netgen/libsrc/meshing/topology.cpp
2021-06-08 19:08:14 +02:00

2617 lines
84 KiB
C++

#include <mystdlib.h>
#include "meshing.hpp"
namespace netgen
{
using ngcore::ParallelForRange;
using ngcore::INT;
using ngcore::TasksPerThread;
template <class T>
void QuickSortRec (NgFlatArray<T> data,
int left, int right)
{
int i = left;
int j = right;
T midval = data[(left+right)/2];
do
{
while (data[i] < midval) i++;
while (midval < data[j]) j--;
if (i <= j)
{
Swap (data[i], data[j]);
i++; j--;
}
}
while (i <= j);
if (left < j) QuickSortRec (data, left, j);
if (i < right) QuickSortRec (data, i, right);
}
template <class T>
void QuickSort (NgFlatArray<T> data)
{
if (data.Size() > 1)
QuickSortRec (data, 0, data.Size()-1);
}
MeshTopology :: MeshTopology (const Mesh & amesh)
: mesh(&amesh)
{
buildedges = static_buildedges;
buildfaces = static_buildfaces;
timestamp = -1;
}
MeshTopology :: ~MeshTopology () { ; }
bool MeshTopology :: NeedsUpdate() const
{ return (timestamp <= mesh->GetTimeStamp()); }
void MeshTopology :: EnableTable (string name, bool set)
{
if (name == "edges")
SetBuildEdges(set);
else if (name == "faces")
SetBuildFaces(set);
else if (name == "parentedges")
SetBuildParentEdges(set);
else if (name == "parentfaces")
SetBuildParentFaces(set);
else
throw Exception ("noting known about table "+name +"\n"
"knwon are 'edges', 'faces', 'parentedges', 'parentfaces'");
}
bool MeshTopology :: static_buildedges = true;
bool MeshTopology :: static_buildfaces = true;
void MeshTopology :: EnableTableStatic (string name, bool set)
{
if (name == "edges")
static_buildedges = set;
else if (name == "faces")
static_buildfaces = set;
else
throw Exception ("noting known about table "+name +"\n"
"knwon are 'edges', 'faces'");
}
template <typename FUNC>
void LoopOverEdges (const Mesh & mesh, MeshTopology & top, PointIndex v,
FUNC func)
{
for (ElementIndex elnr : top.GetVertexElements(v))
{
const Element & el = mesh[elnr];
int neledges = MeshTopology::GetNEdges (el.GetType());
const ELEMENT_EDGE * eledges = MeshTopology::GetEdges0 (el.GetType());
for (int k = 0; k < neledges; k++)
{
INDEX_2 edge(el[eledges[k][0]], el[eledges[k][1]]);
// edge.Sort();
int edgedir = (edge.I1() > edge.I2());
if (edgedir) swap (edge.I1(), edge.I2());
if (edge.I1() != v) continue;
func (edge, elnr, k, 3, edgedir);
}
}
for (SurfaceElementIndex elnr : top.GetVertexSurfaceElements(v))
{
const Element2d & el = mesh[elnr];
int neledges = MeshTopology::GetNEdges (el.GetType());
const ELEMENT_EDGE * eledges = MeshTopology::GetEdges0 (el.GetType());
for (int k = 0; k < neledges; k++)
{
INDEX_2 edge(el[eledges[k][0]], el[eledges[k][1]]);
// edge.Sort();
int edgedir = (edge.I1() > edge.I2());
if (edgedir) swap (edge.I1(), edge.I2());
if (edge.I1() != v) continue;
func (edge, elnr, k, 2, edgedir);
}
}
for (SegmentIndex elnr : top.GetVertexSegments(v))
{
const Segment & el = mesh[elnr];
INDEX_2 edge(el[0], el[1]);
int edgedir = (edge.I1() > edge.I2());
if (edgedir) swap (edge.I1(), edge.I2());
edge.Sort();
if (edge.I1() != v) continue;
func (edge, elnr, 0, 1, edgedir);
}
}
template <typename FUNC>
void LoopOverFaces (const Mesh & mesh, MeshTopology & top, PointIndex v,
FUNC func)
{
for (ElementIndex elnr : top.GetVertexElements(v))
{
const Element & el = mesh[elnr];
int nelfaces = MeshTopology::GetNFaces (el.GetType());
const ELEMENT_FACE * elfaces = MeshTopology::GetFaces0 (el.GetType());
for (int j = 0; j < nelfaces; j++)
if (elfaces[j][3] < 0)
{ // triangle
INDEX_4 face(el[elfaces[j][0]], el[elfaces[j][1]],
el[elfaces[j][2]], 0);
int facedir = 0;
if (face.I1() > face.I2())
{ swap (face.I1(), face.I2()); facedir += 1; }
if (face.I2() > face.I3())
{ swap (face.I2(), face.I3()); facedir += 2; }
if (face.I1() > face.I2())
{ swap (face.I1(), face.I2()); facedir += 4; }
if (face.I1() != v) continue;
func (face, elnr, j, true, facedir);
}
/*
if (pass == 1)
{
if (!vert2face.Used (face))
{
nfa++;
vert2face.Set (face, nfa);
INDEX_4 hface(face.I1(),face.I2(),face.I3(),0);
face2vert.Append (hface);
}
}
else
{
int facenum = vert2face.Get(face);
faces[elnr][j].fnr = facenum-1;
faces[elnr][j].forient = facedir;
}
*/
else
{
// quad
// int facenum;
INDEX_4 face4(el[elfaces[j][0]], el[elfaces[j][1]],
el[elfaces[j][2]], el[elfaces[j][3]]);
int facedir = 0;
if (min2 (face4.I1(), face4.I2()) >
min2 (face4.I4(), face4.I3()))
{ // z - flip
facedir += 1;
swap (face4.I1(), face4.I4());
swap (face4.I2(), face4.I3());
}
if (min2 (face4.I1(), face4.I4()) >
min2 (face4.I2(), face4.I3()))
{ // x - flip
facedir += 2;
swap (face4.I1(), face4.I2());
swap (face4.I3(), face4.I4());
}
if (face4.I2() > face4.I4())
{ // diagonal flip
facedir += 4;
swap (face4.I2(), face4.I4());
}
if (face4.I1() != v) continue;
func(face4, elnr, j, true, facedir);
/*
INDEX_3 face(face4.I1(), face4.I2(), face4.I3());
if (vert2face.Used (face))
{
facenum = vert2face.Get(face);
}
else
{
if (pass == 2) cout << "hier in pass 2" << endl;
nfa++;
vert2face.Set (face, nfa);
facenum = nfa;
INDEX_4 hface(face4.I1(),face4.I2(),face4.I3(),face4.I4());
face2vert.Append (hface);
}
faces[elnr][j].fnr = facenum-1;
faces[elnr][j].forient = facedir;
}
*/
}
}
for (SurfaceElementIndex elnr : top.GetVertexSurfaceElements(v))
{
const Element2d & el = mesh[elnr];
const ELEMENT_FACE * elfaces = MeshTopology::GetFaces1 (el.GetType());
if (elfaces[0][3] == 0)
{ // triangle
// int facenum;
int facedir;
INDEX_4 face(el.PNum(elfaces[0][0]),
el.PNum(elfaces[0][1]),
el.PNum(elfaces[0][2]),0);
facedir = 0;
