mirror of
https://github.com/NGSolve/netgen.git
synced 2025-01-03 01:30:33 +05:00
1042 lines
22 KiB
C++
1042 lines
22 KiB
C++
#ifndef FILE_SPLINE_HPP
|
|
#define FILE_SPLINE_HPP
|
|
|
|
/**************************************************************************/
|
|
/* File: spline.hpp */
|
|
/* Author: Joachim Schoeberl */
|
|
/* Date: 24. Jul. 96 */
|
|
/**************************************************************************/
|
|
|
|
|
|
void CalcPartition (double l, double h, double r1, double r2,
|
|
double ra, double elto0, ARRAY<double> & points);
|
|
|
|
/*
|
|
Spline curves for 2D mesh generation
|
|
*/
|
|
|
|
|
|
/// Geometry point
|
|
template < int D >
|
|
class GeomPoint : public Point<D>
|
|
{
|
|
public:
|
|
/// refinement to point
|
|
double refatpoint;
|
|
bool hpref;
|
|
|
|
GeomPoint ()
|
|
{ ; }
|
|
|
|
///
|
|
GeomPoint (double ax, double ay, double aref = 1, bool ahpref=false)
|
|
: Point<D> (ax, ay), refatpoint(aref), hpref(ahpref) { ; }
|
|
GeomPoint (double ax, double ay, double az, double aref, bool ahpref=false)
|
|
: Point<D> (ax, ay, az), refatpoint(aref), hpref(ahpref) { ; }
|
|
GeomPoint (const Point<D> & ap, double aref = 1, bool ahpref=false)
|
|
: Point<D>(ap), refatpoint(aref), hpref(ahpref) { ; }
|
|
};
|
|
|
|
|
|
|
|
/// base class for 2d - segment
|
|
template < int D >
|
|
class SplineSeg
|
|
{
|
|
public:
|
|
/// left domain
|
|
int leftdom;
|
|
/// right domain
|
|
int rightdom;
|
|
/// refinement at line
|
|
double reffak;
|
|
/// boundary condition number
|
|
int bc;
|
|
/// copy spline mesh from other spline (-1.. do not copy)
|
|
int copyfrom;
|
|
/// perfrom anisotropic refinement (hp-refinement) to edge
|
|
bool hpref_left;
|
|
bool hpref_right;
|
|
/// calculates length of curve
|
|
virtual double Length () const;
|
|
/// returns point at curve, 0 <= t <= 1
|
|
virtual Point<D> GetPoint (double t) const = 0;
|
|
/// returns a (not necessarily uniform) tangent vector for 0 <= t <= 1
|
|
virtual Vec<D> GetTangent (const double t) const
|
|
{ cerr << "GetTangent not implemented for spline base-class" << endl; Vec<D> dummy; return dummy;}
|
|
virtual void GetDerivatives (const double t,
|
|
Point<D> & point,
|
|
Vec<D> & first,
|
|
Vec<D> & second) const {;}
|
|
/// partitionizes curve
|
|
void Partition (double h, double elto0,
|
|
Mesh & mesh, Point3dTree & searchtree, int segnr) const;
|
|
/// returns initial point on curve
|
|
virtual const GeomPoint<D> & StartPI () const = 0;
|
|
/// returns terminal point on curve
|
|
virtual const GeomPoint<D> & EndPI () const = 0;
|
|
/** writes curve description for fepp:
|
|
for implicitly given quadratic curves, the 6 coefficients of
|
|
the polynomial
|
|
$$ a x^2 + b y^2 + c x y + d x + e y + f = 0 $$
|
|
are written to ost */
|
|
void PrintCoeff (ostream & ost) const;
|
|
|
|
virtual void GetCoeff (Vector & coeffs) const = 0;
|
|
|
|
virtual void GetPoints (int n, ARRAY<Point<D> > & points);
|
|
|
|
/** calculates (2D) lineintersections:
|
|
for lines $$ a x + b y + c = 0 $$ the interecting points are calculated
|
|
and stored in points */
|
|
virtual void LineIntersections (const double a, const double b, const double c,
|
|
ARRAY < Point<D> > & points, const double eps) const
|
|
{points.SetSize(0);}
|
|
|
|
virtual double MaxCurvature(void) const = 0;
|
|
|
|
virtual string GetType(void) const {return "splinebase";}
|
|
|
|
virtual void Project (const Point<D> point, Point<D> & point_on_curve, double & t) const
