mirror of
https://github.com/NGSolve/netgen.git
synced 2025-01-12 22:20:35 +05:00
5b4af26d7d
index to -1 this fixes 2 issues: * If extruded outwards in occ and curvature turned on, if sides are not set to index -1 then they are curved back towards the face again * If no different facedescriptor is set, blayer.Boundaries() would wrongly return the whole boundary and not only the layer part of the side.
1753 lines
67 KiB
C++
1753 lines
67 KiB
C++
#ifdef NG_PYTHON
|
|
|
|
#include <regex>
|
|
|
|
#include <../general/ngpython.hpp>
|
|
#include <core/python_ngcore.hpp>
|
|
#include "python_mesh.hpp"
|
|
|
|
#include <mystdlib.h>
|
|
#include "meshing.hpp"
|
|
// #include <csg.hpp>
|
|
// #include <geometry2d.hpp>
|
|
#include <../interface/writeuser.hpp>
|
|
#include <../include/nginterface.h>
|
|
#include <../general/gzstream.h>
|
|
|
|
|
|
class ClearSolutionClass
|
|
{
|
|
public:
|
|
ClearSolutionClass() { }
|
|
~ClearSolutionClass() { Ng_ClearSolutionData(); }
|
|
};
|
|
|
|
|
|
#ifdef NG_MPI4PY
|
|
#include <mpi4py.h>
|
|
|
|
struct mpi4py_comm {
|
|
mpi4py_comm() = default;
|
|
mpi4py_comm(MPI_Comm value) : value(value) {}
|
|
operator MPI_Comm () { return value; }
|
|
|
|
MPI_Comm value;
|
|
};
|
|
|
|
namespace pybind11 { namespace detail {
|
|
template <> struct type_caster<mpi4py_comm> {
|
|
public:
|
|
PYBIND11_TYPE_CASTER(mpi4py_comm, _("mpi4py_comm"));
|
|
|
|
// Python -> C++
|
|
bool load(handle src, bool) {
|
|
PyObject *py_src = src.ptr();
|
|
// Check that we have been passed an mpi4py communicator
|
|
if (PyObject_TypeCheck(py_src, &PyMPIComm_Type)) {
|
|
// Convert to regular MPI communicator
|
|
value.value = *PyMPIComm_Get(py_src);
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
return !PyErr_Occurred();
|
|
}
|
|
|
|
// C++ -> Python
|
|
static handle cast(mpi4py_comm src,
|
|
return_value_policy /* policy */,
|
|
handle /* parent */)
|
|
{
|
|
// Create an mpi4py handle
|
|
return PyMPIComm_New(src.value);
|
|
}
|
|
};
|
|
}} // namespace pybind11::detail
|
|
|
|
#endif // NG_MPI4PY
|
|
|
|
|
|
|
|
|
|
|
|
using namespace netgen;
|
|
|
|
extern const char *ngscript[];
|
|
|
|
namespace netgen
|
|
{
|
|
extern bool netgen_executable_started;
|
|
extern shared_ptr<NetgenGeometry> ng_geometry;
|
|
extern void Optimize2d (Mesh & mesh, MeshingParameters & mp);
|
|
}
|
|
|
|
|
|
void TranslateException (const NgException & ex)
|
|
{
|
|
string err = string("Netgen exception: ")+ex.What();
|
|
PyErr_SetString(PyExc_RuntimeError, err.c_str());
|
|
}
|
|
|
|
static Transformation<3> global_trafo(Vec<3> (0,0,0));
|
|
|
|
|
|
|
|
|
|
|
|
DLL_HEADER void ExportNetgenMeshing(py::module &m)
|
|
{
|
|
#ifdef NG_MPI4PY
|
|
import_mpi4py();
|
|
#endif // NG_MPI4PY
|
|
py::register_exception<NgException>(m, "NgException");
|
|
m.attr("_netgen_executable_started") = py::cast(netgen::netgen_executable_started);
|
|
string script;
|
|
const char ** hcp = ngscript;
|
|
while (*hcp)
|
|
script += *hcp++;
|
|
|
|
m.attr("_ngscript") = py::cast(script);
|
|
|
|
m.def("_GetStatus", []()
|
|
{
|
|
MyStr s; double percent;
|
|
GetStatus(s, percent);
|
|
return py::make_tuple(s.c_str(), percent);
|
|
});
|
|
m.def("_PushStatus", [](string s) { PushStatus(MyStr(s)); });
|
|
m.def("_SetThreadPercentage", [](double percent) { SetThreadPercent(percent); });
|
|
|
|
py::enum_<Identifications::ID_TYPE>(m,"IdentificationType")
|
|
.value("UNDEFINED", Identifications::UNDEFINED)
|
|
.value("PERIODIC", Identifications::PERIODIC)
|
|
.value("CLOSESURFACES", Identifications::CLOSESURFACES)
|
|
.value("CLOSEEDGES", Identifications::CLOSEEDGES)
|
|
;
|
|
|
|
py::implicitly_convertible<int, Identifications::ID_TYPE>();
|
|
|
|
py::class_<NgMPI_Comm> (m, "MPI_Comm")
|
|
#ifdef NG_MPI4PY
|
|
.def(py::init([] (mpi4py_comm comm)
|
|
{
|
|
return NgMPI_Comm(comm);
|
|
}))
|
|
.def_property_readonly ("mpi4py", [] (NgMPI_Comm comm) { return mpi4py_comm(comm); })
|
|
#endif // NG_MPI4PY
|
|
.def_property_readonly ("rank", &NgMPI_Comm::Rank)
|
|
.def_property_readonly ("size", &NgMPI_Comm::Size)
|
|
.def("Barrier", &NgMPI_Comm::Barrier)
|
|
|
|
#ifdef PARALLEL
|
|
.def("WTime", [](NgMPI_Comm & c) { return MPI_Wtime(); })
|
|
#else
|
|
.def("WTime", [](NgMPI_Comm & c) { return -1.0; })
|
|
#endif
|
|
.def("Sum", [](NgMPI_Comm & c, double x) { return c.AllReduce(x, MPI_SUM); })
|
|
.def("Min", [](NgMPI_Comm & c, double x) { return c.AllReduce(x, MPI_MIN); })
|
|
.def("Max", [](NgMPI_Comm & c, double x) { return c.AllReduce(x, MPI_MAX); })
|
|
.def("Sum", [](NgMPI_Comm & c, int x) { return c.AllReduce(x, MPI_SUM); })
|
|
.def("Min", [](NgMPI_Comm & c, int x) { return c.AllReduce(x, MPI_MIN); })
|
|
.def("Max", [](NgMPI_Comm & c, int x) { return c.AllReduce(x, MPI_MAX); })
|
|
.def("Sum", [](NgMPI_Comm & c, size_t x) { return c.AllReduce(x, MPI_SUM); })
|
|
.def("Min", [](NgMPI_Comm & c, size_t x) { return c.AllReduce(x, MPI_MIN); })
|
|
.def("Max", [](NgMPI_Comm & c, size_t x) { return c.AllReduce(x, MPI_MAX); })
|
|
.def("SubComm", [](NgMPI_Comm & c, std::vector<int> proc_list) {
|
|
Array<int> procs(proc_list.size());
|
|
for (int i = 0; i < procs.Size(); i++)
|
|
{ procs[i] = proc_list[i]; }
|
|
if (!procs.Contains(c.Rank()))
|
|
{ throw Exception("rank "+ToString(c.Rank())+" not in subcomm"); }
|
|
return c.SubCommunicator(procs);
|
|
}, py::arg("procs"));
|
|
;
|
|
|
|
|
|
#ifdef NG_MPI4PY
|
|
py::implicitly_convertible<mpi4py_comm, NgMPI_Comm>();
|
|
#endif // NG_MPI4PY
|
|
|
|
|
|
py::class_<NGDummyArgument>(m, "NGDummyArgument")
|
|
.def("__bool__", []( NGDummyArgument &self ) { return false; } )
|
|
;
|
|
|
|
py::class_<Point<2>> (m, "Point2d")
|
|
.def(py::init<double,double>())
|
|
.def(py::init( [] (std::pair<double,double> xy)
|
|
{
|
|
return Point<2>{xy.first, xy.second};
|
|
}))
|
|
.def ("__str__", &ToString<Point<2>>)
|
|
.def(py::self-py::self)
|
|
.def(py::self+Vec<2>())
|
|
.def(py::self-Vec<2>())
|
|
.def("__getitem__", [](Point<2>& self, int index) { return self[index]; })
|
|
;
|
|
|
|
py::implicitly_convertible<py::tuple, Point<2>>();
|
|
|
|
py::class_<Point<3>> (m, "Point3d")
|
|
.def(py::init<double,double,double>())
|
|
.def(py::init([](py::tuple p)
|
|
{
|
|
return Point<3> { p[0].cast<double>(), p[1].cast<double>(),
|
|
p[2].cast<double>() };
|
|
}))
|
|
.def ("__str__", &ToString<Point<3>>)
|
|
.def(py::self-py::self)
|
|
.def(py::self+Vec<3>())
|
|
.def(py::self-Vec<3>())
|
|
.def("__getitem__", [](Point<2>& self, int index) { return self[index]; })
|
|
;
|
|
|
|
py::implicitly_convertible<py::tuple, Point<3>>();
