng_geometry;
}
static string stlparameter_description = R"delimiter(
STL Specific Meshing Parameters
-------------------------------
yangle: float = 30.
Angle for edge detection
contyangle: float = 20.
Edges continue if angle > contyangle
edgecornerangle: float = 60.
Angle of geometry edge at which the mesher should set a point.
closeedgefac: Optional[float] = 1.
Factor for meshing close edges, if None it is disabled.
minedgelen: Optional[float] = 0.001
Minimum edge length to be used for dividing edges to mesh points. If
None this is disabled.
)delimiter";
void CreateSTLParametersFromKwargs(STLParameters& stlparam, py::dict kwargs)
{
if(kwargs.contains("yangle"))
stlparam.yangle = py::cast<double>(kwargs.attr("pop")("yangle"));
if(kwargs.contains("contyangle"))
stlparam.contyangle = py::cast<double>(kwargs.attr("pop")("contyangle"));
if(kwargs.contains("edgecornerangle"))
stlparam.edgecornerangle = py::cast<double>(kwargs.attr("pop")("edgecornerangle"));
if(kwargs.contains("chartangle"))
stlparam.chartangle = py::cast<double>(kwargs.attr("pop")("chartangle"));
if(kwargs.contains("outerchartangle"))
stlparam.outerchartangle = py::cast<double>(kwargs.attr("pop")("outerchartangle"));
if(kwargs.contains("usesearchtree"))
stlparam.usesearchtree = py::cast<int>(kwargs.attr("pop")("usesearchtree"));
if(kwargs.contains("resthatlasfac"))
{
auto val = kwargs.attr("pop")("resthatlasfac");
if(val.is_none())
stlparam.resthatlasenable = false;
else
{
stlparam.resthatlasenable = true;
stlparam.resthatlasfac = py::cast<double>(val);
}
}
if(kwargs.contains("atlasminh"))
stlparam.atlasminh = py::cast<double>(kwargs.attr("pop")("atlasminh"));
if(kwargs.contains("resthsurfcurvfac"))
{
auto val = kwargs.attr("pop")("resthsurfcurvfac");
if(val.is_none())
stlparam.resthsurfcurvenable = false;
else
{
stlparam.resthsurfcurvenable = true;
stlparam.resthsurfcurvfac = py::cast<double>(val);
}
}
if(kwargs.contains("resthchartdistfac"))
{
auto val = kwargs.attr("pop")("resthchartdistfac");
if(val.is_none())
stlparam.resthchartdistenable = false;
else
{
stlparam.resthchartdistenable = true;
stlparam.resthchartdistfac = py::cast<double>(val);
}
}
if(kwargs.contains("resthcloseedgefac"))
{
auto val = kwargs.attr("pop")("resthcloseedgefac");
if(val.is_none())
stlparam.resthcloseedgeenable = false;
else
{
stlparam.resthcloseedgeenable = true;
stlparam.resthcloseedgefac = py::cast<double>(val);
}
}
if(kwargs.contains("resthedgeanglefac"))
{
auto val = kwargs.attr("pop")("resthedgeanglefac");
if(val.is_none())
stlparam.resthedgeangleenable = false;
else
{
stlparam.resthedgeangleenable = true;
stlparam.resthedgeanglefac = py::cast<double>(val);
}
}
if(kwargs.contains("resthsurfmeshcurvfac"))
{
auto val = kwargs.attr("pop")("resthsurfmeshcurvfac");
if(val.is_none())
stlparam.resthsurfmeshcurvenable = false;
else
{
stlparam.resthsurfmeshcurvenable = true;
stlparam.resthsurfmeshcurvfac = py::cast<double>(val);
}
}
if(kwargs.contains("resthlinelengthfac"))
{
auto val = kwargs.attr("pop")("resthlinelengthfac");
if(val.is_none())
stlparam.resthlinelengthenable = false;