|
|
{ cerr << "Project not implemented for spline base-class" << endl;}
|
|
|
|
virtual void GetRawData (ARRAY<double> & data) const
|
|
{ cerr << "GetRawData not implemented for spline base-class" << endl;}
|
|
|
|
};
|
|
|
|
|
|
/// Straight line form p1 to p2
|
|
template< int D >
|
|
class LineSeg : public SplineSeg<D>
|
|
{
|
|
///
|
|
GeomPoint<D> p1, p2;
|
|
//const GeomPoint<D> &p1, &p2;
|
|
public:
|
|
///
|
|
LineSeg (const GeomPoint<D> & ap1, const GeomPoint<D> & ap2);
|
|
///
|
|
virtual double Length () const;
|
|
///
|
|
virtual Point<D> GetPoint (double t) const;
|
|
///
|
|
virtual Vec<D> GetTangent (const double t) const;
|
|
|
|
|
|
virtual void GetDerivatives (const double t,
|
|
Point<D> & point,
|
|
Vec<D> & first,
|
|
Vec<D> & second) const;
|
|
///
|
|
virtual const GeomPoint<D> & StartPI () const { return p1; };
|
|
///
|
|
virtual const GeomPoint<D> & EndPI () const { return p2; }
|
|
///
|
|
virtual void GetCoeff (Vector & coeffs) const;
|
|
|
|
virtual string GetType(void) const {return "line";}
|
|
|
|
virtual void LineIntersections (const double a, const double b, const double c,
|
|
ARRAY < Point<D> > & points, const double eps) const;
|
|
|
|
virtual double MaxCurvature(void) const {return 0;}
|
|
|
|
virtual void Project (const Point<D> point, Point<D> & point_on_curve, double & t) const;
|
|
|
|
virtual void GetRawData (ARRAY<double> & data) const;
|
|
};
|
|
|
|
|
|
/// curve given by a rational, quadratic spline (including ellipses)
|
|
template< int D >
|
|
class SplineSeg3 : public SplineSeg<D>
|
|
{
|
|
///
|
|
GeomPoint<D> p1, p2, p3;
|
|
//const GeomPoint<D> &p1, &p2, &p3;
|
|
|
|
mutable double proj_latest_t;
|
|
public:
|
|
///
|
|
SplineSeg3 (const GeomPoint<D> & ap1,
|
|
const GeomPoint<D> & ap2,
|
|
const GeomPoint<D> & ap3);
|
|
///
|
|
virtual Point<D> GetPoint (double t) const;
|
|
///
|
|
virtual Vec<D> GetTangent (const double t) const;
|
|
|
|
|
|
virtual void GetDerivatives (const double t,
|
|
Point<D> & point,
|
|
Vec<D> & first,
|
|
Vec<D> & second) const;
|
|
///
|
|
virtual const GeomPoint<D> & StartPI () const { return p1; };
|
|
///
|
|
virtual const GeomPoint<D> & EndPI () const { return p3; }
|
|
///
|
|
virtual void GetCoeff (Vector & coeffs) const;
|
|
|
|
virtual string GetType(void) const {return "spline3";}
|
|
|
|
const GeomPoint<D> & TangentPoint (void) const { return p2; }
|
|
|
|
virtual void LineIntersections (const double a, const double b, const double c,
|
|
ARRAY < Point<D> > & points, const double eps) const;
|
|
|
|
virtual double MaxCurvature(void) const;
|
|
|
|
virtual void Project (const Point<D> point, Point<D> & point_on_curve, double & t) const;
|
|
|
|
virtual void GetRawData (ARRAY<double> & data) const;
|
|
};
|
|
|
|
|
|
// Gundolf Haase 8/26/97
|
|
/// A circle
|
|
template < int D >
|
|
class CircleSeg : public SplineSeg<D>
|
|
{
|
|
///
|
|
private:
|
|
GeomPoint<D> p1, p2, p3;
|
|
//const GeomPoint<D> &p1, &p2, &p3;
|
|
Point<D> pm;
|
|
double radius, w1,w3;
|
|
public:
|
|
///
|
|
CircleSeg (const GeomPoint<D> & ap1,
|
|
const GeomPoint<D> & ap2,
|
|
const GeomPoint<D> & ap3);
|
|
///
|
|
virtual Point<D> GetPoint (double t) const;
|
|
///
|
|
virtual const GeomPoint<D> & StartPI () const { return p1; }
|
|
///
|
|
virtual const GeomPoint<D> & EndPI () const { return p3; }
|
|
///
|
|
virtual void GetCoeff (Vector & coeffs) const;
|
|
///
|
|
double Radius() const { return radius; }