|
|
|
|
m.def("Pnt", [](double x, double y, double z)
|
|
{ return global_trafo(Point<3>(x,y,z)); });
|
|
m.def("Pnt", [](double x, double y) { return Point<2>(x,y); });
|
|
m.def("Pnt", [](py::array_t<double> np_array)
|
|
{
|
|
int dim = np_array.size();
|
|
if(!(dim == 2 || dim == 3))
|
|
throw Exception("Invalid dimension of input array!");
|
|
if(dim == 2)
|
|
return py::cast(Point<2>(np_array.at(0),
|
|
np_array.at(1)));
|
|
return py::cast(global_trafo(Point<3>(np_array.at(0),
|
|
np_array.at(1),
|
|
np_array.at(2))));
|
|
});
|
|
|
|
py::class_<Vec<2>> (m, "Vec2d")
|
|
.def(py::init<double,double>())
|
|
.def(py::init( [] (std::pair<double,double> xy)
|
|
{
|
|
return Vec<2>{xy.first, xy.second};
|
|
}))
|
|
.def ("__str__", &ToString<Vec<3>>)
|
|
.def(py::self==py::self)
|
|
.def(py::self+py::self)
|
|
.def(py::self-py::self)
|
|
.def(-py::self)
|
|
.def(double()*py::self)
|
|
.def(py::self*double())
|
|
.def("Norm", &Vec<2>::Length)
|
|
.def("__getitem__", [](Vec<2>& vec, int index) { return vec[index]; })
|
|
.def("__len__", [](Vec<2>& /*unused*/) { return 2; })
|
|
;
|
|
|
|
py::implicitly_convertible<py::tuple, Vec<2>>();
|
|
|
|
py::class_<Vec<3>> (m, "Vec3d")
|
|
.def(py::init<double,double,double>())
|
|
.def(py::init([](py::tuple v)
|
|
{
|
|
return Vec<3> { v[0].cast<double>(), v[1].cast<double>(),
|
|
v[2].cast<double>() };
|
|
}))
|
|
.def ("__str__", &ToString<Vec<3>>)
|
|
.def(py::self==py::self)
|
|
.def(py::self+py::self)
|
|
.def(py::self-py::self)
|
|
.def(-py::self)
|
|
.def(double()*py::self)
|
|
.def(py::self*double())
|
|
.def("Norm", &Vec<3>::Length)
|
|
.def("__getitem__", [](Vec<3>& vec, int index) { return vec[index]; })
|
|
.def("__len__", [](Vec<3>& /*unused*/) { return 3; })
|
|
;
|
|
|
|
py::implicitly_convertible<py::tuple, Vec<3>>();
|
|
|
|
m.def ("Vec", FunctionPointer
|
|
([] (double x, double y, double z) { return global_trafo(Vec<3>(x,y,z)); }));
|
|
m.def("Vec", [](py::array_t<double> np_array)
|
|
{
|
|
int dim = np_array.size();
|
|
if(!(dim == 2 || dim == 3))
|
|
throw Exception("Invalid dimension of input array!");
|
|
if(dim == 2)
|
|
return py::cast(Vec<2>(np_array.at(0),
|
|
np_array.at(1)));
|
|
return py::cast(global_trafo(Vec<3>(np_array.at(0),
|
|
np_array.at(1),
|
|
np_array.at(2))));
|
|
});
|
|
|
|
m.def ("Vec", FunctionPointer
|
|
([] (double x, double y) { return Vec<2>(x,y); }));
|
|
|
|
py::class_<Transformation<3>> (m, "Trafo")
|
|
.def(py::init<Vec<3>>(), "a translation")
|
|
.def(py::init<Point<3>,Vec<3>,double>(), "a rotation given by point on axes, direction of axes, angle")
|
|
.def("__mul__", [](Transformation<3> a, Transformation<3> b)->Transformation<3>
|
|
{ Transformation<3> res; res.Combine(a,b); return res; })
|
|
.def("__call__", [] (Transformation<3> trafo, Point<3> p) { return trafo(p); })
|
|
;
|
|
|
|
m.def ("GetTransformation", [] () { return global_trafo; });
|
|
m.def ("SetTransformation", [] (Transformation<3> trafo) { global_trafo = trafo; });
|
|
m.def ("SetTransformation",
|
|
[](int dir, double angle)
|
|
{
|
|
if (dir > 0)
|
|
global_trafo.SetAxisRotation (dir, angle*M_PI/180);
|
|
else
|
|
global_trafo = Transformation<3> (Vec<3>(0,0,0));
|
|
},
|
|
py::arg("dir")=int(0), py::arg("angle")=int(0));
|
|
m.def ("SetTransformation",
|
|
[](Point<3> p0, Vec<3> ex, Vec<3> ey, Vec<3> ez)
|
|
{
|
|
Point<3> pnts[4];
|
|
pnts[0] = p0;
|
|
pnts[1] = p0 + ex;
|
|
pnts[2] = p0 + ey;
|
|
pnts[3] = p0 + ez;
|
|
global_trafo = Transformation<3> (pnts);
|
|
},
|
|
py::arg("p0"), py::arg("ex"), py::arg("ey"), py::arg("ez"));
|
|
|
|
|
|
|
|
py::class_<PointIndex>(m, "PointId")
|
|
.def(py::init<int>())
|
|
.def("__repr__", &ToString<PointIndex>)
|
|
.def("__str__", &ToString<PointIndex>)
|
|
.def_property_readonly("nr", &PointIndex::operator int)
|
|
.def("__eq__" , FunctionPointer( [](PointIndex &self, PointIndex &other)
|
|
{ return static_cast<int>(self)==static_cast<int>(other); }) )
|
|
.def("__hash__" , FunctionPointer( [](PointIndex &self ) { return static_cast<int>(self); }) )
|
|
;
|
|
|
|
py::class_<ElementIndex>(m, "ElementId3D")
|
|
.def(py::init<int>())
|
|
.def("__repr__", &ToString<ElementIndex>)
|
|
.def("__str__", &ToString<ElementIndex>)
|
|
.def_property_readonly("nr", &ElementIndex::operator int)
|
|
.def("__eq__" , FunctionPointer( [](ElementIndex &self, ElementIndex &other)
|
|
{ return static_cast<int>(self)==static_cast<int>(other); }) )
|
|
.def("__hash__" , FunctionPointer( [](ElementIndex &self ) { return static_cast<int>(self); }) )
|
|
;
|
|
|
|
|
|
py::class_<SurfaceElementIndex>(m, "ElementId2D")
|
|
.def(py::init<int>())
|
|
.def("__repr__", &ToString<SurfaceElementIndex>)
|
|
.def("__str__", &ToString<SurfaceElementIndex>)
|
|
.def_property_readonly("nr", &SurfaceElementIndex::operator int)
|
|
.def("__eq__" , FunctionPointer( [](SurfaceElementIndex &self, SurfaceElementIndex &other)
|
|
{ return static_cast<int>(self)==static_cast<int>(other); }) )
|
|
.def("__hash__" , FunctionPointer( [](SurfaceElementIndex &self ) { return static_cast<int>(self); }) )
|
|
;
|
|
|
|
py::class_<SegmentIndex>(m, "ElementId1D")
|
|
.def(py::init<int>())
|
|
.def("__repr__", &ToString<SegmentIndex>)
|
|
.def("__str__", &ToString<SegmentIndex>)
|
|
.def_property_readonly("nr", &SegmentIndex::operator int)
|
|
.def("__eq__" , FunctionPointer( [](SegmentIndex &self, SegmentIndex &other)
|
|
{ return static_cast<int>(self)==static_cast<int>(other); }) )
|
|
.def("__hash__" , FunctionPointer( [](SegmentIndex &self ) { return static_cast<int>(self); }) )
|
|
;
|
|
|
|
|
|
|
|
/*
|
|
py::class_<Point<3>> ("Point")
|
|
.def(py::init<double,double,double>())
|
|
;
|
|
*/
|
|
|
|
py::class_<MeshPoint /* ,py::bases<Point<3>> */ >(m, "MeshPoint")
|
|
.def(py::init<Point<3>>())
|
|
.def("__str__", &ToString<MeshPoint>)
|
|
.def("__repr__", &ToString<MeshPoint>)
|
|
.def_property_readonly("p", [](const MeshPoint & self)
|
|
{
|
|
py::list l;
|
|
l.append ( py::cast(self[0]) );
|
|
l.append ( py::cast(self[1]) );
|
|
l.append ( py::cast(self[2]) );
|
|
return py::tuple(l);
|
|
})
|
|
.def("__getitem__", [](const MeshPoint & self, int index) {
|
|
if(index<0 || index>2)
|
|
throw py::index_error();
|
|
return self[index];
|
|
})
|
|
.def("__setitem__", [](MeshPoint & self, int index, double val) {
|
|
if(index<0 || index>2)
|
|
throw py::index_error();
|
|
self(index) = val;
|
|
})
|
|
;
|
|
|
|
py::class_<Element>(m, "Element3D")
|
|
.def(py::init([](int index, std::vector<PointIndex> vertices)
|
|
{
|
|
int np = vertices.size();
|
|
ELEMENT_TYPE et;