if (face.I1() > face.I2())
{
swap (face.I1(), face.I2());
facedir += 1;
}
if (face.I2() > face.I3())
{
swap (face.I2(), face.I3());
facedir += 2;
}
if (face.I1() > face.I2())
{
swap (face.I1(), face.I2());
facedir += 4;
}
if (face.I1() != v) continue;
func(face, elnr, 0, false, facedir);
/*
if (vert2face.Used (face))
facenum = vert2face.Get(face);
else
{
nfa++;
vert2face.Set (face, nfa);
facenum = nfa;
INDEX_4 hface(face.I1(),face.I2(),face.I3(),0);
face2vert.Append (hface);
}
surffaces[elnr].fnr = facenum-1;
surffaces[elnr].forient = facedir;
*/
}
else
{
// quad
// int facenum;
int facedir;
INDEX_4 face4(el.PNum(elfaces[0][0]),
el.PNum(elfaces[0][1]),
el.PNum(elfaces[0][2]),
el.PNum(elfaces[0][3]));
facedir = 0;
if (min2 (face4.I1(), face4.I2()) >
min2 (face4.I4(), face4.I3()))
{ // z - orientation
facedir += 1;
swap (face4.I1(), face4.I4());
swap (face4.I2(), face4.I3());
}
if (min2 (face4.I1(), face4.I4()) >
min2 (face4.I2(), face4.I3()))
{ // x - orientation
facedir += 2;
swap (face4.I1(), face4.I2());
swap (face4.I3(), face4.I4());
}
if (face4.I2() > face4.I4())
{
facedir += 4;
swap (face4.I2(), face4.I4());
}
if (face4.I1() != v) continue;
func(face4, elnr, 0, false, facedir);
/*
INDEX_3 face(face4.I1(), face4.I2(), face4.I3());
if (vert2face.Used (face))
facenum = vert2face.Get(face);
else
{
nfa++;
vert2face.Set (face, nfa);
facenum = nfa;
INDEX_4 hface(face4.I1(),face4.I2(),face4.I3(),face4.I4());
face2vert.Append (hface);
}
surffaces[elnr].fnr = facenum-1;
surffaces[elnr].forient = facedir;
}
*/
}
}
}
void MeshTopology :: Update (NgTaskManager tm_unused, NgTracer tracer)
{
static Timer timer("Topology::Update");
static Timer timer_tables("Build vertex to element table");
RegionTimer reg (timer);
#ifdef PARALLEL
// ParallelMeshTopology & paralleltop = mesh.GetParallelTopology();
#endif
auto id = this->mesh->GetCommunicator().Rank();
auto ntasks = this->mesh->GetCommunicator().Size();
if (timestamp > mesh->GetTimeStamp()) return;
int ne = mesh->GetNE();
int nse = mesh->GetNSE();
int nseg = mesh->GetNSeg();
int np = mesh->GetNP();
int nv = mesh->GetNV();
if (id == 0)
PrintMessage (3, "Update mesh topology");
(*testout) << " UPDATE MESH TOPOLOGY " << endl;
(*testout) << "ne = " << ne << endl;
(*testout) << "nse = " << nse << endl;
(*testout) << "nseg = " << nseg << endl;
(*testout) << "np = " << np << endl;
(*testout) << "nv = " << nv << endl;
(*tracer) ("Topology::Update setup tables", false);
NgArray<int,PointIndex::BASE> cnt(nv);
NgArray<int> vnums;
/*
generate:
vertex to element
vertex to surface element
vertex to segment
*/
if (buildvertex2element)
{
timer_tables.Start();
vert2element = mesh->CreatePoint2ElementTable();
vert2surfelement = mesh->CreatePoint2SurfaceElementTable(0);
vert2segment = ngcore::CreateSortedTable<SegmentIndex, PointIndex>( mesh->LineSegments().Range(),
[&](auto & table, SegmentIndex segi)
{
const Segment & seg = (*mesh)[segi];
table.Add (seg[0], segi);
table.Add (seg[1], segi);
}, np);
vert2pointelement = ngcore::CreateSortedTable<int, PointIndex>( mesh->pointelements.Range(),
[&](auto & table, int pei)
{
const Element0d & pointel = mesh->pointelements[pei];
table.Add(pointel.pnum, pei);
}, np);
timer_tables.Stop();
}
(*tracer) ("Topology::Update setup tables", true);
if (buildedges)
{
static Timer timer1("topology::buildedges");
RegionTimer reg1(timer1);
if (id == 0)
PrintMessage (5, "Update edges ");
edges.SetSize(ne);
surfedges.SetSize(nse);
segedges.SetSize(nseg);
for (int i = 0; i < ne; i++)
for (int j = 0; j < 12; j++)
edges[i][j].nr = -1;
for (int i = 0; i < nse; i++)
for (int j = 0; j < 4; j++)
surfedges[i][j].nr = -1;
// keep existing edges
cnt = 0;
for (int i = 0; i < edge2vert.Size(); i++)
cnt[edge2vert[i][0]]++;
TABLE<int,PointIndex::BASE> vert2edge (cnt);
for (int i = 0; i < edge2vert.Size(); i++)
vert2edge.AddSave (edge2vert[i][0], i);
// ensure all coarse grid and intermediate level edges
cnt = 0;
// for (int i = mesh->mlbetweennodes.Begin(); i < mesh->mlbetweennodes.End(); i++)
for (int i : mesh->mlbetweennodes.Range())
{
INDEX_2 parents = Sort (mesh->mlbetweennodes[i]);
if (parents[0] >= PointIndex::BASE) cnt[parents[0]]++;
}
TABLE<int,PointIndex::BASE> vert2vertcoarse (cnt);
// for (int i = mesh->mlbetweennodes.Begin(); i < mesh->mlbetweennodes.End(); i++)
for (int i : mesh->mlbetweennodes.Range())
{
INDEX_2 parents = Sort (mesh->mlbetweennodes[i]);
if (parents[0] >= PointIndex::BASE) vert2vertcoarse.AddSave (parents[0], parents[1]);
}
int max_edge_on_vertex = 0;
for (int i = PointIndex::BASE; i < nv+PointIndex::BASE; i++)
{
int onv = vert2edge[i].Size() + vert2vertcoarse[i].Size() +
4*(vert2element)[i].Size() + 2*(vert2surfelement)[i].Size() + (vert2segment)[i].Size();
max_edge_on_vertex = max (onv, max_edge_on_vertex);
}
// count edges associated with vertices
cnt = 0;
ParallelForRange
(mesh->GetNV(), // Points().Size(),
[&] (IntRange r)
{
auto begin = r.First();
auto end = r.Next();
INDEX_CLOSED_HASHTABLE<int> v2eht(2*max_edge_on_vertex+10);
for (PointIndex v = begin+PointIndex::BASE;
v < end+PointIndex::BASE; v++)
{
v2eht.DeleteData();
for (int ednr : vert2edge[v])
{
int v2 = edge2vert[ednr][1];
v2eht.Set (v2, ednr);
}
int cnti = 0;
for (int v2 : vert2vertcoarse[v])
if (!v2eht.Used(v2))
{
cnti++;
v2eht.Set (v2, 33); // some value
}
LoopOverEdges (*mesh, *this, v,
[&] (INDEX_2 edge, int elnr, int loc_edge, int element_dim, int edgedir)
{
if (!v2eht.Used (edge.I2()))
{
cnti++;
v2eht.Set (edge.I2(), 33); // something
}
});
cnt[v] = cnti;