|
|
///
|
|
double StartAngle() const { return w1; }
|
|
///
|
|
double EndAngle() const { return w3; }
|
|
///
|
|
const Point<D> & MidPoint(void) const {return pm; }
|
|
|
|
virtual string GetType(void) const {return "circle";}
|
|
|
|
virtual void LineIntersections (const double a, const double b, const double c,
|
|
ARRAY < Point<D> > & points, const double eps) const;
|
|
|
|
virtual double MaxCurvature(void) const {return 1./radius;}
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///
|
|
template<int D>
|
|
class DiscretePointsSeg : public SplineSeg<D>
|
|
{
|
|
ARRAY<Point<D> > pts;
|
|
GeomPoint<D> p1, p2;
|
|
public:
|
|
///
|
|
DiscretePointsSeg (const ARRAY<Point<D> > & apts);
|
|
///
|
|
virtual ~DiscretePointsSeg ();
|
|
///
|
|
virtual Point<D> GetPoint (double t) const;
|
|
///
|
|
virtual const GeomPoint<D> & StartPI () const { return p1; };
|
|
///
|
|
virtual const GeomPoint<D> & EndPI () const { return p2; }
|
|
///
|
|
virtual void GetCoeff (Vector & coeffs) const {;}
|
|
|
|
virtual double MaxCurvature(void) const {return 1;}
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// calculates length of spline-curve
|
|
template<int D>
|
|
double SplineSeg<D> :: Length () const
|
|
{
|
|
Point<D> p, pold;
|
|
|
|
int i, n = 100;
|
|
double dt = 1.0 / n;
|
|
|
|
pold = GetPoint (0);
|
|
|
|
double l = 0;
|
|
for (i = 1; i <= n; i++)
|
|
{
|
|
p = GetPoint (i * dt);
|
|
l += Dist (p, pold);
|
|
pold = p;
|
|
}
|
|
return l;
|
|
}
|
|
|
|
|
|
|
|
// partitionizes spline curve
|
|
template<int D>
|
|
void SplineSeg<D> :: Partition (double h, double elto0,
|
|
Mesh & mesh, Point3dTree & searchtree, int segnr) const
|
|
{
|
|
int i, j;
|
|
double l, r1, r2, ra;
|
|
double lold, dt, frac;
|
|
int n = 100;
|
|
Point<D> p, pold, mark, oldmark;
|
|
ARRAY<double> curvepoints;
|
|
double edgelength, edgelengthold;
|
|
l = Length();
|
|
|
|
r1 = StartPI().refatpoint;
|
|
r2 = EndPI().refatpoint;
|
|
ra = reffak;
|
|
|
|
// cout << "Partition, l = " << l << ", h = " << h << endl;
|
|
CalcPartition (l, h, r1, r2, ra, elto0, curvepoints);
|
|
// cout << "curvepoints = " << curvepoints << endl;
|
|
|
|
dt = 1.0 / n;
|
|
|
|
l = 0;
|
|
j = 1;
|
|
|
|
pold = GetPoint (0);
|
|
lold = 0;
|
|
oldmark = pold;
|
|
edgelengthold = 0;
|
|
ARRAY<int> locsearch;
|
|
|
|
for (i = 1; i <= n; i++)
|
|
{
|
|
p = GetPoint (i*dt);
|
|
l = lold + Dist (p, pold);
|
|
while (j < curvepoints.Size() && (l >= curvepoints[j] || i == n))
|
|
{
|
|
frac = (curvepoints[j]-lold) / (l-lold);
|
|
mark = pold + frac * (p-pold);
|
|
edgelength = i*dt + (frac-1)*dt;
|
|
{
|
|
PointIndex pi1 = -1, pi2 = -1;
|
|
|
|
Point3d mark3(mark(0), mark(1), 0);
|
|
Point3d oldmark3(oldmark(0), oldmark(1), 0);
|
|
|
|
Vec<3> v (1e-4*h, 1e-4*h, 1e-4*h);
|
|
searchtree.GetIntersecting (oldmark3 - v, oldmark3 + v, locsearch);
|
|
if (locsearch.Size()) pi1 = locsearch[0];
|
|
|
|
searchtree.GetIntersecting (mark3 - v, mark3 + v, locsearch);
|
|
if (locsearch.Size()) pi2 = locsearch[0];
|
|
/*
|
|
for (PointIndex pk = PointIndex::BASE;
|
|
pk < mesh.GetNP()+PointIndex::BASE; pk++)
|
|
{
|
|
if (Dist (mesh[pk], oldmark3) < 1e-4 * h) pi1 = pk;
|
|
if (Dist (mesh[pk], mark3) < 1e-4 * h) pi2 = pk;
|
|
}
|
|
*/
|
|
|
|
|
|
// cout << "pi1 = " << pi1 << endl;
|
|
// cout << "pi2 = " << pi2 << endl;
|
|
|
|
if (pi1 == -1)
|
|
{
|
|
pi1 = mesh.AddPoint(oldmark3);
|
|
searchtree.Insert (oldmark3, pi1);
|
|
}
|
|
if (pi2 == -1)
|
|
{
|