|
|
switch (np)
|
|
{
|
|
case 4: et = TET; break;
|
|
case 5: et = PYRAMID; break;
|
|
case 6: et = PRISM; break;
|
|
case 8: et = HEX; break;
|
|
case 10: et = TET10; break;
|
|
case 13: et = PYRAMID13; break;
|
|
case 15: et = PRISM15; break;
|
|
case 20: et = HEX20; break;
|
|
default:
|
|
throw Exception ("no Element3D with " + ToString(np) +
|
|
" points");
|
|
}
|
|
|
|
auto newel = new Element(et);
|
|
for(int i=0; i<np; i++)
|
|
(*newel)[i] = vertices[i];
|
|
newel->SetIndex(index);
|
|
return newel;
|
|
}),
|
|
py::arg("index")=1,py::arg("vertices"),
|
|
"create volume element"
|
|
)
|
|
.def("__repr__", &ToString<Element>)
|
|
.def_property("index", &Element::GetIndex, &Element::SetIndex)
|
|
.def_property("curved", &Element::IsCurved, &Element::SetCurved)
|
|
.def_property("refine", &Element::TestRefinementFlag, &Element::SetRefinementFlag)
|
|
.def_property_readonly("vertices",
|
|
FunctionPointer ([](const Element & self) -> py::list
|
|
{
|
|
py::list li;
|
|
for (int i = 0; i < self.GetNV(); i++)
|
|
li.append (py::cast(self[i]));
|
|
return li;
|
|
}))
|
|
.def_property_readonly("points",
|
|
FunctionPointer ([](const Element & self) -> py::list
|
|
{
|
|
py::list li;
|
|
for (int i = 0; i < self.GetNP(); i++)
|
|
li.append (py::cast(self[i]));
|
|
return li;
|
|
}))
|
|
;
|
|
|
|
if(ngcore_have_numpy)
|
|
{
|
|
auto data_layout = Element::GetDataLayout();
|
|
|
|
py::detail::npy_format_descriptor<Element>::register_dtype({
|
|
py::detail::field_descriptor {
|
|
"nodes", data_layout["pnum"],
|
|
ELEMENT_MAXPOINTS * sizeof(PointIndex),
|
|
py::format_descriptor<int[ELEMENT_MAXPOINTS]>::format(),
|
|
py::detail::npy_format_descriptor<int[ELEMENT_MAXPOINTS]>::dtype() },
|
|
py::detail::field_descriptor {
|
|
"index", data_layout["index"], sizeof(int),
|
|
py::format_descriptor<int>::format(),
|
|
py::detail::npy_format_descriptor<int>::dtype() },
|
|
py::detail::field_descriptor {
|
|
"np", data_layout["np"], sizeof(int8_t),
|
|
py::format_descriptor<signed char>::format(),
|
|
pybind11::dtype("int8") },
|
|
py::detail::field_descriptor {
|
|
"refine", data_layout["refine"], sizeof(bool),
|
|
py::format_descriptor<bool>::format(),
|
|
py::detail::npy_format_descriptor<bool>::dtype() }
|
|
});
|
|
}
|
|
|
|
py::class_<Element2d>(m, "Element2D")
|
|
.def(py::init ([](int index, std::vector<PointIndex> vertices)
|
|
{
|
|
Element2d * newel = nullptr;
|
|
if (vertices.size() == 3)
|
|
{
|
|
newel = new Element2d(TRIG);
|
|
for (int i = 0; i < 3; i++)
|
|
(*newel)[i] = vertices[i];
|
|
newel->SetIndex(index);
|
|
}
|
|
else if (vertices.size() == 4)
|
|
{
|
|
newel = new Element2d(QUAD);
|
|
for (int i = 0; i < 4; i++)
|
|
(*newel)[i] = vertices[i];
|
|
newel->SetIndex(index);
|
|
}
|
|
else if (vertices.size() == 6)
|
|
{
|
|
newel = new Element2d(TRIG6);
|
|
for(int i = 0; i<6; i++)
|
|
(*newel)[i] = vertices[i];
|
|
newel->SetIndex(index);
|
|
}
|
|
else if (vertices.size() == 8)
|
|
{
|
|
newel = new Element2d(QUAD8);
|
|
for(int i = 0; i<8; i++)
|
|
(*newel)[i] = vertices[i];
|
|
newel->SetIndex(index);
|
|
}
|
|
else
|
|
throw NgException("Inconsistent number of vertices in Element2D");
|
|
return newel;
|
|
}),
|
|
py::arg("index")=1,py::arg("vertices"),
|
|
"create surface element"
|
|
)
|
|
.def_property("index", &Element2d::GetIndex, &Element2d::SetIndex)
|
|
.def_property("curved", &Element2d::IsCurved, &Element2d::SetCurved)
|
|
.def_property("refine", &Element2d::TestRefinementFlag, &Element2d::SetRefinementFlag)
|
|
.def_property_readonly("vertices",
|
|
FunctionPointer([](const Element2d & self) -> py::list
|
|
{
|
|
py::list li;
|
|
for (int i = 0; i < self.GetNV(); i++)
|
|
li.append(py::cast(self[i]));
|
|
return li;
|
|
}))
|
|
.def_property_readonly("points",
|
|
FunctionPointer ([](const Element2d & self) -> py::list
|
|
{
|
|
py::list li;
|
|
for (int i = 0; i < self.GetNP(); i++)
|
|
li.append (py::cast(self[i]));
|
|
return li;
|
|
}))
|
|
;
|
|
|
|
if(ngcore_have_numpy)
|
|
{
|
|
auto data_layout = Element2d::GetDataLayout();
|
|
py::detail::npy_format_descriptor<Element2d>::register_dtype({
|
|
py::detail::field_descriptor {
|
|
"nodes", data_layout["pnum"],
|
|
ELEMENT2D_MAXPOINTS * sizeof(PointIndex),
|
|
py::format_descriptor<int[ELEMENT2D_MAXPOINTS]>::format(),
|
|
py::detail::npy_format_descriptor<int[ELEMENT2D_MAXPOINTS]>::dtype() },
|
|
py::detail::field_descriptor {
|
|
"index", data_layout["index"], sizeof(int),
|
|
py::format_descriptor<int>::format(),
|
|
py::detail::npy_format_descriptor<int>::dtype() },
|
|
py::detail::field_descriptor {
|
|
"np", data_layout["np"], sizeof(int8_t),
|
|
py::format_descriptor<signed char>::format(),
|
|
pybind11::dtype("int8") },
|
|
py::detail::field_descriptor {
|
|
"refine", data_layout["refine"], sizeof(bool),
|
|
py::format_descriptor<bool>::format(),
|
|
py::detail::npy_format_descriptor<bool>::dtype() }
|
|
});
|
|
}
|
|
|
|
py::class_<Segment>(m, "Element1D")
|
|
.def(py::init([](py::list vertices, py::list surfaces, int index, int edgenr,
|
|
py::list trignums)
|
|
{
|
|
Segment * newel = new Segment();
|
|
for (int i = 0; i < 2; i++)
|
|
(*newel)[i] = py::extract<PointIndex>(vertices[i])();
|
|
newel -> si = index;
|
|
newel -> edgenr = edgenr;
|
|
newel -> epgeominfo[0].edgenr = edgenr;
|
|
newel -> epgeominfo[1].edgenr = edgenr;
|
|
// needed for codim2 in 3d
|
|
newel -> edgenr = index;
|
|
for(auto i : Range(len(trignums)))
|
|
newel->geominfo[i].trignum = py::cast<int>(trignums[i]);
|
|
if (len(surfaces))
|
|
{
|
|
newel->surfnr1 = py::extract<int>(surfaces[0])();
|
|
newel->surfnr2 = py::extract<int>(surfaces[1])();
|
|
}
|
|
return newel;
|
|
}),
|
|
py::arg("vertices"),
|
|
py::arg("surfaces")=py::list(),
|
|
py::arg("index")=1,
|
|
py::arg("edgenr")=1,
|
|
py::arg("trignums")=py::list(), // for stl
|
|
"create segment element"
|
|
)
|
|
.def("__repr__", &ToString<Segment>)
|
|
.def_property_readonly("vertices",
|
|
FunctionPointer ([](const Segment & self) -> py::list
|
|
{
|
|
py::list li;
|
|
for (int i = 0; i < 2; i++)
|
|
li.append (py::cast(self[i]));
|
|
return li;
|
|
}))
|
|
.def_property_readonly("points",
|
|
FunctionPointer ([](const Segment & self) -> py::list
|
|
{
|
|
py::list li;
|
|
for (int i = 0; i < self.GetNP(); i++)
|
|
li.append (py::cast(self[i]));
|
|
return li;
|
|
}))
|
|
.def_property_readonly("surfaces",
|
|
FunctionPointer ([](const Segment & self) -> py::list
|
|
{
|
|
py::list li;
|
|
li.append (py::cast(self.surfnr1));
|
|
li.append (py::cast(self.surfnr2));
|
|
return li;
|
|
}))
|
|