}
}, TasksPerThread(4) );
// accumulate number of edges
int ned = edge2vert.Size();
// for (size_t v = 0; v < mesh->GetNV(); v++)
for (size_t v : cnt.Range())
{
auto hv = cnt[v];
cnt[v] = ned;
ned += hv;
}
edge2vert.SetSize(ned);
edge2segment.SetSize(ned);
edge2segment = -1;
// INDEX_CLOSED_HASHTABLE<int> v2eht(2*max_edge_on_vertex+10);
// NgArray<int> vertex2;
// for (PointIndex v = PointIndex::BASE; v < nv+PointIndex::BASE; v++)
ParallelForRange
(mesh->GetNV(), // Points().Size(),
[&] (IntRange r)
{
auto begin = r.First();
auto end = r.Next();
INDEX_CLOSED_HASHTABLE<int> v2eht(2*max_edge_on_vertex+10);
NgArray<int> vertex2;
for (PointIndex v = begin+PointIndex::BASE;
v < end+PointIndex::BASE; v++)
{
int ned = cnt[v];
v2eht.DeleteData();
vertex2.SetSize (0);
for (int ednr : vert2edge[v])
{
int v2 = edge2vert[ednr][1];
v2eht.Set (v2, ednr);
}
for (int v2 : vert2vertcoarse[v])
if (!v2eht.Used(v2))
{
v2eht.Set (v2, 33); // some value
vertex2.Append (v2);
}
LoopOverEdges (*mesh, *this, v,
[&](INDEX_2 edge, int elnr, int loc_edge, int element_dim, int edgedir)
{
if (!v2eht.Used(edge.I2()))
{
vertex2.Append (edge.I2());
v2eht.Set (edge.I2(), 33);
}
});
QuickSort (vertex2);
for (int j = 0; j < vertex2.Size(); j++)
{
v2eht.Set (vertex2[j], ned);
edge2vert[ned] = INDEX_2 (v, vertex2[j]);
ned++;
}
LoopOverEdges (*mesh, *this, v,
[&](INDEX_2 edge, int elnr, int loc_edge, int element_dim, int edgedir)
{
int edgenum = v2eht.Get(edge.I2());
switch (element_dim)
{
case 3:
edges[elnr][loc_edge].nr = edgenum;
// edges[elnr][loc_edge].orient = edgedir;
break;
case 2:
surfedges[elnr][loc_edge].nr = edgenum;
// surfedges[elnr][loc_edge].orient = edgedir;
break;
case 1:
segedges[elnr].nr = edgenum;
edge2segment[edgenum] = elnr;
// segedges[elnr].orient = edgedir;
break;
}
});
}
}, TasksPerThread(4) );
if (build_parent_edges)
{
static Timer t("build_hierarchy"); RegionTimer reg(t);
cnt = 0;
for (auto verts : edge2vert) cnt[verts[0]]++;
TABLE<int,PointIndex::BASE> vert2edge (cnt);
for (auto i : edge2vert.Range())
vert2edge.AddSave (edge2vert[i][0], i);
// build edge hierarchy:
parent_edges.SetSize (ned);
parent_edges = { -1, { -1, -1, -1 } };
for (size_t i = 0; i < ned; i++)
{
auto verts = edge2vert[i]; // 2 vertices of edge
if (verts[0] >= mesh->mlbetweennodes.Size()+PointIndex::BASE ||
verts[1] >= mesh->mlbetweennodes.Size()+PointIndex::BASE)
continue;
auto pa0 = mesh->mlbetweennodes[verts[0]]; // two parent vertices of v0
auto pa1 = mesh->mlbetweennodes[verts[1]]; // two parent vertices of v1
// both vertices are on coarsest mesh
if (!pa0[0].IsValid() && !pa1[0].IsValid())
continue;
int issplitedge = 0;
if (pa0[0] == verts[1] || pa0[1] == verts[1])
issplitedge = 1;
if (pa1[0] == verts[0] || pa1[1] == verts[0])
issplitedge = 2;
if (issplitedge)
{
// cout << "split edge " << endl;
// edge is obtained by splitting one edge into two parts:
auto paedge = issplitedge == 1 ? pa0 : pa1;
if (paedge[0] > paedge[1])
Swap (paedge[0], paedge[1]);
for (int ednr : vert2edge[paedge[0]])
if (auto cverts = edge2vert[ednr]; cverts[1] == paedge[1])
{
int orient = (paedge[0] == verts[0] || paedge[1] == verts[1]) ? 1 : 0;
parent_edges[i] = { orient, { ednr, -1, -1 } };
}
}
else
{
bool bisect_edge = false;
// edge is splitting edge in middle of triangle:
for (int j = 1; j <= 2; j++)
{
INT<2> paedge1, paedge2, paedge3;
int orient_inner = 0;
if (j == 1)
{
paedge1 = INT<2> (pa0[0], verts[1]);
paedge2 = INT<2> (pa0[1], verts[1]);
paedge3 = INT<2> (pa0[0], pa0[1]);
orient_inner = 0;
}
else
{
paedge1 = INT<2> (pa1[0], verts[0]);
paedge2 = INT<2> (pa1[1], verts[0]);
paedge3 = INT<2> (pa1[0], pa1[1]);
orient_inner = 1;
}
if (paedge1[0] > paedge1[1])
Swap (paedge1[0], paedge1[1]);
if (paedge2[0] > paedge2[1])
Swap (paedge2[0], paedge2[1]);
if (paedge3[0] > paedge3[1])
Swap (paedge3[0], paedge3[1]);
// if first vertex number is -1, then don't try to find entry in node2edge hash table
if ( paedge1[0] == PointIndex::BASE-1 || paedge2[0] == PointIndex::BASE-1 )
continue;
int paedgenr1=-1, paedgenr2=-1, paedgenr3=-1, orient1 = 0, orient2 = 0;
for (int ednr : vert2edge[paedge1[0]])
if (auto cverts = edge2vert[ednr]; cverts[1] == paedge1[1])
{
paedgenr1 = ednr;
orient1 = (paedge1[0] == verts[0] || paedge1[1] == verts[1]) ? 1 : 0;
}
for (int ednr : vert2edge[paedge2[0]])
if (auto cverts = edge2vert[ednr]; cverts[1] == paedge2[1])
{
paedgenr2 = ednr;
orient2 = (paedge2[0] == verts[0] || paedge2[1] == verts[1]) ? 1 : 0;
}
for (int ednr : vert2edge[paedge3[0]])
if (auto cverts = edge2vert[ednr]; cverts[1] == paedge3[1])
paedgenr3 = ednr;
if (paedgenr1 != -1 && paedgenr2 != -1){
bisect_edge = true;
parent_edges[i] = { orient1+2*orient2+4*orient_inner, { paedgenr1, paedgenr2, paedgenr3 } };
}
}
if (!bisect_edge) // not a bisect edge (then a red edge)
{
INT<2> paedge1, paedge2, paedge3;
int orient1 = 0, orient2 = 0, orient3=0;
int orient_inner = 0;
paedge1 = INT<2> (pa0[0], pa0[1]);
paedge2 = INT<2> (pa1[0], pa1[1]);
// find common vertex and the thrid pa edge
if (pa0[0]==pa1[0]){// 00
//orient1 = 0;
orient2 = 1;
if (pa0[1]<pa1[1]){
orient3 = 1;
paedge3 = INT<2> (pa0[1], pa1[1]);
}else{
//orient3 = 0;
paedge3 = INT<2> (pa1[1], pa0[1]);
}
}
else if (pa0[0]==pa1[1]){//01
//orient1 = 0;
//orient2 = 0;
if (pa0[1]<pa1[0]){
orient3 = 1;
paedge3 = INT<2> (pa0[1], pa1[0]);
}else{
//orient3 = 0;
paedge3 = INT<2> (pa1[0], pa0[1]);
}
}
else if (pa0[1]==pa1[0]){//10
orient1 = 1;
orient2 = 1;
if (pa0[0]<pa1[1]){
orient3 = 1;
paedge3 = INT<2> (pa0[0], pa1[1]);