|
pi2 = mesh.AddPoint(mark3);
|
|
searchtree.Insert (mark3, pi2);
|
|
}
|
|
|
|
// cout << "pi1 = " << pi1 << endl;
|
|
// cout << "pi2 = " << pi2 << endl;
|
|
|
|
Segment seg;
|
|
seg.edgenr = segnr;
|
|
seg.si = bc; // segnr;
|
|
seg.p1 = pi1;
|
|
seg.p2 = pi2;
|
|
seg.domin = leftdom;
|
|
seg.domout = rightdom;
|
|
seg.epgeominfo[0].edgenr = segnr;
|
|
seg.epgeominfo[0].dist = edgelengthold;
|
|
seg.epgeominfo[1].edgenr = segnr;
|
|
seg.epgeominfo[1].dist = edgelength;
|
|
seg.singedge_left = hpref_left;
|
|
seg.singedge_right = hpref_right;
|
|
mesh.AddSegment (seg);
|
|
}
|
|
|
|
oldmark = mark;
|
|
edgelengthold = edgelength;
|
|
j++;
|
|
}
|
|
|
|
pold = p;
|
|
lold = l;
|
|
}
|
|
}
|
|
|
|
|
|
template<int D>
|
|
void SplineSeg<D> :: GetPoints (int n, ARRAY<Point<D> > & points)
|
|
{
|
|
points.SetSize (n);
|
|
if (n >= 2)
|
|
for (int i = 0; i < n; i++)
|
|
points[i] = GetPoint(double(i) / (n-1));
|
|
}
|
|
|
|
template<int D>
|
|
void SplineSeg<D> :: PrintCoeff (ostream & ost) const
|
|
{
|
|
Vector u(6);
|
|
|
|
GetCoeff(u);
|
|
|
|
for ( int i=0; i<6; i++)
|
|
ost << u[i] << " ";
|
|
ost << endl;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
Implementation of line-segment from p1 to p2
|
|
*/
|
|
|
|
|
|
template<int D>
|
|
LineSeg<D> :: LineSeg (const GeomPoint<D> & ap1,
|
|
const GeomPoint<D> & ap2)
|
|
: p1(ap1), p2(ap2)
|
|
{
|
|
;
|
|
}
|
|
|
|
|
|
template<int D>
|
|
Point<D> LineSeg<D> :: GetPoint (double t) const
|
|
{
|
|
return p1 + t * (p2 - p1);
|
|
}
|
|
|
|
template<int D>
|
|
Vec<D> LineSeg<D> :: GetTangent (const double t) const
|
|
{
|
|
return p2-p1;
|
|
}
|
|
|
|
template<int D>
|
|
void LineSeg<D> :: GetDerivatives (const double t,
|
|
Point<D> & point,
|
|
Vec<D> & first,
|
|
Vec<D> & second) const
|
|
{
|
|
first = p2 - p1;
|
|
point = p1 + t * first;
|
|
second = 0;
|
|
}
|
|
|
|
|
|
template<int D>
|
|
double LineSeg<D> :: Length () const
|
|
{
|
|
return Dist (p1, p2);
|
|
}
|
|
|
|
|
|
template<int D>
|
|
void LineSeg<D> :: GetCoeff (Vector & coeffs) const
|
|
{
|
|
coeffs.SetSize(6);
|
|
|
|
double dx = p2(0) - p1(0);
|
|
double dy = p2(1) - p1(1);
|
|
|
|
coeffs[0] = coeffs[1] = coeffs[2] = 0;
|
|
coeffs[3] = -dy;
|
|
coeffs[4] = dx;
|
|
coeffs[5] = -dx * p1(1) + dy * p1(0);
|
|
}
|
|
|
|
|
|
|
|
template<int D>
|
|
void LineSeg<D> :: LineIntersections (const double a, const double b, const double c,
|
|
ARRAY < Point<D> > & points, const double eps) const
|
|
{
|
|
points.SetSize(0);
|
|
|
|
double denom = -a*p2(0)+a*p1(0)-b*p2(1)+b*p1(1);
|
|
if(fabs(denom) < 1e-20)
|
|
return;
|
|
|
|
double t = (a*p1(0)+b*p1(1)+c)/denom;
|
|
if((t > -eps) && (t < 1.+eps))
|
|
points.Append(GetPoint(t));
|
|
}
|
|
|
|
|
|
|
|
template<int D>
|
|
void LineSeg<D> :: Project (const Point<D> point, Point<D> & point_on_curve, double & t) const
|
|
{
|
|
Vec<D> v = p2-p1;
|
|
double l = v.Length();
|
|
v *= 1./l;
|
|
t = (point-p1)*v;
|
|
|
|
if(t<0) t = 0;
|
|
if(t>l) t = l;
|
|
|
|
point_on_curve = p1+t*v;
|
|
|
|
t *= 1./l;
|
|
}
|
|
|
|
|
|
template<int D>
|
|
void LineSeg<D> :: GetRawData (ARRAY<double> & data) const
|
|
{
|
|
data.Append(2);
|
|
for(int i=0; i<D; i++)
|
|
data.Append(p1[i]);
|
|
for(int i=0; i<D; i++)
|
|
data.Append(p2[i]);
|
|
}
|
|
|
|
|
|
template<int D>
|
|
void SplineSeg3<D> :: Project (const Point<D> point, Point<D> & point_on_curve, double & t) const
|
|
{
|
|
double t_old = -1;
|
|
|
|
if(proj_latest_t > 0. && proj_latest_t < 1.)