.def_property_readonly("index", FunctionPointer([](const Segment &self) -> size_t
|
|
{
|
|
return self.si;
|
|
}))
|
|
.def_property_readonly("edgenr", FunctionPointer([](const Segment & self) -> size_t
|
|
{
|
|
return self.edgenr;
|
|
}))
|
|
;
|
|
|
|
if(ngcore_have_numpy)
|
|
{
|
|
py::detail::npy_format_descriptor<Segment>::register_dtype({
|
|
py::detail::field_descriptor {
|
|
"nodes", offsetof(Segment, pnums),
|
|
3 * sizeof(PointIndex),
|
|
py::format_descriptor<int[3]>::format(),
|
|
py::detail::npy_format_descriptor<int[3]>::dtype() },
|
|
py::detail::field_descriptor {
|
|
"index", offsetof(Segment, edgenr), sizeof(int),
|
|
py::format_descriptor<int>::format(),
|
|
py::detail::npy_format_descriptor<int>::dtype() },
|
|
});
|
|
}
|
|
|
|
py::class_<Element0d>(m, "Element0D")
|
|
.def(py::init([](PointIndex vertex, int index)
|
|
{
|
|
Element0d * instance = new Element0d;
|
|
instance->pnum = vertex;
|
|
instance->index = index;
|
|
return instance;
|
|
}),
|
|
py::arg("vertex"),
|
|
py::arg("index")=1,
|
|
"create point element"
|
|
)
|
|
.def("__repr__", &ToString<Element0d>)
|
|
.def_property_readonly("vertices",
|
|
FunctionPointer ([](const Element0d & self) -> py::list
|
|
{
|
|
py::list li;
|
|
li.append (py::cast(self.pnum));
|
|
return li;
|
|
}))
|
|
;
|
|
|
|
|
|
|
|
|
|
|
|
py::class_<FaceDescriptor>(m, "FaceDescriptor")
|
|
.def(py::init<const FaceDescriptor&>())
|
|
.def(py::init([](int surfnr, int domin, int domout, int bc)
|
|
{
|
|
FaceDescriptor * instance = new FaceDescriptor();
|
|
instance->SetSurfNr(surfnr);
|
|
instance->SetDomainIn(domin);
|
|
instance->SetDomainOut(domout);
|
|
instance->SetBCProperty(bc);
|
|
return instance;
|
|
}),
|
|
py::arg("surfnr")=1,
|
|
py::arg("domin")=1,
|
|
py::arg("domout")=py::int_(0),
|
|
py::arg("bc")=py::int_(0),
|
|
"create facedescriptor")
|
|
.def("__str__", &ToString<FaceDescriptor>)
|
|
.def("__repr__", &ToString<FaceDescriptor>)
|
|
.def_property("surfnr", &FaceDescriptor::SurfNr, &FaceDescriptor::SetSurfNr)
|
|
.def_property("domin", &FaceDescriptor::DomainIn, &FaceDescriptor::SetDomainIn)
|
|
.def_property("domout", &FaceDescriptor::DomainOut, &FaceDescriptor::SetDomainOut)
|
|
.def_property("bc", &FaceDescriptor::BCProperty, &FaceDescriptor::SetBCProperty)
|
|
.def_property("bcname",
|
|
[](FaceDescriptor & self) -> string { return self.GetBCName(); },
|
|
[](FaceDescriptor & self, string name) { self.SetBCName(new string(name)); } // memleak
|
|
)
|
|
.def_property("color",
|
|
[](const FaceDescriptor& self)
|
|
{
|
|
auto sc = self.SurfColour();
|
|
return py::make_tuple(sc[0], sc[1], sc[2]);
|
|
},
|
|
[](FaceDescriptor& self, py::tuple col)
|
|
{
|
|
Vec<4> sc = 1;
|
|
sc[0] = py::cast<double>(col[0]);
|
|
sc[1] = py::cast<double>(col[1]);
|
|
sc[2] = py::cast<double>(col[2]);
|
|
if(py::len(col) > 3)
|
|
sc[3] = py::cast<double>(col[3]);
|
|
self.SetSurfColour(sc);
|
|
}
|
|
)
|
|
.def_property("transparency",
|
|
[](const FaceDescriptor& self)
|
|
{
|
|
return self.SurfColour()[3];
|
|
},
|
|
[](FaceDescriptor& self, double val)
|
|
{
|
|
auto sc = self.SurfColour();
|
|
sc[3] = val;
|
|
self.SetSurfColour(sc);
|
|
})
|
|
;
|
|
|
|
|
|
|
|
ExportArray<Element,ElementIndex>(m);
|
|
ExportArray<Element2d,SurfaceElementIndex>(m);
|
|
ExportArray<Segment,SegmentIndex>(m);
|
|
ExportArray<Element0d>(m);
|
|
ExportArray<MeshPoint,PointIndex>(m);
|
|
ExportArray<FaceDescriptor>(m);
|
|
|
|
py::implicitly_convertible< int, PointIndex>();
|
|
|
|
py::class_<NetgenGeometry, shared_ptr<NetgenGeometry>> (m, "NetgenGeometry", py::dynamic_attr())
|
|
.def("RestrictH", &NetgenGeometry::RestrictH)
|
|
;
|
|
|
|
py::class_<Mesh,shared_ptr<Mesh>>(m, "Mesh")
|
|
// .def(py::init<>("create empty mesh"))
|
|
|
|
.def(py::init( [] (int dim, NgMPI_Comm comm)
|
|
{
|
|
auto mesh = make_shared<Mesh>();
|
|
mesh->SetCommunicator(comm);
|
|
mesh -> SetDimension(dim);
|
|
SetGlobalMesh(mesh); // for visualization
|
|
mesh -> SetGeometry (nullptr);
|
|
return mesh;
|
|
} ),
|
|
py::arg("dim")=3, py::arg("comm")=NgMPI_Comm{}
|
|
)
|
|
.def(NGSPickle<Mesh>())
|
|
.def_property_readonly("comm", [](const Mesh & amesh) -> NgMPI_Comm
|
|
{ return amesh.GetCommunicator(); },
|
|
"MPI-communicator the Mesh lives in")
|
|
/*
|
|
.def("__init__",
|
|
[](Mesh *instance, int dim)
|
|
{
|
|
new (instance) Mesh();
|
|
instance->SetDimension(dim);
|
|
},
|
|
py::arg("dim")=3
|
|
)
|
|
*/
|
|
|
|
.def_property_readonly("_timestamp", &Mesh::GetTimeStamp)
|
|
.def_property_readonly("ne", [](Mesh& m) { return m.GetNE(); })
|
|
.def("Partition", [](shared_ptr<Mesh> self, int numproc) {
|
|
self->ParallelMetis(numproc);
|
|
}, py::arg("numproc"))
|
|
|
|
.def("Distribute", [](shared_ptr<Mesh> self, NgMPI_Comm comm) {
|
|
self->SetCommunicator(comm);
|
|
if(comm.Size()==1) return self;
|
|
// if(MyMPI_GetNTasks(comm)==2) throw NgException("Sorry, cannot handle communicators with NP=2!");
|
|
// cout << " rank " << MyMPI_GetId(comm) << " of " << MyMPI_GetNTasks(comm) << " called Distribute " << endl;
|
|
if(comm.Rank()==0) self->Distribute();
|
|
else self->SendRecvMesh();
|
|
return self;
|
|
}, py::arg("comm"))
|
|
.def_static("Receive", [](NgMPI_Comm comm) -> shared_ptr<Mesh> {
|
|
auto mesh = make_shared<Mesh>();
|
|
mesh->SetCommunicator(comm);
|
|
mesh->SendRecvMesh();
|
|
return mesh;
|
|
}, py::arg("comm"))
|
|
.def("Load", FunctionPointer
|
|
([](shared_ptr<Mesh> self, const string & filename)
|
|
{
|
|
|
|
auto comm = self->GetCommunicator();
|
|
int id = comm.Rank();
|
|
int ntasks = comm.Size();
|
|
auto & mesh = self;
|
|
|
|
{
|
|
ifstream infile(filename.c_str());
|
|
if(!infile.good())
|
|
throw NgException(string("Error opening file ") + filename);
|
|
}
|
|
|
|
if ( filename.find(".vol") == string::npos )
|
|
{
|
|
if(ntasks>1)
|
|
throw NgException("Not sure what to do with this?? Does this work with MPI??");
|
|
mesh->SetCommunicator(comm);
|
|
ReadFile(*mesh,filename.c_str());
|
|
//mesh->SetGlobalH (mparam.maxh);
|
|
//mesh->CalcLocalH();
|
|
return;
|
|
}
|
|
|
|
istream * infile = nullptr;
|
|
Array<char> buf; // for distributing geometry!
|
|
int strs;
|
|
|
|
if( id == 0) {
|
|
if (filename.length() > 8 && filename.substr (filename.length()-8, 8) == ".vol.bin")
|
|
mesh -> Load(filename);
|
|
else if (filename.substr (filename.length()-3, 3) == ".gz")
|
|
infile = new igzstream (filename.c_str());
|
|
else
|
|
infile = new ifstream (filename.c_str());
|
|
|
|
if(infile)
|
|
{
|
|
mesh -> Load(*infile);
|
|
// make string from rest of file (for geometry info!)