}else{
//orient3 = 0;
paedge3 = INT<2> (pa1[1], pa0[0]);
}
}
else if (pa0[1]==pa1[1]){//11
orient1 = 1;
//orient2 = 0;
if (pa0[0]<pa1[0]){
orient3 = 1;
paedge3 = INT<2> (pa0[0], pa1[0]);
}else{
//orient3 = 0;
paedge3 = INT<2> (pa1[0], pa0[0]);
}
}
int paedgenr1=-1, paedgenr2=-1, paedgenr3=-1;
for (int ednr : vert2edge[paedge1[0]])
if (auto cverts = edge2vert[ednr]; cverts[1] == paedge1[1])
paedgenr1 = ednr;
for (int ednr : vert2edge[paedge2[0]])
if (auto cverts = edge2vert[ednr]; cverts[1] == paedge2[1])
paedgenr2 = ednr;
for (int ednr : vert2edge[paedge3[0]])
if (auto cverts = edge2vert[ednr]; cverts[1] == paedge3[1])
paedgenr3 = ednr;
parent_edges[i] = { 8+orient1+2*orient2+4*orient3, { paedgenr1, paedgenr2, paedgenr3 } };
//cout <<8+orient1+2*orient2+4*orient3 <<":"<<paedgenr1 <<", "<< paedgenr2 << ", "<< paedgenr3 << endl;
}
// TODO: quad edges
/*
if (parentedges[i][0] == -1)
{
// quad split
if (pa1[0] != pa2[0] &&
pa1[0] != pa2[1] &&
pa1[1] != pa2[0] &&
pa1[1] != pa2[1])
for (int j = 1; j <= 2; j++)
{
INT<2> paedge1, paedge2;
if (j == 1)
{
paedge1 = INT<2> (pa1[0], pa2[0]);
paedge2 = INT<2> (pa1[1], pa2[1]);
}
else
{
paedge1 = INT<2> (pa1[0], pa2[1]);
paedge2 = INT<2> (pa1[1], pa2[0]);
}
int paedgenr1 = 0, paedgenr2 = 0;
int orient1 = 1, orient2 = 1;
if (paedge1[0] > paedge1[1])
{
Swap (paedge1[0], paedge1[1]);
orient1 = 0;
}
if (paedge2[0] > paedge2[1])
{
Swap (paedge2[0], paedge2[1]);
orient2 = 0;
}
if ( paedge1[0] == -1 || paedge2[0] == -1 )
continue;
if (node2edge.Used (paedge1) && node2edge.Used (paedge2))
{
paedgenr1 = node2edge.Get (paedge1);
paedgenr2 = node2edge.Get (paedge2);
parentedges[i][0] = 2 * paedgenr1 + orient1;
parentedges[i][1] = 2 * paedgenr2 + orient2;
}
}
}
if (parentedges[i][0] == -1)
{
// triangle split into quad+trig (from anisotropic pyramids)
for (int j = 0; j < 2; j++)
for (int k = 0; k < 2; k++)
{
INT<2> paedge (pa1[1-j], pa2[1-k]);
int orientpa = 1;
if (paedge[0] > paedge[1])
{
Swap (paedge[0], paedge[1]);
orientpa = 0;
}
if (pa1[j] == pa2[k] && node2edge.Used(paedge))
{
int paedgenr = node2edge.Get (paedge);
parentedges[i][0] = 2 * paedgenr + orientpa;
}
}
}
*/
}
}
/*
for (int i : Range(parent_edges))
{
auto [info, nrs] = parent_edges[i];
cout << "edge " << i << " has " << info << ", nrs = " << nrs[0] << " " << nrs[1] << endl;
}
*/
}
}
// edge hashtable:: needed for getting parent faces
ngcore::ClosedHashTable<INT<2>, int> v2e(nv);
if (build_parent_faces)
for (auto i : Range(edge2vert))
{
auto edge = edge2vert[i];
INT<2> e2(edge[0], edge[1]);
e2.Sort();
v2e[e2] = i;
}
// generate faces
if (buildfaces)
{
static Timer timer2("topology::buildfaces");
// static int timer2a = NgProfiler::CreateTimer ("topology::buildfacesa");
// static int timer2b = NgProfiler::CreateTimer ("topology::buildfacesb");
// static int timer2b1 = NgProfiler::CreateTimer ("topology::buildfacesb1");
// static int timer2c = NgProfiler::CreateTimer ("topology::buildfacesc");
RegionTimer reg2 (timer2);
if (id == 0)
PrintMessage (5, "Update faces ");
// NgProfiler::StartTimer (timer2a);
faces.SetSize(ne);
surffaces.SetSize(nse);
cnt = 0;
for (int i = 0; i < face2vert.Size(); i++)
cnt[face2vert[i][0]]++;
TABLE<int,PointIndex::BASE> vert2oldface(cnt);
for (int i = 0; i < face2vert.Size(); i++)
vert2oldface.AddSave (face2vert[i][0], i);
// find all potential intermediate faces
Array<INT<3>> intermediate_faces;
if (build_parent_faces)
{
for (ElementIndex ei = 0; ei < ne; ei++)
for (int i = 0; i < 4; i++)
{
Element2d face;
// cout << "element: " << (*mesh)[ei].PNums() << endl;
(*mesh)[ei].GetFace(i+1, face);
// cout << "face " << face.PNums() << endl;
INT<3,PointIndex> f3 = { face[0], face[1], face[2] };
for (int j = 0; j < 3; j++)
{
PointIndex v = f3[j];
if (v >= mesh->mlbetweennodes.Size()+PointIndex::BASE)
continue;
auto pa = mesh->mlbetweennodes[v];
for (int k = 0; k < 2; k++)
if (f3.Contains(pa[k]))
{
PointIndex v0 = pa[k]; // also in face
PointIndex v1 = pa[1-k];
PointIndex v2 = f3[0]+f3[1]+f3[2] - v - v0;
// if there is an edge connecting v1 and v2, accept
// the new face
INT<2> parentedge(v1, v2);
parentedge.Sort();
if (v2e.Used(parentedge)){
INT<3> cf3 = { v0, v1, v2 };
cf3.Sort();
// cout << "intermediate: " << cf3 << " of " << f3 << endl;
intermediate_faces.Append (cf3);
}
}
}
}
}
cnt = 0;
for (int i = 0; i < intermediate_faces.Size(); i++)
cnt[intermediate_faces[i][0]]++;
TABLE<int,PointIndex::BASE> vert2intermediate(cnt);
for (int i = 0; i < intermediate_faces.Size(); i++)
vert2intermediate.AddSave (intermediate_faces[i][0], i);
// cout << "vert2intermediate = " << endl << vert2intermediate << endl;
for (int elnr = 0; elnr < ne; elnr++)
for (int j = 0; j < 6; j++)
faces[elnr][j].fnr = -1;
int max_face_on_vertex = 0;
for (int i = PointIndex::BASE; i < nv+PointIndex::BASE; i++)
{
int onv = vert2oldface[i].Size() + vert2element[i].Size() + vert2surfelement[i].Size();
max_face_on_vertex = max (onv, max_face_on_vertex);
}
// NgProfiler::StopTimer (timer2a);
// NgProfiler::StartTimer (timer2b);
// INDEX_3_CLOSED_HASHTABLE<int> vert2face(2*max_face_on_vertex+10);
int oldnfa = face2vert.Size();
// count faces associated with vertices
cnt = 0;
// for (auto v : mesh.Points().Range())
// NgProfiler::StartTimer (timer2b1);
ParallelForRange
(mesh->GetNV(), // Points().Size(),
[&] (IntRange r)
{
auto begin = r.First();
auto end = r.Next();
INDEX_3_CLOSED_HASHTABLE<int> vert2face(2*max_face_on_vertex+10);
for (PointIndex v = begin+PointIndex::BASE;
v < end+PointIndex::BASE; v++)