|
|
t = proj_latest_t;
|
|
else
|
|
t = 0.5;
|
|
|
|
Point<D> phi;
|
|
Vec<D> phip,phipp,phimp;
|
|
|
|
int i=0;
|
|
|
|
while(t > -0.5 && t < 1.5 && i<20 && fabs(t-t_old) > 1e-15 )
|
|
{
|
|
GetDerivatives(t,phi,phip,phipp);
|
|
|
|
t_old = t;
|
|
|
|
phimp = phi-point;
|
|
|
|
//t = min2(max2(t-(phip*phimp)/(phipp*phimp + phip*phip),0.),1.);
|
|
t -= (phip*phimp)/(phipp*phimp + phip*phip);
|
|
|
|
i++;
|
|
}
|
|
|
|
//if(i<10 && t > 0. && t < 1.)
|
|
if(i<20 && t > -0.4 && t < 1.4)
|
|
{
|
|
if(t < 0)
|
|
{
|
|
t = 0.;
|
|
}
|
|
if(t > 1)
|
|
{
|
|
t = 1.;
|
|
}
|
|
|
|
point_on_curve = GetPoint(t);
|
|
|
|
double dist = Dist(point,point_on_curve);
|
|
|
|
phi = GetPoint(0);
|
|
double auxdist = Dist(phi,point);
|
|
if(auxdist < dist)
|
|
{
|
|
t = 0.;
|
|
point_on_curve = phi;
|
|
dist = auxdist;
|
|
}
|
|
phi = GetPoint(1);
|
|
auxdist = Dist(phi,point);
|
|
if(auxdist < dist)
|
|
{
|
|
t = 1.;
|
|
point_on_curve = phi;
|
|
dist = auxdist;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
double t0 = 0;
|
|
double t1 = 0.5;
|
|
double t2 = 1.;
|
|
|
|
double d0,d1,d2;
|
|
|
|
|
|
//(*testout) << "newtonersatz" << endl;
|
|
while(t2-t0 > 1e-8)
|
|
{
|
|
|
|
phi = GetPoint(t0); d0 = Dist(phi,point);
|
|
phi = GetPoint(t1); d1 = Dist(phi,point);
|
|
phi = GetPoint(t2); d2 = Dist(phi,point);
|
|
|
|
double a = (2.*d0 - 4.*d1 +2.*d2)/pow(t2-t0,2);
|
|
|
|
if(a <= 0)
|
|
{
|
|
if(d0 < d2)
|
|
t2 -= 0.3*(t2-t0);
|
|
else
|
|
t0 += 0.3*(t2-t0);
|
|
|
|
t1 = 0.5*(t2+t0);
|
|
}
|
|
else
|
|
{
|
|
double b = (d1-d0-a*(t1*t1-t0*t0))/(t1-t0);
|
|
|
|
double auxt1 = -0.5*b/a;
|
|
|
|
if(auxt1 < t0)
|
|
{
|
|
t2 -= 0.4*(t2-t0);
|
|
t0 = max2(0.,t0-0.1*(t2-t0));
|
|
}
|
|
else if (auxt1 > t2)
|
|
{
|
|
t0 += 0.4*(t2-t0);
|
|
t2 = min2(1.,t2+0.1*(t2-t0));
|
|
}
|
|
else
|
|
{
|
|
t1 = auxt1;
|
|
auxt1 = 0.25*(t2-t0);
|
|
t0 = max2(0.,t1-auxt1);
|
|
t2 = min2(1.,t1+auxt1);
|
|
}
|
|
|
|
t1 = 0.5*(t2+t0);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
phi = GetPoint(t0); d0 = Dist(phi,point);
|
|
phi = GetPoint(t1); d1 = Dist(phi,point);
|
|
phi = GetPoint(t2); d2 = Dist(phi,point);
|
|
|
|
double mind = d0;
|
|
t = t0;
|
|
if(d1 < mind)
|
|
{
|
|
t = t1;
|
|
mind = d1;
|
|
}
|
|
if(d2 < mind)
|
|
{
|
|
t = t2;
|
|
mind = d2;
|
|
}
|
|
|
|
point_on_curve = GetPoint(t);
|
|
}
|
|
//(*testout) << " latest_t " << proj_latest_t << " t " << t << endl;
|
|
|
|
proj_latest_t = t;
|
|
}
|
|
|
|
|
|
|
|
|
|
template<int D>
|
|
SplineSeg3<D> :: SplineSeg3 (const GeomPoint<D> & ap1,