|
|
// (this might be empty, in which case we take the global ng_geometry)
|
|
stringstream geom_part;
|
|
geom_part << infile->rdbuf();
|
|
string geom_part_string = geom_part.str();
|
|
strs = geom_part_string.size();
|
|
// buf = new char[strs];
|
|
buf.SetSize(strs);
|
|
memcpy(buf.Data(), geom_part_string.c_str(), strs*sizeof(char));
|
|
delete infile;
|
|
}
|
|
|
|
|
|
if (ntasks > 1)
|
|
{
|
|
|
|
char * weightsfilename = new char [filename.size()+1];
|
|
strcpy (weightsfilename, filename.c_str());
|
|
weightsfilename[strlen (weightsfilename)-3] = 'w';
|
|
weightsfilename[strlen (weightsfilename)-2] = 'e';
|
|
weightsfilename[strlen (weightsfilename)-1] = 'i';
|
|
|
|
ifstream weightsfile(weightsfilename);
|
|
delete [] weightsfilename;
|
|
|
|
if (!(weightsfile.good()))
|
|
{
|
|
// cout << "regular distribute" << endl;
|
|
mesh -> Distribute();
|
|
}
|
|
else
|
|
{
|
|
char str[20];
|
|
bool endfile = false;
|
|
int n, dummy;
|
|
|
|
NgArray<int> segment_weights;
|
|
NgArray<int> surface_weights;
|
|
NgArray<int> volume_weights;
|
|
|
|
while (weightsfile.good() && !endfile)
|
|
{
|
|
weightsfile >> str;
|
|
|
|
if (strcmp (str, "edgeweights") == 0)
|
|
{
|
|
weightsfile >> n;
|
|
segment_weights.SetSize(n);
|
|
for (int i = 0; i < n; i++)
|
|
weightsfile >> dummy >> segment_weights[i];
|
|
}
|
|
|
|
if (strcmp (str, "surfaceweights") == 0)
|
|
{
|
|
weightsfile >> n;
|
|
surface_weights.SetSize(n);
|
|
for (int i=0; i<n; i++)
|
|
weightsfile >> dummy >> surface_weights[i];
|
|
}
|
|
|
|
if (strcmp (str, "volumeweights") == 0)
|
|
{
|
|
weightsfile >> n;
|
|
volume_weights.SetSize(n);
|
|
for (int i=0; i<n; i++)
|
|
weightsfile >> dummy >> volume_weights[i];
|
|
}
|
|
|
|
if (strcmp (str, "endfile") == 0)
|
|
endfile = true;
|
|
}
|
|
|
|
mesh -> Distribute(volume_weights, surface_weights, segment_weights);
|
|
}
|
|
} // ntasks>1 end
|
|
} // id==0 end
|
|
else {
|
|
mesh->SendRecvMesh();
|
|
}
|
|
|
|
if(ntasks>1) {
|
|
// #ifdef PARALLEL
|
|
/** Scatter the geometry-string (no dummy-implementation in mpi_interface) **/
|
|
/*
|
|
int strs = buf.Size();
|
|
MyMPI_Bcast(strs, comm);
|
|
if(strs>0)
|
|
MyMPI_Bcast(buf, comm);
|
|
*/
|
|
comm.Bcast(buf);
|
|
// #endif
|
|
}
|
|
|
|
shared_ptr<NetgenGeometry> geo;
|
|
if(buf.Size()) { // if we had geom-info in the file, take it
|
|
istringstream geom_infile(string((const char*)buf.Data(), buf.Size()));
|
|
geo = geometryregister.LoadFromMeshFile(geom_infile);
|
|
}
|
|
if(geo!=nullptr) mesh->SetGeometry(geo);
|
|
else if(ng_geometry!=nullptr) mesh->SetGeometry(ng_geometry);
|
|
}),py::call_guard<py::gil_scoped_release>())
|
|
.def("Save", static_cast<void(Mesh::*)(const filesystem::path & name)const>(&Mesh::Save),py::call_guard<py::gil_scoped_release>())
|
|
.def("Export",
|
|
[] (Mesh & self, string filename, string format)
|
|
{
|
|
if (WriteUserFormat (format, self, /* *self.GetGeometry(), */ filename))
|
|
{
|
|
string err = string ("nothing known about format")+format;
|
|
NgArray<const char*> names, extensions;
|
|
RegisterUserFormats (names, extensions);
|
|
err += "\navailable formats are:\n";
|
|
for (auto name : names)
|
|
err += string("'") + name + "'\n";
|
|
throw NgException (err);
|
|
}
|
|
},
|
|
py::arg("filename"), py::arg("format"),py::call_guard<py::gil_scoped_release>())
|
|
|
|
.def_property("dim", &Mesh::GetDimension, &Mesh::SetDimension)
|
|
|
|
.def("Elements3D",
|
|
static_cast<Array<Element,ElementIndex>&(Mesh::*)()> (&Mesh::VolumeElements),
|
|
py::return_value_policy::reference)
|
|
|
|
.def("Elements2D",
|
|
static_cast<Array<Element2d,SurfaceElementIndex>&(Mesh::*)()> (&Mesh::SurfaceElements),
|
|
py::return_value_policy::reference)
|
|
|
|
.def("Elements1D",
|
|
static_cast<Array<Segment, SegmentIndex>&(Mesh::*)()> (&Mesh::LineSegments),
|
|
py::return_value_policy::reference)
|
|
|
|
.def("Elements0D", FunctionPointer([] (Mesh & self) -> Array<Element0d>&
|
|
{
|
|
return self.pointelements;
|
|
} ),
|
|
py::return_value_policy::reference)
|
|
|
|
.def("Points",
|
|
static_cast<Mesh::T_POINTS&(Mesh::*)()> (&Mesh::Points),
|
|
py::return_value_policy::reference)
|
|
|
|
.def("Coordinates", [](Mesh & self) {
|
|
return py::array
|
|
(
|
|
py::memoryview::from_buffer
|
|
(&self.Points()[PointIndex::BASE](0), sizeof(double),
|
|
py::format_descriptor<double>::value,
|
|
{ self.Points().Size(), size_t(self.GetDimension()) },
|
|
{ sizeof(self.Points()[PointIndex::BASE]), sizeof(double) } )
|
|
);
|
|
})
|
|
|
|
.def("FaceDescriptor", static_cast<FaceDescriptor&(Mesh::*)(int)> (&Mesh::GetFaceDescriptor),
|
|
py::return_value_policy::reference)
|
|
.def("GetNFaceDescriptors", &Mesh::GetNFD)
|
|
|
|
.def("FaceDescriptors",
|
|
// static_cast<Array<Element>&(Mesh::*)()> (&Mesh::FaceDescriptors),
|
|
&Mesh::FaceDescriptors,
|
|
py::return_value_policy::reference)
|
|
|
|
|
|
.def("GetNDomains", &Mesh::GetNDomains)
|
|
|
|
.def("GetVolumeNeighboursOfSurfaceElement", [](Mesh & self, size_t sel)
|
|
{
|
|
int elnr1, elnr2;
|
|
self.GetTopology().GetSurface2VolumeElement(sel+1, elnr1, elnr2);
|
|
return py::make_tuple(elnr1, elnr2);
|
|
}, "Returns element nrs of volume element connected to surface element, -1 if no volume element")
|
|
|
|
.def("GetNCD2Names", &Mesh::GetNCD2Names)
|
|
|
|
|
|
.def("__getitem__", [](const Mesh & self, PointIndex id) { return self[id]; })
|
|
.def("__getitem__", [](const Mesh & self, ElementIndex id) { return self[id]; })
|
|
.def("__getitem__", [](const Mesh & self, SurfaceElementIndex id) { return self[id]; })
|
|
.def("__getitem__", [](const Mesh & self, SegmentIndex id) { return self[id]; })
|
|
|
|
.def("__setitem__", [](Mesh & self, PointIndex id, const MeshPoint & mp) { return self[id] = mp; })
|
|
|
|
.def ("Add", [](Mesh & self, MeshPoint p)
|
|
{
|
|
return self.AddPoint (Point3d(p));
|
|
})
|
|
|
|
.def ("Add", [](Mesh & self, const Element & el)
|
|
{
|
|
return self.AddVolumeElement (el);
|
|
})
|
|
|
|
.def ("Add", [](Mesh & self, const Element2d & el)
|
|
{
|
|
return self.AddSurfaceElement (el);
|
|
})
|
|
|
|
.def ("Add", [](Mesh & self, const Segment & el)
|
|
{
|
|
return self.AddSegment (el);
|
|
})
|
|
|
|
.def ("Add", [](Mesh & self, const Element0d & el)
|
|
{
|
|
return self.pointelements.Append (el);
|
|
})
|
|
|
|
.def ("Add", [](Mesh & self, const FaceDescriptor & fd)
|
|
{
|
|
return self.AddFaceDescriptor (fd);
|
|
})
|
|
|
|
.def ("AddPoints", [](Mesh & self, py::buffer b1)
|
|
{
|
|
static Timer timer("Mesh::AddPoints");
|
|
static Timer timercast("Mesh::AddPoints - casting");
|
|
RegionTimer reg(timer);
|
|
|
|
timercast.Start();
|
|
// casting from here: https://github.com/pybind/pybind11/issues/1908
|
|
auto b = b1.cast<py::array_t<double_t, py::array::c_style | py::array::forcecast>>();
|
|
timercast.Stop();
|
|
|
|
py::buffer_info info = b.request();
|
|
// cout << "data format = " << info.format << endl;
|
|
if (info.ndim != 2)
|
|
throw std::runtime_error("AddPoints needs buffer of dimension 2");
|
|
// if (info.format != py::format_descriptor<double>::format())
|
|
// throw std::runtime_error("AddPoints needs buffer of type double");
|
|
if (info.strides[0] != sizeof(double)*info.shape[1])
|
|
throw std::runtime_error("AddPoints needs packed array");
|
|
double * ptr = static_cast<double*> (info.ptr);
|
|
|
|
self.Points().SetAllocSize(self.Points().Size()+info.shape[0]);
|
|
if (info.shape[1]==2)
|
|
for (auto i : Range(info.shape[0]))
|
|
{
|
|
self.AddPoint (Point<3>(ptr[0], ptr[1], 0));
|
|
ptr += 2;
|
|
}
|
|
if (info.shape[1]==3)
|
|
for (auto i : Range(info.shape[0]))