{
vert2face.DeleteData();
for (int j = 0; j < vert2oldface[v].Size(); j++)
{
int fnr = vert2oldface[v][j];
INDEX_3 face (face2vert[fnr].I1(),
face2vert[fnr].I2(),
face2vert[fnr].I3());
vert2face.Set (face, 33); // something
}
int cnti = 0;
for (int j = 0; j < vert2intermediate[v].Size(); j++)
{
int fnr = vert2intermediate[v][j];
INDEX_3 face (intermediate_faces[fnr][0],
intermediate_faces[fnr][1],
intermediate_faces[fnr][2]);
face.Sort();
if (!vert2face.Used(face))
{
cnti++;
vert2face.Set (face, 33); // something
}
}
LoopOverFaces (*mesh, *this, v,
[&] (INDEX_4 i4, int elnr, int j, bool volume, int facedir)
{
INDEX_3 face(i4.I1(), i4.I2(), i4.I3());
if (!vert2face.Used (face))
{
cnti++;
vert2face.Set (face, 33); // something
}
});
cnt[v] = cnti;
}
}, TasksPerThread(4) );
// NgProfiler::StopTimer (timer2b1);
// accumulate number of faces
int nfa = oldnfa;
// for (auto v : Range(mesh->GetNV())) // Points().Range())
// for (size_t v = 0; v < mesh->GetNV(); v++)
for (auto v : cnt.Range())
{
auto hv = cnt[v];
cnt[v] = nfa;
nfa += hv;
}
face2vert.SetSize(nfa);
// for (auto v : mesh.Points().Range())
ParallelForRange
(mesh->GetNV(), // Points().Size(),
[&] (IntRange r)
{
auto begin = r.First();
auto end = r.Next();
INDEX_3_CLOSED_HASHTABLE<int> vert2face(2*max_face_on_vertex+10);
for (PointIndex v = begin+PointIndex::BASE;
v < end+PointIndex::BASE; v++)
{
int first_fa = cnt[v];
int nfa = first_fa;
vert2face.DeleteData();
for (int j = 0; j < vert2oldface[v].Size(); j++)
{
int fnr = vert2oldface[v][j];
INDEX_3 face (face2vert[fnr].I1(),
face2vert[fnr].I2(),
face2vert[fnr].I3());
vert2face.Set (face, fnr);
}
for (int j = 0; j < vert2intermediate[v].Size(); j++)
{
int fnr = vert2intermediate[v][j];
INDEX_3 face (intermediate_faces[fnr][0],
intermediate_faces[fnr][1],
intermediate_faces[fnr][2]);
face.Sort();
if (!vert2face.Used(face))
{
INDEX_4 i4(face.I1(), face.I2(), face.I3(), 0);
face2vert[nfa] = i4;
vert2face.Set (face, nfa);
nfa++;
// cout << "adding face " << i4 << endl;
// cnti++;
// vert2face.Set (face, 33); // something
}
}
LoopOverFaces (*mesh, *this, v,
[&] (INDEX_4 i4, int elnr, int j, bool volume, int facedir)
{
INDEX_3 face(i4.I1(), i4.I2(), i4.I3());
if (!vert2face.Used (face))
{
face2vert[nfa] = i4;
vert2face.Set (face, nfa);
nfa++;
}
});
QuickSort (face2vert.Range(first_fa, nfa));
for (int j = first_fa; j < nfa; j++)
{
if (face2vert[j][0] == v)
{
INDEX_3 face (face2vert[j].I1(),
face2vert[j].I2(),
face2vert[j].I3());
vert2face.Set (face, j);
}
else
break;
}
LoopOverFaces (*mesh, *this, v,
[&] (INDEX_4 i4, int elnr, int j, bool volume, int facedir)
{
INDEX_3 face(i4.I1(), i4.I2(), i4.I3());
int facenum = vert2face.Get(face);
if (volume)
{
faces[elnr][j].fnr = facenum;
// faces[elnr][j].forient = facedir;
}
else
{
surffaces[elnr].fnr = facenum;
// surffaces[elnr].forient = facedir;
}
});
}
}, TasksPerThread(4) );
/*
int oldnfa = face2vert.Size();
int nfa = oldnfa;
INDEX_3_CLOSED_HASHTABLE<int> vert2face(2*max_face_on_vertex+10);
for (auto v : mesh.Points().Range())
{
int first_fa = nfa;
vert2face.DeleteData();
for (int j = 0; j < vert2oldface[v].Size(); j++)
{
int fnr = vert2oldface[v][j];
INDEX_3 face (face2vert[fnr].I1(),
face2vert[fnr].I2(),
face2vert[fnr].I3());
vert2face.Set (face, fnr+1);
}
for (int pass = 1; pass <= 2; pass++)
{
for (ElementIndex elnr : (*vert2element)[v])
{
const Element & el = mesh[elnr];
int nelfaces = GetNFaces (el.GetType());
const ELEMENT_FACE * elfaces = GetFaces0 (el.GetType());
for (int j = 0; j < nelfaces; j++)
if (elfaces[j][3] < 0)
{ // triangle
INDEX_3 face(el[elfaces[j][0]], el[elfaces[j][1]],
el[elfaces[j][2]]);
int facedir = 0;
if (face.I1() > face.I2())
{ swap (face.I1(), face.I2()); facedir += 1; }
if (face.I2() > face.I3())
{ swap (face.I2(), face.I3()); facedir += 2; }
if (face.I1() > face.I2())
{ swap (face.I1(), face.I2()); facedir += 4; }
if (face.I1() != v) continue;
if (pass == 1)
{
if (!vert2face.Used (face))
{
nfa++;
vert2face.Set (face, nfa);
INDEX_4 hface(face.I1(),face.I2(),face.I3(),0);
face2vert.Append (hface);
}
}
else
{
int facenum = vert2face.Get(face);
faces[elnr][j].fnr = facenum-1;
faces[elnr][j].forient = facedir;
}
}
else
{
// quad
int facenum;
INDEX_4Q face4(el[elfaces[j][0]], el[elfaces[j][1]],
el[elfaces[j][2]], el[elfaces[j][3]]);
int facedir = 0;
if (min2 (face4.I1(), face4.I2()) >
min2 (face4.I4(), face4.I3()))
{ // z - flip
facedir += 1;
swap (face4.I1(), face4.I4());
swap (face4.I2(), face4.I3());
}
if (min2 (face4.I1(), face4.I4()) >
min2 (face4.I2(), face4.I3()))
{ // x - flip
facedir += 2;
swap (face4.I1(), face4.I2());
swap (face4.I3(), face4.I4());
}
if (face4.I2() > face4.I4())
{ // diagonal flip
facedir += 4;
swap (face4.I2(), face4.I4());
}
INDEX_3 face(face4.I1(), face4.I2(), face4.I3());
if (face.I1() != v) continue;
if (vert2face.Used (face))
{
facenum = vert2face.Get(face);
}
else
{
if (pass == 2) cout << "hier in pass 2" << endl;
nfa++;
vert2face.Set (face, nfa);
facenum = nfa;
INDEX_4 hface(face4.I1(),face4.I2(),face4.I3(),face4.I4());
face2vert.Append (hface);
}
faces[elnr][j].fnr = facenum-1;
faces[elnr][j].forient = facedir;
}
}
for (int j = 0; j < (*vert2surfelement)[v].Size(); j++)
{
SurfaceElementIndex elnr = (*vert2surfelement)[v][j];
const Element2d & el = mesh.SurfaceElement (elnr);
const ELEMENT_FACE * elfaces = GetFaces1 (el.GetType());
if (elfaces[0][3] == 0)
{ // triangle
int facenum;
int facedir;
INDEX_3 face(el.PNum(elfaces[0][0]),
el.PNum(elfaces[0][1]),