|
|
const GeomPoint<D> & ap2,
|
|
const GeomPoint<D> & ap3)
|
|
: p1(ap1), p2(ap2), p3(ap3)
|
|
{
|
|
proj_latest_t = 0.5;
|
|
}
|
|
|
|
template<int D>
|
|
Point<D> SplineSeg3<D> :: GetPoint (double t) const
|
|
{
|
|
double x, y, w;
|
|
double b1, b2, b3;
|
|
|
|
b1 = (1-t)*(1-t);
|
|
b2 = sqrt(2.0) * t * (1-t);
|
|
b3 = t * t;
|
|
|
|
x = p1(0) * b1 + p2(0) * b2 + p3(0) * b3;
|
|
y = p1(1) * b1 + p2(1) * b2 + p3(1) * b3;
|
|
w = b1 + b2 + b3;
|
|
|
|
if(D==3)
|
|
{
|
|
double z = p1(2) * b1 + p2(2) * b2 + p3(2) * b3;
|
|
return Point<D> (x/w, y/w, z/w);
|
|
}
|
|
else
|
|
return Point<D> (x/w, y/w);
|
|
}
|
|
|
|
|
|
|
|
template<int D>
|
|
void SplineSeg3<D> :: GetDerivatives (const double t,
|
|
Point<D> & point,
|
|
Vec<D> & first,
|
|
Vec<D> & second) const
|
|
{
|
|
Vec<D> v1(p1), v2(p2), v3(p3);
|
|
|
|
double b1 = (1.-t)*(1.-t);
|
|
double b2 = sqrt(2.)*t*(1.-t);
|
|
double b3 = t*t;
|
|
double w = b1+b2+b3;
|
|
b1 *= 1./w; b2 *= 1./w; b3 *= 1./w;
|
|
|
|
double b1p = 2.*(t-1.);
|
|
double b2p = sqrt(2.)*(1.-2.*t);
|
|
double b3p = 2.*t;
|
|
const double wp = b1p+b2p+b3p;
|
|
const double fac1 = wp/w;
|
|
b1p *= 1./w; b2p *= 1./w; b3p *= 1./w;
|
|
|
|
const double b1pp = 2.;
|
|
const double b2pp = -2.*sqrt(2.);
|
|
const double b3pp = 2.;
|
|
const double wpp = b1pp+b2pp+b3pp;
|
|
const double fac2 = (wpp*w-2.*wp*wp)/(w*w);
|
|
|
|
for(int i=0; i<D; i++)
|
|
point(i) = b1*p1(i) + b2*p2(i) + b3*p3(i);
|
|
|
|
|
|
first = (b1p - b1*fac1) * v1 +
|
|
(b2p - b2*fac1) * v2 +
|
|
(b3p - b3*fac1) * v3;
|
|
|
|
second = (b1pp/w - b1p*fac1 - b1*fac2) * v1 +
|
|
(b2pp/w - b2p*fac1 - b2*fac2) * v2 +
|
|
(b3pp/w - b3p*fac1 - b3*fac2) * v3;
|
|
}
|
|
|
|
|
|
|
|
template<int D>
|
|
Vec<D> SplineSeg3<D> :: GetTangent (const double t) const
|
|
{
|
|
const double b1 = (1.-t)*((sqrt(2.)-2.)*t-sqrt(2.));
|
|
const double b2 = sqrt(2.)*(1.-2.*t);
|
|
const double b3 = t*((sqrt(2.)-2)*t+2.);
|
|
|
|
|
|
Vec<D> retval;
|
|
for(int i=0; i<D; i++)
|
|
retval(i) = b1*p1(i) + b2*p2(i) + b3*p3(i);
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
template<int D>
|
|
void SplineSeg3<D> :: GetCoeff (Vector & u) const
|
|
{
|
|
double t;
|
|
int i;
|
|
Point<D> p;
|
|
DenseMatrix a(6, 6);
|
|
DenseMatrix ata(6, 6);
|
|
Vector f(6);
|
|
|
|
u.SetSize(6);
|
|
|
|
// ata.SetSymmetric(1);
|
|
|
|
t = 0;
|
|
for (i = 1; i <= 5; i++, t += 0.25)
|
|
{
|
|
p = GetPoint (t);
|
|
a.Elem(i, 1) = p(0) * p(0);
|
|
a.Elem(i, 2) = p(1) * p(1);
|
|
a.Elem(i, 3) = p(0) * p(1);