|
|
{
|
|
self.AddPoint (Point<3>(ptr[0], ptr[1], ptr[2]));
|
|
ptr += 3;
|
|
}
|
|
})
|
|
.def ("AddElements", [](Mesh & self, int dim, int index, py::buffer b1, int base)
|
|
{
|
|
static Timer timer("Mesh::AddElements");
|
|
static Timer timercast("Mesh::AddElements casting");
|
|
RegionTimer reg(timer);
|
|
|
|
timercast.Start();
|
|
auto b = b1.cast<py::array_t<int, py::array::c_style | py::array::forcecast>>();
|
|
timercast.Stop();
|
|
|
|
py::buffer_info info = b.request();
|
|
if (info.ndim != 2)
|
|
throw std::runtime_error("AddElements needs buffer of dimension 2");
|
|
// if (info.format != py::format_descriptor<int>::format())
|
|
// throw std::runtime_error("AddPoints needs buffer of type int");
|
|
|
|
int * ptr = static_cast<int*> (info.ptr);
|
|
if (dim == 2)
|
|
{
|
|
ELEMENT_TYPE type;
|
|
int np = info.shape[1];
|
|
switch (np)
|
|
{
|
|
case 3: type = TRIG; break;
|
|
case 4: type = QUAD; break;
|
|
case 6: type = TRIG6; break;
|
|
case 8: type = QUAD8; break;
|
|
default:
|
|
throw Exception("unsupported 2D element with "+ToString(np)+" points");
|
|
}
|
|
self.SurfaceElements().SetAllocSize(self.SurfaceElements().Size()+info.shape[0]);
|
|
for (auto i : Range(info.shape[0]))
|
|
{
|
|
Element2d el(type);
|
|
for (int j = 0; j < np;j ++)
|
|
el[j] = ptr[j]+PointIndex::BASE-base;
|
|
el.SetIndex(index);
|
|
self.AddSurfaceElement (el);
|
|
ptr += info.strides[0]/sizeof(int);
|
|
}
|
|
}
|
|
if (dim == 3)
|
|
{
|
|
ELEMENT_TYPE type;
|
|
int np = info.shape[1];
|
|
switch (np)
|
|
{
|
|
case 4: type = TET; break;
|
|
/* // have to check ordering of points
|
|
case 10: type = TET10; break;
|
|
case 8: type = HEX; break;
|
|
case 6: type = PRISM; break;
|
|
*/
|
|
default:
|
|
throw Exception("unsupported 3D element with "+ToString(np)+" points");
|
|
}
|
|
self.VolumeElements().SetAllocSize(self.VolumeElements().Size()+info.shape[0]);
|
|
for (auto i : Range(info.shape[0]))
|
|
{
|
|
Element el(type);
|
|
for (int j = 0; j < np;j ++)
|
|
el[j] = ptr[j]+PointIndex::BASE-base;
|
|
el.SetIndex(index);
|
|
self.AddVolumeElement (el);
|
|
ptr += info.strides[0]/sizeof(int);
|
|
}
|
|
}
|
|
|
|
}, py::arg("dim"), py::arg("index"), py::arg("data"), py::arg("base")=0)
|
|
|
|
.def ("DeleteSurfaceElement",
|
|
[](Mesh & self, SurfaceElementIndex i)
|
|
{
|
|
return self.Delete(i);
|
|
})
|
|
|
|
.def ("Compress", [](Mesh & self)
|
|
{
|
|
return self.Compress ();
|
|
} ,py::call_guard<py::gil_scoped_release>())
|
|
|
|
.def ("AddRegion", [] (Mesh & self, string name, int dim) -> int
|
|
{
|
|
auto & regionnames = self.GetRegionNamesCD(self.GetDimension()-dim);
|
|
regionnames.Append (new string(name));
|
|
int idx = regionnames.Size();
|
|
if (dim == 2)
|
|
{
|
|
FaceDescriptor fd;
|
|
fd.SetBCName(regionnames.Last());
|
|
fd.SetBCProperty(idx);
|
|
self.AddFaceDescriptor(fd);
|
|
}
|
|
return idx;
|
|
}, py::arg("name"), py::arg("dim"))
|
|
|
|
.def ("GetRegionNames", [] (Mesh & self, optional<int> optdim, optional<int> optcodim)
|
|
{
|
|
int codim;
|
|
if (optdim)
|
|
codim = self.GetDimension() - *optdim;
|
|
else if (optcodim)
|
|
codim = *optcodim;
|
|
else
|
|
throw Exception("either 'dim' or 'codim' must be specified");
|
|
|
|
NgArray<string*> & codimnames = self.GetRegionNamesCD (codim);
|
|
|
|
std::vector<string> names;
|
|
for (auto name : codimnames)
|
|
{
|
|
if (name)
|
|
names.push_back(*name);
|
|
else
|
|
names.push_back("");
|
|
}
|
|
return names;
|
|
}, py::arg("dim")=nullopt, py::arg("codim")=nullopt)
|
|
|
|
.def ("SetBCName", &Mesh::SetBCName)
|
|
.def ("GetBCName", FunctionPointer([](Mesh & self, int bc)->string
|
|
{ return self.GetBCName(bc); }))
|
|
.def ("SetMaterial", &Mesh::SetMaterial)
|
|
.def ("GetMaterial", FunctionPointer([](Mesh & self, int domnr)
|
|
{ return string(self.GetMaterial(domnr)); }))
|
|
|
|
.def ("GetCD2Name", &Mesh::GetCD2Name)
|
|
.def ("SetCD2Name", &Mesh::SetCD2Name)
|
|
|
|
.def ("GetCD3Name", &Mesh::GetCD3Name)
|
|
.def ("SetCD3Name", &Mesh::SetCD3Name)
|
|
|
|
.def ("AddPointIdentification", [](Mesh & self, py::object pindex1, py::object pindex2, int identnr, Identifications::ID_TYPE type)
|
|
{
|
|
if(py::extract<PointIndex>(pindex1).check() && py::extract<PointIndex>(pindex2).check())
|
|
{
|
|
self.GetIdentifications().Add (py::extract<PointIndex>(pindex1)(), py::extract<PointIndex>(pindex2)(), identnr);
|
|
self.GetIdentifications().SetType(identnr, type); // type = 2 ... periodic
|
|
}
|
|
},
|
|
//py::default_call_policies(),
|
|
py::arg("pid1"),
|
|
py::arg("pid2"),
|
|
py::arg("identnr"),
|
|
py::arg("type")=Identifications::PERIODIC)
|
|
.def("IdentifyPeriodicBoundaries", &Mesh::IdentifyPeriodicBoundaries,
|
|
py::arg("face1"), py::arg("face2"), py::arg("mapping"), py::arg("point_tolerance") = -1.)
|
|
.def("GetNrIdentifications", [](Mesh& self)
|
|
{
|
|
return self.GetIdentifications().GetMaxNr();
|
|
})
|
|
.def ("CalcLocalH", &Mesh::CalcLocalH)
|
|
.def ("SetMaxHDomain", [] (Mesh& self, py::list maxhlist)
|
|
{
|
|
NgArray<double> maxh;
|
|
for(auto el : maxhlist)
|
|
maxh.Append(py::cast<double>(el));
|
|
self.SetMaxHDomain(maxh);
|
|
})
|
|
.def ("GenerateVolumeMesh",
|
|
[](Mesh & self, MeshingParameters* pars,
|
|
py::kwargs kwargs)
|
|
{
|
|
MeshingParameters mp;
|
|
if(pars) mp = *pars;
|
|
{
|
|
py::gil_scoped_acquire acquire;
|
|
CreateMPfromKwargs(mp, kwargs);
|
|
}
|
|
MeshVolume (mp, self);
|
|
OptimizeVolume (mp, self);
|
|
}, py::arg("mp")=nullptr,
|
|
meshingparameter_description.c_str(),
|
|
py::call_guard<py::gil_scoped_release>())
|
|
|
|
.def ("OptimizeVolumeMesh", [](Mesh & self, MeshingParameters* pars)
|
|
{
|
|
MeshingParameters mp;
|
|
if(pars) mp = *pars;
|
|
else mp.optsteps3d = 5;
|
|
OptimizeVolume (mp, self);
|
|
}, py::arg("mp"), py::call_guard<py::gil_scoped_release>())
|
|
|
|
.def ("OptimizeMesh2d", [](Mesh & self, MeshingParameters* pars)
|
|
{
|
|
self.CalcLocalH(0.5);
|
|
MeshingParameters mp;
|
|
if(pars) mp = *pars;
|
|
else mp.optsteps2d = 5;
|
|
if(!self.GetGeometry())
|
|
throw Exception("Cannot optimize surface mesh without geometry!");
|
|
Optimize2d (self, mp);
|
|
}, py::arg("mp")=nullptr, py::call_guard<py::gil_scoped_release>())
|
|
|
|
.def ("Refine", FunctionPointer
|
|
([](Mesh & self, bool adaptive)
|
|
{
|
|
if (!adaptive)
|
|
{
|
|
self.GetGeometry()->GetRefinement().Refine(self);
|
|
self.UpdateTopology();
|
|
}
|
|
else
|
|
{
|
|
BisectionOptions biopt;
|
|
biopt.usemarkedelements = 1;
|
|
biopt.refine_p = 0;
|
|
biopt.refine_hp = 0;
|
|
/*
|
|
biopt.onlyonce = onlyonce;
|
|
if (reftype == NG_REFINE_P)
|
|
biopt.refine_p = 1;
|
|
if (reftype == NG_REFINE_HP)
|
|
biopt.refine_hp = 1;
|
|
*/
|
|
self.GetGeometry()->GetRefinement().Bisect (self, biopt);
|
|
self.UpdateTopology();
|
|
self.GetCurvedElements().SetIsHighOrder (false);
|
|
}
|
|
}), py::arg("adaptive")=false, py::call_guard<py::gil_scoped_release>())
|
|
|
|
.def("ZRefine", &Mesh::ZRefine)
|
|
|
|
.def ("SecondOrder", FunctionPointer
|
|
([](Mesh & self)
|
|
{
|
|
self.GetGeometry()->GetRefinement().MakeSecondOrder(self);
|
|
}))
|
|
|
|
.def ("GetGeometry", [] (Mesh& self) { return self.GetGeometry(); })
|
|
.def ("SetGeometry", [](Mesh & self, shared_ptr<NetgenGeometry> geo)
|
|
{
|
|
self.SetGeometry(geo);
|
|
})
|
|
|
|
/*
|
|
.def ("SetGeometry", FunctionPointer
|
|
([](Mesh & self, shared_ptr<CSGeometry> geo)
|
|
{
|
|
self.SetGeometry(geo);
|
|
}))
|
|
*/
|
|
|
|
.def ("BuildSearchTree", &Mesh::BuildElementSearchTree,py::call_guard<py::gil_scoped_release>())
|
|
|
|