else
{
stlparam.resthlinelengthenable = true;
stlparam.resthlinelengthfac = py::cast<double>(val);
}
}
if(kwargs.contains("recalc_h_opt"))
stlparam.recalc_h_opt = py::cast<bool>(kwargs.attr("pop")("recalc_h_opt"));
}
DLL_HEADER void ExportSTL(py::module & m)
{
py::class_<STLGeometry,shared_ptr<STLGeometry>, NetgenGeometry> (m,"STLGeometry")
.def(py::init<>())
.def(py::init<>([](const string& filename)
{
ifstream ist(filename);
return shared_ptr<STLGeometry>(STLGeometry::Load(ist));
}), py::arg("filename"),
py::call_guard<py::gil_scoped_release>())
.def(NGSPickle<STLGeometry>())
.def("_visualizationData", [](shared_ptr<STLGeometry> stl_geo)
{
std::vector<float> vertices;
std::vector<int> trigs;
std::vector<float> normals;
std::vector<float> min = {std::numeric_limits<float>::max(),
std::numeric_limits<float>::max(),
std::numeric_limits<float>::max()};
std::vector<float> max = {std::numeric_limits<float>::lowest(),
std::numeric_limits<float>::lowest(),
std::numeric_limits<float>::lowest()};
std::vector<string> surfnames;
surfnames.push_back("stl");
vertices.reserve(stl_geo->GetNT()*3*3);
trigs.reserve(stl_geo->GetNT()*4);
normals.reserve(stl_geo->GetNT()*3*3);
size_t ii = 0;
for(int i = 0; i < stl_geo->GetNT(); i++)
{
auto& trig = stl_geo->GetTriangle(i+1);
for(int k = 0; k < 3; k++)
{
trigs.push_back(ii++);
auto& pnt = stl_geo->GetPoint(trig[k]);
for (int l = 0; l < 3; l++)
{
float val = pnt[l];
vertices.push_back(val);
min[l] = min2(min[l], val);
max[l] = max2(max[l], val);
normals.push_back(trig.Normal()[l]);
}
}
trigs.push_back(0);
}
py::gil_scoped_acquire ac;
py::dict res;
py::list snames;
for(auto name : surfnames)
snames.append(py::cast(name));
res["vertices"] = MoveToNumpy(vertices);
res["triangles"] = MoveToNumpy(trigs);
res["normals"] = MoveToNumpy(normals);
res["surfnames"] = snames;
res["min"] = MoveToNumpy(min);
res["max"] = MoveToNumpy(max);
return res;
}, py::call_guard<py::gil_scoped_release>())
.def("GenerateMesh", [] (shared_ptr<STLGeometry> geo,
MeshingParameters* pars, py::kwargs kwargs)
{
MeshingParameters mp;
STLParameters stlparam;
{ py::gil_scoped_acquire aq;
if(pars)
{
auto mp_flags = pars->geometrySpecificParameters;
auto mp_kwargs = CreateDictFromFlags(mp_flags);
CreateSTLParametersFromKwargs(stlparam, mp_kwargs);
mp = *pars;
}
CreateSTLParametersFromKwargs(stlparam, kwargs);
CreateMPfromKwargs(mp, kwargs); // this will throw if any kwargs are not passed
}
auto mesh = make_shared<Mesh>();
mesh->SetGeometry(geo);
ng_geometry = geo;
SetGlobalMesh(mesh);
STLMeshingDummy(geo.get(), mesh, mp, stlparam);
return mesh;
}, py::arg("mp") = nullptr,
py::call_guard<py::gil_scoped_release>(),
(meshingparameter_description + stlparameter_description).c_str())
;
m.def("LoadSTLGeometry", [] (const string & filename)
{
cout << "WARNING: LoadSTLGeometry is deprecated, use the STLGeometry(filename) constructor instead!" << endl;
ifstream ist(filename);
return shared_ptr<STLGeometry>(STLGeometry::Load(ist));
},py::call_guard<py::gil_scoped_release>());
}
PYBIND11_MODULE(libstl, m) {
ExportSTL(m);
}
#endif