|
|
a.Elem(i, 4) = p(0);
|
|
a.Elem(i, 5) = p(1);
|
|
a.Elem(i, 6) = 1;
|
|
}
|
|
a.Elem(6, 1) = 1;
|
|
|
|
CalcAtA (a, ata);
|
|
|
|
u = 0;
|
|
u.Elem(6) = 1;
|
|
a.MultTrans (u, f);
|
|
ata.Solve (f, u);
|
|
}
|
|
|
|
/*
|
|
template<int D>
|
|
double SplineSeg3<D> :: MaxCurvature(void) const
|
|
{
|
|
Vec<D> v1 = p1-p2;
|
|
Vec<D> v2 = p3-p2;
|
|
double l1 = v1.Length();
|
|
double l2 = v2.Length();
|
|
(*testout) << "v1 " << v1 << " v2 " << v2 << endl;
|
|
|
|
double cosalpha = v1*v2/(l1*l2);
|
|
|
|
(*testout) << "cosalpha " << cosalpha << endl;
|
|
|
|
return sqrt(cosalpha + 1.)/(min2(l1,l2)*(1.-cosalpha));
|
|
}
|
|
*/
|
|
|
|
|
|
template<int D>
|
|
void SplineSeg3<D> :: LineIntersections (const double a, const double b, const double c,
|
|
ARRAY < Point<D> > & points, const double eps) const
|
|
{
|
|
points.SetSize(0);
|
|
|
|
double t;
|
|
|
|
const double c1 = a*p1(0) - sqrt(2.)*a*p2(0) + a*p3(0)
|
|
+ b*p1(1) - sqrt(2.)*b*p2(1) + b*p3(1)
|
|
+ (2.-sqrt(2.))*c;
|
|
const double c2 = -2.*a*p1(0) + sqrt(2.)*a*p2(0) -2.*b*p1(1) + sqrt(2.)*b*p2(1) + (sqrt(2.)-2.)*c;
|
|
const double c3 = a*p1(0) + b*p1(1) + c;
|
|
|
|
if(fabs(c1) < 1e-20)
|
|
{
|
|
if(fabs(c2) < 1e-20)
|
|
return;
|
|
|
|
t = -c3/c2;
|
|
if((t > -eps) && (t < 1.+eps))
|
|
points.Append(GetPoint(t));
|
|
return;
|
|
}
|
|
|
|
const double discr = c2*c2-4.*c1*c3;
|
|
|
|
if(discr < 0)
|
|
return;
|
|
|
|
if(fabs(discr/(c1*c1)) < 1e-14)
|
|
{
|
|
t = -0.5*c2/c1;
|
|
if((t > -eps) && (t < 1.+eps))
|
|
points.Append(GetPoint(t));
|
|
return;
|
|
}
|
|
|
|
t = (-c2 + sqrt(discr))/(2.*c1);
|
|
if((t > -eps) && (t < 1.+eps))
|
|
points.Append(GetPoint(t));
|
|
|
|
t = (-c2 - sqrt(discr))/(2.*c1);
|
|
if((t > -eps) && (t < 1.+eps))
|
|
points.Append(GetPoint(t));
|
|
}
|
|
|
|
|
|
template < int D >
|
|
void SplineSeg3<D> :: GetRawData (ARRAY<double> & data) const
|
|
{
|
|
data.Append(3);
|
|
for(int i=0; i<D; i++)
|
|
data.Append(p1[i]);
|
|
for(int i=0; i<D; i++)
|
|
data.Append(p2[i]);
|
|
for(int i=0; i<D; i++)
|
|
data.Append(p3[i]);
|
|
}
|
|
|
|
|
|
//########################################################################
|
|
// circlesegment
|
|
|
|
template<int D>
|
|
CircleSeg<D> :: CircleSeg (const GeomPoint<D> & ap1,
|
|
const GeomPoint<D> & ap2,
|
|
const GeomPoint<D> & ap3)
|
|
: p1(ap1), p2(ap2), p3(ap3)
|
|
{
|
|
Vec<D> v1,v2;
|
|
|
|
v1 = p1 - p2;
|
|
v2 = p3 - p2;
|
|
|
|
Point<D> p1t(p1+v1);
|
|
Point<D> p2t(p3+v2);
|
|
|
|
// works only in 2D!!!!!!!!!