.def ("BoundaryLayer2", GenerateBoundaryLayer2, py::arg("domain"), py::arg("thicknesses"), py::arg("make_new_domain")=true, py::arg("boundaries")=Array<int>{})
|
|
.def ("BoundaryLayer", [](Mesh & self, variant<string, int> boundary,
|
|
variant<double, py::list> thickness,
|
|
variant<string, map<string, string>> material,
|
|
variant<string, int> domain, bool outside,
|
|
optional<string> project_boundaries,
|
|
bool grow_edges, bool limit_growth_vectors,
|
|
bool sides_keep_surfaceindex)
|
|
{
|
|
BoundaryLayerParameters blp;
|
|
BitArray boundaries(self.GetNFD()+1);
|
|
boundaries.Clear();
|
|
if(int* bc = get_if<int>(&boundary); bc)
|
|
{
|
|
for (int i = 1; i <= self.GetNFD(); i++)
|
|
if(self.GetFaceDescriptor(i).BCProperty() == *bc)
|
|
boundaries.SetBit(i);
|
|
}
|
|
else
|
|
{
|
|
regex pattern(*get_if<string>(&boundary));
|
|
for(int i = 1; i<=self.GetNFD(); i++)
|
|
{
|
|
auto& fd = self.GetFaceDescriptor(i);
|
|
if(regex_match(fd.GetBCName(), pattern))
|
|
{
|
|
boundaries.SetBit(i);
|
|
auto dom_pattern = get_if<string>(&domain);
|
|
// only add if adjacent to domain
|
|
if(dom_pattern)
|
|
{
|
|
regex pattern(*dom_pattern);
|
|
bool mat1_match = fd.DomainIn() > 0 && regex_match(self.GetMaterial(fd.DomainIn()), pattern);
|
|
bool mat2_match = fd.DomainOut() > 0 && regex_match(self.GetMaterial(fd.DomainOut()), pattern);
|
|
// if boundary is inner or outer remove from list
|
|
if(mat1_match == mat2_match)
|
|
boundaries.Clear(i);
|
|
// if((fd.DomainIn() > 0 && regex_match(self.GetMaterial(fd.DomainIn()), pattern)) || (fd.DomainOut() > 0 && regex_match(self.GetMaterial(fd.DomainOut()), pattern)))
|
|
// boundaries.Clear(i);
|
|
// blp.surfid.Append(i);
|
|
}
|
|
// else
|
|
// blp.surfid.Append(i);
|
|
}
|
|
}
|
|
}
|
|
for(int i = 1; i<=self.GetNFD(); i++)
|
|
if(boundaries.Test(i))
|
|
blp.surfid.Append(i);
|
|
if(string* mat = get_if<string>(&material); mat)
|
|
blp.new_mat = { { ".*", *mat } };
|
|
else
|
|
blp.new_mat = *get_if<map<string, string>>(&material);
|
|
|
|
if(project_boundaries.has_value())
|
|
{
|
|
regex pattern(*project_boundaries);
|
|
for(int i = 1; i<=self.GetNFD(); i++)
|
|
if(regex_match(self.GetFaceDescriptor(i).GetBCName(), pattern))
|
|
blp.project_boundaries.Append(i);
|
|
}
|
|
|
|
if(double* pthickness = get_if<double>(&thickness); pthickness)
|
|
{
|
|
blp.heights.Append(*pthickness);
|
|
}
|
|
else
|
|
{
|
|
auto thicknesses = *get_if<py::list>(&thickness);
|
|
for(auto val : thicknesses)
|
|
blp.heights.Append(val.cast<double>());
|
|
}
|
|
|
|
int nr_domains = self.GetNDomains();
|
|
blp.domains.SetSize(nr_domains + 1); // one based
|
|
blp.domains.Clear();
|
|
if(string* pdomain = get_if<string>(&domain); pdomain)
|
|
{
|
|
regex pattern(*pdomain);
|
|
for(auto i : Range(1, nr_domains+1))
|
|
if(regex_match(self.GetMaterial(i), pattern))
|
|
blp.domains.SetBit(i);
|
|
}
|
|
else
|
|
{
|
|
auto idomain = *get_if<int>(&domain);
|
|
blp.domains.SetBit(idomain);
|
|
}
|
|
|
|
blp.outside = outside;
|
|
blp.grow_edges = grow_edges;
|
|
blp.limit_growth_vectors = limit_growth_vectors;
|
|
blp.sides_keep_surfaceindex = sides_keep_surfaceindex;
|
|
|
|
GenerateBoundaryLayer (self, blp);
|
|
self.UpdateTopology();
|
|
}, py::arg("boundary"), py::arg("thickness"), py::arg("material"),
|
|
py::arg("domains") = ".*", py::arg("outside") = false,
|
|
py::arg("project_boundaries")=nullopt, py::arg("grow_edges")=true, py::arg("limit_growth_vectors") = true, py::arg("sides_keep_surfaceindex")=false,
|
|
R"delimiter(
|
|
Add boundary layer to mesh.
|
|
|
|
Parameters
|
|
----------
|
|
|
|
boundary : string or int
|
|
Boundary name or number.
|
|
|
|
thickness : float or List[float]
|
|
Thickness of boundary layer(s).
|
|
|
|
material : str or List[str]
|
|
Material name of boundary layer(s).
|
|
|
|
domain : str or int
|
|
Regexp for domain boundarylayer is going into.
|
|
|
|
outside : bool = False
|
|
If true add the layer on the outside
|
|
|
|
grow_edges : bool = False
|
|
Grow boundary layer over edges.
|
|
|
|
project_boundaries : Optional[str] = None
|
|
Project boundarylayer to these boundaries if they meet them. Set
|
|
to boundaries that meet boundarylayer at a non-orthogonal edge and
|
|
layer-ending should be projected to that boundary.
|
|
|
|
)delimiter")
|
|
|
|
.def_static ("EnableTableClass", [] (string name, bool set)
|
|
{
|
|
MeshTopology::EnableTableStatic(name, set);
|
|
},
|
|
py::arg("name"), py::arg("set")=true)
|
|
.def ("EnableTable", [] (Mesh & self, string name, bool set)
|
|
{
|
|
const_cast<MeshTopology&>(self.GetTopology()).EnableTable(name, set);
|
|
},
|
|
py::arg("name"), py::arg("set")=true)
|
|
|
|
.def ("Scale", [](Mesh & self, double factor)
|
|
{
|
|
for(auto & pnt : self.Points())
|
|
pnt.Scale(factor);
|
|
})
|
|
.def ("Copy", [](Mesh & self)
|
|
{
|
|
auto m2 = make_shared<Mesh> ();
|
|
*m2 = self;
|
|
return m2;
|
|
})
|
|
.def ("CalcMinMaxAngle", [](Mesh & self, double badel_limit)
|
|
{
|
|
double values[4];
|
|
self.CalcMinMaxAngle (badel_limit, values);
|
|
py::dict res;
|
|
res["trig"] = py::make_tuple( values[0], values[1] );
|
|
res["tet"] = py::make_tuple( values[2], values[3] );
|
|
return res;
|
|
}, py::arg("badelement_limit")=175.0)
|
|
.def ("Update", [](Mesh & self)
|
|
{
|
|
self.SetNextTimeStamp();
|
|
})
|
|
.def ("CalcTotalBadness", &Mesh::CalcTotalBad)
|
|
.def ("GetQualityHistogram", &Mesh::GetQualityHistogram)
|
|
.def("Mirror", &Mesh::Mirror)
|
|
.def("_getVertices", [](Mesh & self)
|
|
{
|
|
// std::vector<float> verts(3*self.GetNV());
|
|
Array<float> verts(3*self.GetNV());
|
|
ParallelForRange( self.GetNV(), [&](auto myrange) {
|
|
const auto & points = self.Points();
|
|
for(auto i : myrange)
|
|
{
|
|
auto p = points[PointIndex::BASE+i];
|
|
auto * v = &verts[3*i];
|
|
for(auto k : Range(3))
|
|
v[k] = p[k];
|
|
} });
|
|
return verts;
|
|
})
|
|
.def("_getSegments", [](Mesh & self)
|
|
{
|
|
// std::vector<int> output;
|
|
// output.resize(2*self.GetNSeg());
|
|
Array<int> output(2*self.GetNSeg());
|
|
ParallelForRange( self.GetNSeg(), [&](auto myrange) {
|
|
const auto & segs = self.LineSegments();
|
|
for(auto i : myrange)
|
|
{
|
|
const auto & seg = segs[i];
|
|
for(auto k : Range(2))
|
|
output[2*i+k] = seg[k]-PointIndex::BASE;
|
|
} });
|
|
return output;
|
|
})
|
|
.def("_getWireframe", [](Mesh & self)
|
|
{
|
|
const auto & topo = self.GetTopology();
|
|
size_t n = topo.GetNEdges();
|
|
/*
|
|
std::vector<int> output;
|
|
output.resize(2*n);
|
|
*/
|
|
Array<int> output(2*n);
|
|
ParallelForRange( n, [&](auto myrange) {
|
|
for(auto i : myrange)
|
|
{
|
|
PointIndex p0,p1;
|
|
topo.GetEdgeVertices(i+1, p0, p1);
|
|
output[2*i] = p0-PointIndex::BASE;
|
|
output[2*i+1] = p1-PointIndex::BASE;
|
|
} });
|
|
return output;
|
|
})
|
|
.def("_get2dElementsAsTriangles", [](Mesh & self)
|
|
{
|
|
/*
|
|
std::vector<int> trigs;
|
|
trigs.resize(3*self.GetNSE());
|
|
*/
|
|
Array<int> trigs(3*self.GetNSE());
|
|
ParallelForRange( self.GetNSE(), [&](auto myrange) {
|
|
const auto & surfels = self.SurfaceElements();
|
|
for(auto i : myrange)
|
|
{
|
|
const auto & sel = surfels[i];
|
|
auto * trig = &trigs[3*i];
|
|
for(auto k : Range(3))
|
|
trig[k] = sel[k]-PointIndex::BASE;
|
|
// todo: quads (store the second trig in thread-local extra array, merge them at the end (mutex)
|
|
} });
|
|
return trigs;
|
|
})
|
|
.def("_get3dElementsAsTets", [](Mesh & self)
|
|
{
|
|
// std::vector<int> tets;
|
|
// tets.resize(4*self.GetNE());
|
|
|
|
Array<int> tets(4*self.GetNE());
|
|
ParallelForRange( self.GetNE(), [&](auto myrange) {
|
|
const auto & els = self.VolumeElements();