el.PNum(elfaces[0][2]));
facedir = 0;
if (face.I1() > face.I2())
{
swap (face.I1(), face.I2());
facedir += 1;
}
if (face.I2() > face.I3())
{
swap (face.I2(), face.I3());
facedir += 2;
}
if (face.I1() > face.I2())
{
swap (face.I1(), face.I2());
facedir += 4;
}
if (face.I1() != v) continue;
if (vert2face.Used (face))
facenum = vert2face.Get(face);
else
{
nfa++;
vert2face.Set (face, nfa);
facenum = nfa;
INDEX_4 hface(face.I1(),face.I2(),face.I3(),0);
face2vert.Append (hface);
}
surffaces[elnr].fnr = facenum-1;
surffaces[elnr].forient = facedir;
}
else
{
// quad
int facenum;
int facedir;
INDEX_4Q face4(el.PNum(elfaces[0][0]),
el.PNum(elfaces[0][1]),
el.PNum(elfaces[0][2]),
el.PNum(elfaces[0][3]));
facedir = 0;
if (min2 (face4.I1(), face4.I2()) >
min2 (face4.I4(), face4.I3()))
{ // z - orientation
facedir += 1;
swap (face4.I1(), face4.I4());
swap (face4.I2(), face4.I3());
}
if (min2 (face4.I1(), face4.I4()) >
min2 (face4.I2(), face4.I3()))
{ // x - orientation
facedir += 2;
swap (face4.I1(), face4.I2());
swap (face4.I3(), face4.I4());
}
if (face4.I2() > face4.I4())
{
facedir += 4;
swap (face4.I2(), face4.I4());
}
INDEX_3 face(face4.I1(), face4.I2(), face4.I3());
if (face.I1() != v) continue;
if (vert2face.Used (face))
facenum = vert2face.Get(face);
else
{
nfa++;
vert2face.Set (face, nfa);
facenum = nfa;
INDEX_4 hface(face4.I1(),face4.I2(),face4.I3(),face4.I4());
face2vert.Append (hface);
}
surffaces[elnr].fnr = facenum-1;
surffaces[elnr].forient = facedir;
}
}
// sort faces
if (pass == 1)
{
QuickSort (face2vert.Range(first_fa, nfa));
for (int j = first_fa; j < face2vert.Size(); j++)
{
if (face2vert[j][0] == v)
{
INDEX_3 face (face2vert[j].I1(),
face2vert[j].I2(),
face2vert[j].I3());
vert2face.Set (face, j+1);
}
else
break;
}
}
}
}
face2vert.SetAllocSize (nfa);
*/
// *testout << "face2vert = " << endl << face2vert << endl;
// NgProfiler::StopTimer (timer2b);
// NgProfiler::StartTimer (timer2c);
face2surfel.SetSize (nfa);
face2surfel = 0;
for (int i = 1; i <= nse; i++)
face2surfel.Elem(GetSurfaceElementFace(i)) = i;
/*
cout << "build table complete" << endl;
cout << "faces = " << endl;
cout << "face2vert = " << endl << face2vert << endl;
cout << "surffaces = " << endl << surffaces << endl;
cout << "face2surfel = " << endl << face2surfel << endl;
*/
surf2volelement.SetSize (nse);
for (int i = 1; i <= nse; i++)
{
surf2volelement.Elem(i)[0] = 0;
surf2volelement.Elem(i)[1] = 0;
}
(*tracer) ("Topology::Update build surf2vol", false);
for (int i = 1; i <= ne; i++)
for (int j = 0; j < 6; j++)
{
// int fnum = (faces.Get(i)[j]+7) / 8;
int fnum = faces.Get(i)[j].fnr+1;
if (fnum > 0 && face2surfel.Elem(fnum))
{
int sel = face2surfel.Elem(fnum);
surf2volelement.Elem(sel)[1] =
surf2volelement.Elem(sel)[0];
surf2volelement.Elem(sel)[0] = i;
}
}
(*tracer) ("Topology::Update build surf2vol", true);
face2vert.SetAllocSize (face2vert.Size());
// face table complete
#ifdef PARALLEL
// (*testout) << " RESET Paralleltop" << endl;
// paralleltop.Reset ();
#endif
(*tracer) ("Topology::Update count face_els", false);
NgArray<short int> face_els(nfa), face_surfels(nfa);
face_els = 0;
face_surfels = 0;
/*
NgArray<int> hfaces;
for (int i = 1; i <= ne; i++)
{
GetElementFaces (i, hfaces);
for (int j = 0; j < hfaces.Size(); j++)
face_els[hfaces[j]-1]++;
}
*/
ParallelForRange
(ne,
[&] (IntRange r)
{
NgArray<int> hfaces;
for (ElementIndex ei : r)
{
GetElementFaces (ei+1, hfaces);
for (auto f : hfaces)
AsAtomic(face_els[f-1])++;
}
}, TasksPerThread(4));
for (int i = 1; i <= nse; i++)
face_surfels[GetSurfaceElementFace (i)-1]++;
(*tracer) ("Topology::Update count face_els", true);
if (ne)
{
int cnt_err = 0;
for (int i = 0; i < nfa; i++)
{
/*
(*testout) << "face " << i << " has " << int(face_els[i]) << " els, "
<< int(face_surfels[i]) << " surfels, tot = "
<< face_els[i] + face_surfels[i] << endl;
*/
if (face_els[i] + face_surfels[i] == 1)
{
cnt_err++;
#ifdef PARALLEL
if ( ntasks > 1 )
{
continue;
// if ( !paralleltop.DoCoarseUpdate() ) continue;
}
else
#endif
{
(*testout) << "illegal face : " << i << endl;
(*testout) << "points = " << face2vert[i] << endl;
(*testout) << "pos = ";
for (int j = 0; j < 4; j++)
if (face2vert[i].I(j+1) >= 1)
(*testout) << (*mesh)[(PointIndex)face2vert[i].I(j+1)] << " ";
(*testout) << endl;
FlatArray<ElementIndex> vertels = GetVertexElements (face2vert[i].I(1));
for (int k = 0; k < vertels.Size(); k++)
{
int elfaces[10], orient[10];
int nf = GetElementFaces (vertels[k]+1, elfaces, orient);
for (int l = 0; l < nf; l++)
if (elfaces[l] == i)
{
// (*testout) << "is face of element " << vertels[k] << endl;
if (mesh->coarsemesh && mesh->hpelements->Size() == mesh->GetNE() )
{
const HPRefElement & hpref_el =
(*mesh->hpelements) [ (*mesh)[vertels[k]].hp_elnr];
(*testout) << "coarse eleme = " << hpref_el.coarse_elnr << endl;
}
}
}
}
}
}
if (cnt_err && ntasks == 1)
cout << cnt_err << " elements are not matching !!!" << endl;
}
// NgProfiler::StopTimer (timer2c);
if (build_parent_faces)
{
// tets only
if (id == 0)
PrintMessage (5, "build face hierarchy");
// cout << "f2v = " << face2vert << endl;
ngcore::ClosedHashTable<INT<3>, int> v2f(nv);
for (auto i : Range(face2vert))
{
auto face = face2vert[i];
INT<3> f3(face[0], face[1], face[2]);
f3.Sort();
v2f[f3] = i;
}
// cout << "v2f:" << endl << v2f << endl;
parent_faces.SetSize (nfa);
parent_faces = { -1, { -1, -1, -1, -1 } };
for (auto i : Range(nfa))
{
INT<3,PointIndex> f3(face2vert[i][0], face2vert[i][1], face2vert[i][2]);
// face on coarses level ?