|
|
|
|
Line2d g1t,g2t;
|
|
|
|
g1t.P1() = Point<2>(p1(0),p1(1));
|
|
g1t.P2() = Point<2>(p1t(0),p1t(1));
|
|
g2t.P1() = Point<2>(p3(0),p3(1));
|
|
g2t.P2() = Point<2>(p2t(0),p2t(1));
|
|
|
|
Point<2> mp = CrossPoint (g1t,g2t);
|
|
|
|
pm(0) = mp(0); pm(1) = mp(1);
|
|
radius = Dist(pm,StartPI());
|
|
Vec2d auxv;
|
|
auxv.X() = p1(0)-pm(0); auxv.Y() = p1(1)-pm(1);
|
|
w1 = Angle(auxv);
|
|
auxv.X() = p3(0)-pm(0); auxv.Y() = p3(1)-pm(1);
|
|
w3 = Angle(auxv);
|
|
if ( fabs(w3-w1) > M_PI )
|
|
{
|
|
if ( w3>M_PI ) w3 -= 2*M_PI;
|
|
if ( w1>M_PI ) w1 -= 2*M_PI;
|
|
}
|
|
}
|
|
|
|
|
|
template<int D>
|
|
Point<D> CircleSeg<D> :: GetPoint (double t) const
|
|
{
|
|
if (t >= 1.0) { return p3; }
|
|
|
|
double phi = StartAngle() + t*(EndAngle()-StartAngle());
|
|
Vec<D> tmp(cos(phi),sin(phi));
|
|
|
|
return pm + Radius()*tmp;
|
|
}
|
|
|
|
template<int D>
|
|
void CircleSeg<D> :: GetCoeff (Vector & coeff) const
|
|
{
|
|
coeff[0] = coeff[1] = 1.0;
|
|
coeff[2] = 0.0;
|
|
coeff[3] = -2.0 * pm[0];
|
|
coeff[4] = -2.0 * pm[1];
|
|
coeff[5] = sqr(pm[0]) + sqr(pm[1]) - sqr(Radius());
|
|
}
|
|
|
|
|
|
template<int D>
|
|
void CircleSeg<D> :: LineIntersections (const double a, const double b, const double c,
|
|
ARRAY < Point<D> > & points, const double eps) const
|
|
{
|
|
points.SetSize(0);
|
|
|
|
double px=0,py=0;
|
|
|
|
if(fabs(b) > 1e-20)
|
|
py = -c/b;
|
|
else
|
|
px = -c/a;
|
|
|
|
const double c1 = a*a + b*b;
|
|
const double c2 = 2. * ( a*(py-pm(1)) - b*(px-pm(0)));
|
|
const double c3 = pow(px-pm(0),2) + pow(py-pm(1),2) - pow(Radius(),2);
|
|
|
|
const double discr = c2*c2 - 4*c1*c3;
|
|
|
|
if(discr < 0)
|
|
return;
|
|
|
|
ARRAY<double> t;
|
|
|
|
if(fabs(discr) < 1e-20)
|
|
t.Append(-0.5*c2/c1);
|
|
else
|
|
{
|
|
t.Append((-c2+sqrt(discr))/(2.*c1));
|
|
t.Append((-c2-sqrt(discr))/(2.*c1));
|
|
}
|
|
|
|
for(int i=0; i<t.Size(); i++)
|
|
{
|
|
Point<D> p (px-t[i]*b,py+t[i]*a);
|
|
|
|
double angle = atan2(p(1),p(0))+M_PI;
|
|
|
|
if(angle > StartAngle()-eps && angle < EndAngle()+eps)
|
|
points.Append(p);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template<int D>
|
|
DiscretePointsSeg<D> :: DiscretePointsSeg (const ARRAY<Point<D> > & apts)
|
|
: pts (apts)
|
|
{
|
|
for(int i=0; i<D; i++)
|
|
{
|
|
p1(i) = apts[0](i);
|
|
p2(i) = apts.Last()(i);
|
|
}
|
|
p1.refatpoint = true;
|
|
p2.refatpoint = true;
|
|
}
|
|
|
|
|
|
template<int D>
|
|
DiscretePointsSeg<D> :: ~DiscretePointsSeg ()
|
|
{ ; }
|
|
|
|
template<int D>
|
|
Point<D> DiscretePointsSeg<D> :: GetPoint (double t) const
|
|
{
|
|
double t1 = t * (pts.Size()-1);
|
|
int segnr = int(t1);
|
|
if (segnr < 0) segnr = 0;
|
|
if (segnr >= pts.Size()) segnr = pts.Size()-1;
|
|
|
|
double rest = t1 - segnr;
|
|
|
|
return pts[segnr] + rest*Vec<D>(pts[segnr+1]-pts[segnr]);
|
|
}
|
|
|
|
|
|
|
|
typedef GeomPoint<2> GeomPoint2d;
|
|
typedef SplineSeg<2> SplineSegment;
|
|
typedef LineSeg<2> LineSegment;
|
|
typedef SplineSeg3<2> SplineSegment3;
|
|
typedef CircleSeg<2> CircleSegment;
|
|
typedef DiscretePointsSeg<2> DiscretePointsSegment;
|
|
|
|
|
|
|
|
|
|
#endif
|