|
|
for(auto i : myrange)
|
|
{
|
|
const auto & el = els[i];
|
|
auto * trig = &tets[4*i];
|
|
for(auto k : Range(4))
|
|
trig[k] = el[k]-PointIndex::BASE;
|
|
// todo: prisms etc (store the extra tets in thread-local extra array, merge them at the end (mutex)
|
|
} });
|
|
return tets;
|
|
})
|
|
;
|
|
|
|
m.def("ImportMesh", [](const string& filename)
|
|
{
|
|
auto mesh = make_shared<Mesh>();
|
|
ReadFile(*mesh, filename);
|
|
return mesh;
|
|
}, py::arg("filename"),
|
|
R"delimiter(Import mesh from other file format, supported file formats are:
|
|
Neutral format (*.mesh, *.emt)
|
|
Surface file (*.surf)
|
|
Universal format (*.unv)
|
|
Olaf format (*.emt)
|
|
Tet format (*.tet)
|
|
Pro/ENGINEER format (*.fnf)
|
|
)delimiter");
|
|
py::enum_<MESHING_STEP>(m,"MeshingStep")
|
|
.value("ANALYSE", MESHCONST_ANALYSE)
|
|
.value("MESHEDGES", MESHCONST_MESHEDGES)
|
|
.value("MESHSURFACE", MESHCONST_OPTSURFACE)
|
|
.value("MESHVOLUME", MESHCONST_OPTVOLUME)
|
|
;
|
|
|
|
typedef MeshingParameters MP;
|
|
auto mp = py::class_<MP> (m, "MeshingParameters")
|
|
.def(py::init<>())
|
|
.def(py::init([](MeshingParameters* other, py::kwargs kwargs)
|
|
{
|
|
MeshingParameters mp;
|
|
if(other) mp = *other;
|
|
CreateMPfromKwargs(mp, kwargs, false);
|
|
return mp;
|
|
}), py::arg("mp")=nullptr, meshingparameter_description.c_str())
|
|
.def("__str__", &ToString<MP>)
|
|
.def("RestrictH", [](MP & mp, double x, double y, double z, double h)
|
|
{
|
|
mp.meshsize_points.Append ( MeshingParameters::MeshSizePoint(Point<3> (x,y,z), h));
|
|
}, py::arg("x"), py::arg("y"), py::arg("z"), py::arg("h")
|
|
)
|
|
.def("RestrictH", [](MP & mp, const Point<3>& p, double h)
|
|
{
|
|
mp.meshsize_points.Append ({p, h});
|
|
}, py::arg("p"), py::arg("h"))
|
|
.def("RestrictHLine", [](MP& mp, const Point<3>& p1, const Point<3>& p2,
|
|
double maxh)
|
|
{
|
|
int steps = int(Dist(p1, p2) / maxh) + 2;
|
|
auto v = p2 - p1;
|
|
for (int i = 0; i <= steps; i++)
|
|
{
|
|
mp.meshsize_points.Append({p1 + double(i)/steps * v, maxh});
|
|
}
|
|
}, py::arg("p1"), py::arg("p2"), py::arg("maxh"))
|
|
;
|
|
|
|
m.def("SetTestoutFile", FunctionPointer ([] (const string & filename)
|
|
{
|
|
delete testout;
|
|
testout = new ofstream (filename);
|
|
}));
|
|
|
|
m.def("SetMessageImportance", FunctionPointer ([] (int importance)
|
|
{
|
|
int old = printmessage_importance;
|
|
printmessage_importance = importance;
|
|
return old;
|
|
}));
|
|
|
|
py::class_<DebugParameters> (m, "_DebugParameters")
|
|
.def_readwrite("debugoutput", &DebugParameters::debugoutput)
|
|
.def_readwrite("slowchecks", &DebugParameters::slowchecks)
|
|
.def_readwrite("haltsuccess", &DebugParameters::haltsuccess)
|
|
.def_readwrite("haltnosuccess", &DebugParameters::haltnosuccess)
|
|
.def_readwrite("haltlargequalclass", &DebugParameters::haltlargequalclass)
|
|
.def_readwrite("haltsegment", &DebugParameters::haltsegment)
|
|
.def_readwrite("haltnode", &DebugParameters::haltnode)
|
|
.def_readwrite("haltsegmentp1", &DebugParameters::haltsegmentp1)
|
|
.def_readwrite("haltsegmentp2", &DebugParameters::haltsegmentp2)
|
|
.def_readwrite("haltexistingline", &DebugParameters::haltexistingline)
|
|
.def_readwrite("haltoverlap", &DebugParameters::haltoverlap)
|
|
.def_readwrite("haltface", &DebugParameters::haltface)
|
|
.def_readwrite("haltfacenr", &DebugParameters::haltfacenr)
|
|
.def_readwrite("write_mesh_on_error", &DebugParameters::write_mesh_on_error)
|
|
;
|
|
|
|
m.attr("debugparam") = py::cast(&debugparam);
|
|
|
|
m.def("ReadCGNSFile", &ReadCGNSFile, py::arg("filename"), py::arg("base")=1, "Read mesh and solution vectors from CGNS file");
|
|
m.def("WriteCGNSFile", &WriteCGNSFile, py::arg("mesh"), py::arg("filename"), py::arg("names"), py::arg("values"), py::arg("locations"),
|
|
R"(Write mesh and solution vectors to CGNS file, possible values for locations:
|
|
Vertex = 0
|
|
EdgeCenter = 1
|
|
FaceCenter = 2
|
|
CellCenter = 3
|
|
)");
|
|
|
|
py::class_<SurfaceGeometry, NetgenGeometry, shared_ptr<SurfaceGeometry>> (m, "SurfaceGeometry")
|
|
.def(py::init<>())
|
|
.def(py::init([](py::object pyfunc)
|
|
{
|
|
std::function<Vec<3> (Point<2>)> func = [pyfunc](Point<2> p)
|
|
{
|
|
py::gil_scoped_acquire aq;
|
|
py::tuple pyres = py::extract<py::tuple>(pyfunc(p[0],p[1],0.0)) ();
|
|
return Vec<3>(py::extract<double>(pyres[0])(),py::extract<double>(pyres[1])(),py::extract<double>(pyres[2])());
|
|
};
|
|
auto geo = make_shared<SurfaceGeometry>(func);
|
|
return geo;
|
|
}), py::arg("mapping"))
|
|
.def(NGSPickle<SurfaceGeometry>())
|
|
.def("GenerateMesh", [](shared_ptr<SurfaceGeometry> geo,
|
|
bool quads, int nx, int ny, bool flip_triangles, py::list py_bbbpts, py::list py_bbbnames, py::list py_hppts, py::list py_hpbnd)
|
|
{
|
|
if (py::len(py_bbbpts) != py::len(py_bbbnames))
|
|
throw Exception("In SurfaceGeometry::GenerateMesh bbbpts and bbbnames do not have same lengths.");
|
|
Array<Point<3>> bbbpts(py::len(py_bbbpts));
|
|
Array<string> bbbname(py::len(py_bbbpts));
|
|
Array<Point<3>> hppts(py::len(py_hppts));
|
|
Array<float> hpptsfac(py::len(py_hppts));
|
|
Array<string> hpbnd(py::len(py_hpbnd));
|
|
Array<float> hpbndfac(py::len(py_hpbnd));
|
|
for(int i = 0; i<py::len(py_bbbpts);i++)
|
|
{
|
|
py::tuple pnt = py::extract<py::tuple>(py_bbbpts[i])();
|
|
bbbpts[i] = Point<3>(py::extract<double>(pnt[0])(),py::extract<double>(pnt[1])(),py::extract<double>(pnt[2])());
|
|
bbbname[i] = py::extract<string>(py_bbbnames[i])();
|
|
}
|
|
for(int i = 0; i<py::len(py_hppts);i++)
|
|
{
|
|
py::tuple pnt = py::extract<py::tuple>(py_hppts[i])();
|
|
hppts[i] = Point<3>(py::extract<double>(pnt[0])(),py::extract<double>(pnt[1])(),py::extract<double>(pnt[2])());
|
|
//hpptsfac[i] = py::len(pnt) > 3 ? py::extract<double>(pnt[3])() : 0.0;
|
|
hpptsfac[i] = py::extract<double>(pnt[3])();
|
|
}
|
|
|
|
for(int i = 0; i<py::len(py_hpbnd);i++)
|
|
{
|
|
py::tuple bnd = py::extract<py::tuple>(py_hpbnd[i])();
|
|
hpbnd[i] = py::extract<string>(bnd[0])();
|
|
hpbndfac[i] = py::extract<double>(bnd[1])();
|
|
}
|
|
auto mesh = make_shared<Mesh>();
|
|
SetGlobalMesh (mesh);
|
|
mesh->SetGeometry(geo);
|
|
ng_geometry = geo;
|
|
auto result = geo->GenerateStructuredMesh (mesh, quads, nx, ny, flip_triangles, bbbpts, bbbname, hppts, hpptsfac, hpbnd, hpbndfac);
|
|
if(result != 0)
|
|
throw Exception("SurfaceGeometry: Meshing failed!");
|
|
return mesh;
|
|
}, py::arg("quads")=true, py::arg("nx")=10, py::arg("ny")=10, py::arg("flip_triangles")=false, py::arg("bbbpts")=py::list(), py::arg("bbbnames")=py::list(), py::arg("hppts")=py::list(), py::arg("hpbnd")=py::list())
|
|
;
|
|
;
|
|
|
|
py::class_<ClearSolutionClass> (m, "ClearSolutionClass")
|
|
.def(py::init<>())
|
|
;
|
|
m.def("SetParallelPickling", [](bool par) { parallel_pickling = par; });
|
|
m.def ("_Redraw",
|
|
([](bool blocking, double fr)
|
|
{
|
|
static auto last_time = std::chrono::system_clock::now()-std::chrono::seconds(10);
|
|
auto now = std::chrono::system_clock::now();
|
|
double elapsed = std::chrono::duration<double>(now-last_time).count();
|
|
if (blocking || elapsed * fr > 1)
|
|
{
|
|
Ng_Redraw(blocking);
|
|
last_time = std::chrono::system_clock::now();
|
|
return true;
|
|
}
|
|
return false;
|
|
}),
|
|
py::arg("blocking")=false, py::arg("fr") = 25, R"raw_string(
|
|
Redraw all
|
|
|
|
Parameters:
|
|
|
|
blocking : bool
|
|
input blocking
|
|
|
|
fr : double
|
|
input framerate
|
|
|
|
)raw_string");
|
|
}
|
|
|
|
PYBIND11_MODULE(libmesh, m) {
|
|
ExportNetgenMeshing(m);
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
|