bool all_vert_coarse = true;
for (int k = 0; k < 3; k++)
{
PointIndex vb = f3[k];
if (vb >= mesh->mlbetweennodes.Size()+PointIndex::BASE)
continue;
auto parents = mesh->mlbetweennodes[vb];
if (parents[0] >= PointIndex::BASE)
all_vert_coarse = false;
}
if (all_vert_coarse) continue;
// find a vertex, such that one of its parent is a trig vertex
bool issplit = false;
for (int k = 0; k < 3; k++)
{
PointIndex vb = f3[k]; // assume vb as the new bisect vert
if (vb >= mesh->mlbetweennodes.Size()+PointIndex::BASE)
continue;
auto parents = mesh->mlbetweennodes[vb];
// is face part of one parent face (boundary-face) ?
for (int j = 0; j < 2; j++)
{
if (f3.Contains(parents[j]))
{
PointIndex v0 = parents[j];
PointIndex v1 = parents[1-j];
// the third one, on the tip
PointIndex v2 = f3[0]+f3[1]+f3[2] - v0 - vb;
// if there is an edge connecting v1 and v2, accept
// the new face
INT<2> parentedge(v1, v2);
parentedge.Sort();
if (v2e.Used(parentedge)){
INT<3> parentverts(v0, v1, v2);
parentverts.Sort();
int classnr = 0;
if (v2 > vb) { Swap (v2, vb); classnr += 1; }
if (v0 > v1) { Swap (v0, v1); classnr += 2; }
if (v1 > v2) { Swap (v1, v2); classnr += 4; }
if (v0 > v1) { Swap (v0, v1); classnr += 8; }
if (v2f.Used(parentverts))
{
int pafacenr = v2f[parentverts];
// cout << "parent-face = " << pafacenr << endl;
parent_faces[i] = { classnr, { pafacenr, -1, -1, -1 } };
}
else
{
cout << "missing parent face: " << parentverts << endl;
}
issplit=true;
break;
}
}
}
}
/*
// is face a new face (bisect-face) ?
if (!issplit)
for (int k = 0; k < 3; k++)
{
PointIndex vb = f3[k]; // assume vb as the new bisect vert
if (vb >= mesh->mlbetweennodes.Size()+PointIndex::BASE)
continue;
auto parents = mesh->mlbetweennodes[vb];
PointIndex v0 = parents[0];
PointIndex v1 = parents[1];
PointIndex v2 = f3[(k+1)%3];
PointIndex v3 = f3[(k+2)%3];
INT<3> parentedge1(v0, v2);
parentedge1.Sort();
INT<3> parentedge2(v0, v3);
parentedge2.Sort();
INT<3> parentedge3(v1, v2);
parentedge3.Sort();
INT<3> parentedge4(v1, v3);
parentedge4.Sort();
// if edges [v0,v2], [v0, v3], [v1,v2], [v1,v3] exists
// then vb is the bisecting edge
if (v2e.Used(parentedge1) && v2e.Used(parentedge2)
&& v2e.Used(parentedge3) && v2e.Used(parentedge4)
){
int classnr;
if (k==2){// vb is the largest vert: 6 cases
// by default v0 < v1, v2 < v3
if (v1 < v2) classnr = 0;
else if (v1 < v3 && v0 < v2) classnr = 1;
else if (v0 < v2) classnr = 2;
else if (v1 < v3) classnr = 3;
else if (v0 < v3) classnr = 4;
else classnr = 5;
}else if (k==1){// vb is the second largest vert: 3 cases
// by default v0 < v1, v3 < v2
if (v1 < v3) classnr = 6;
else if (v0 < v3) classnr = 7;
else classnr = 8;
}else {// vb is the third largest vert: 1 case
// by default v0 < v1 < vb < v2 < v3
classnr=9;
}
INT<3> parentverts1(v0, v2, v3);
parentverts1.Sort();
INT<3> parentverts2(v1, v2, v3);
parentverts2.Sort();
INT<3> parentverts3(v0, v1, v2);
parentverts3.Sort();
INT<3> parentverts4(v0, v1, v3);
parentverts4.Sort();
int pafacenr1=-1, pafacenr2=-1, pafacenr3=-1, pafacenr4=-1;
if (v2f.Used(parentverts1))
{
pafacenr1 = v2f[parentverts1];
// cout << "parent-face1 = " << pafacenr1<< endl ;
}
if (v2f.Used(parentverts2))
{
pafacenr2 = v2f[parentverts2];
// cout << "parent-face2 = " << pafacenr2<< endl ;
}
if (v2f.Used(parentverts3))
{
pafacenr3 = v2f[parentverts3];
// cout << "parent-face3 = " << pafacenr3<< endl ;
}
if (v2f.Used(parentverts4))
{
pafacenr4 = v2f[parentverts4];
// cout << "parent-face4 = " << pafacenr4<< endl ;
}
if (k == 0 || k == 2)
parent_faces[i] = { classnr, { pafacenr2, pafacenr1,
pafacenr4, pafacenr3} };
else
parent_faces[i] = { classnr, { pafacenr2, pafacenr1,
pafacenr3, pafacenr4} };
break;
}
}
*/
// is face a new face (bisect-face) ?
if (!issplit)
for (int k = 0; k < 3; k++)
{
PointIndex vb = f3[k]; // assume vb as the new bisect vert
if (vb >= mesh->mlbetweennodes.Size()+PointIndex::BASE)
continue;
auto parents = mesh->mlbetweennodes[vb];
PointIndex v0 = parents[0];
PointIndex v1 = parents[1];
PointIndex v2 = f3[(k+1)%3];
PointIndex v3 = f3[(k+2)%3];
INT<2> parentedge1(v0, v2);
parentedge1.Sort();
INT<2> parentedge2(v0, v3);
parentedge2.Sort();
INT<2> parentedge3(v1, v2);
parentedge3.Sort();
INT<2> parentedge4(v1, v3);
parentedge4.Sort();
// if edges [v0,v2], [v0, v3], [v1,v2], [v1,v3] exists
// then vb is the bisecting edge
if (v2e.Used(parentedge1) && v2e.Used(parentedge2)
&& v2e.Used(parentedge3) && v2e.Used(parentedge4))
{
int verts[5] = { v0, v1, v2, v3, vb };
/*
cout << "verts5: ";
for (int j = 0; j < 5; j++)
cout << verts[j] << " ";
*/
// classify permutation of verts
int classnr = 0;
for (int j = 0; j < 4; j++)
{
int maxk = 0;
for (int k = 0; k < 5-j; k++)
if (verts[k] > verts[maxk]) maxk = k;
// compress
for (int k = maxk; k < 4-j; k++)
verts[k] = verts[k+1];
classnr = maxk + (5-j) * classnr;
}
// cout << "classnr = " << classnr << endl;
INT<3> parentverts1(v1, v2, v3);
parentverts1.Sort();
INT<3> parentverts2(v0, v2, v3);
parentverts2.Sort();
INT<3> parentverts3(v0, v1, v3);
parentverts3.Sort();
INT<3> parentverts4(v0, v1, v2);
parentverts4.Sort();
if (!v2f.Used(parentverts1) || !v2f.Used(parentverts2) ||
!v2f.Used(parentverts3) || !v2f.Used(parentverts4))
{
cout << "all edges are used, but not faces ????" << endl;
continue;
}
int pafacenr1 = v2f[parentverts1];
int pafacenr2 = v2f[parentverts2];
int pafacenr3 = v2f[parentverts3];
int pafacenr4 = v2f[parentverts4];
parent_faces[i] = { classnr, { pafacenr1, pafacenr2,
pafacenr3, pafacenr4} };
break;
}
}
auto [info, nrs] = parent_faces[i];
if (nrs[0] == -1){
// hacking for tet red refinements
PointIndex v0 = f3[0];
auto pa0 = mesh->mlbetweennodes[v0];
auto pa1 = mesh->mlbetweennodes[f3[1]];
auto pa2 = mesh->mlbetweennodes[f3[2]];
// v0 is a coarse vertex ==> f3 is a boundary face
if (v0==pa1[0] || v0==pa1[1]){
if (pa1[0]==v0){// type 0: bottom left corner
INT<3> parentverts(v0, pa1[1], pa2[1]);
int pafacenr = v2f[parentverts];
parent_faces[i] = { 16, { pafacenr, -1, -1, -1} };
//cout << "f "<<i<<":pf "<< pafacenr<< "A" <<endl;
}else if (pa2[0]==v0) {// type 1: bottom right corner
INT<3> parentverts(pa1[0], v0, pa2[1]);
int pafacenr = v2f[parentverts];
parent_faces[i] = { 17, { pafacenr, -1, -1, -1} };
//cout << "f "<<i<<":pf "<< pafacenr<< "B" <<endl;
}else if (pa1[1]==v0){// type 2: top left corner
INT<3> parentverts(pa1[0], pa2[0], v0);
int pafacenr = v2f[parentverts];
parent_faces[i] = { 18, { pafacenr, -1, -1, -1} };
//cout << "f "<<i<<":pf "<< pafacenr<< "C" <<endl;
}else{
cout << "************************** unhandled parent-face case **********************" << endl;
}
}
else{// all vertices are on fine level [fff]
// Here we only work with boundary fff face
if (pa0[0]==pa1[0] && pa0[1]==pa2[0] && pa1[1]==pa2[1]){//type 3 bdry face
INT<3> parentverts(pa0[0], pa0[1], pa1[1]);
int pafacenr = v2f[parentverts];
parent_faces[i] = { 19, { pafacenr, -1, -1, -1} };
//cout << "f "<<i<<":pf "<< pafacenr<< "D" <<endl;
}else{// this is an interior face FIXME
parent_faces[i] = { 20, { -1, -1, -1, -1} };
//cout << "face "<< i << ":"<< f3 <<" is an int face"<< endl;
}
}
}
}
}
}
#ifdef PARALLEL
if (id != 0)
{
// if ( paralleltop.DoCoarseUpdate() )
// paralleltop.UpdateCoarseGrid();
}
#endif
/*
for (i = 1; i <= ne; i++)
{
(*testout) << "Element " << i << endl;
(*testout) << "PNums " << endl;
for( int l=1;l<=8;l++) *testout << mesh.VolumeElement(i).PNum(l) << "\t";
*testout << endl;
(*testout) << "edges: " << endl;
for (j = 0; j < 9; j++)
(*testout) << edges.Elem(i)[j] << " ";
(*testout) << "faces: " << endl;
for (j = 0; j < 6; j++)m
(*testout) << faces.Elem(i)[j] << " ";
}
for (i = 1; i <= nse; i++)
{
(*testout) << "SElement " << i << endl;
(*testout) << "PNums " << endl;
for( int l=1;l<=4;l++) *testout << mesh.SurfaceElement(i).PNum(l) << "\t";
*testout << endl;
}
*/
timestamp = NextTimeStamp();
}
const Point3d * MeshTopology :: GetVertices (ELEMENT_TYPE et)
{
static Point3d segm_points [] =
{ Point3d (1, 0, 0),
Point3d (0, 0, 0) };
static Point3d trig_points [] =
{ Point3d ( 1, 0, 0 ),
Point3d ( 0, 1, 0 ),
Point3d ( 0, 0, 0 ) };
static Point3d quad_points [] =
{ Point3d ( 0, 0, 0 ),
Point3d ( 1, 0, 0 ),
Point3d ( 1, 1, 0 ),
Point3d ( 0, 1, 0 ) };
static Point3d tet_points [] =
{ Point3d ( 1, 0, 0 ),
Point3d ( 0, 1, 0 ),
Point3d ( 0, 0, 1 ),
Point3d ( 0, 0, 0 ) };
static Point3d pyramid_points [] =
{
Point3d ( 0, 0, 0 ),
Point3d ( 1, 0, 0 ),
Point3d ( 1, 1, 0 ),
Point3d ( 0, 1, 0 ),
Point3d ( 0, 0, 1-1e-7 ),
};
static Point3d prism_points[] =
{
Point3d ( 1, 0, 0 ),
Point3d ( 0, 1, 0 ),
Point3d ( 0, 0, 0 ),
Point3d ( 1, 0, 1 ),
Point3d ( 0, 1, 1 ),
Point3d ( 0, 0, 1 )
};
static Point3d hex_points [] =
{ Point3d ( 0, 0, 0 ),
Point3d ( 1, 0, 0 ),
Point3d ( 1, 1, 0 ),
Point3d ( 0, 1, 0 ),
Point3d ( 0, 0, 1 ),
Point3d ( 1, 0, 1 ),
Point3d ( 1, 1, 1 ),
Point3d ( 0, 1, 1 ) };
switch (et)
{
case SEGMENT:
case SEGMENT3:
return segm_points;
case TRIG:
case TRIG6:
return trig_points;
case QUAD:
case QUAD6:
case QUAD8:
return quad_points;
case TET:
case TET10:
return tet_points;
case PYRAMID:
return pyramid_points;
case PRISM:
case PRISM12:
return prism_points;
case HEX:
return hex_points;
default:
cerr << "Ng_ME_GetVertices, illegal element type " << et << endl;
}
return 0;
}
void MeshTopology :: GetElementEdges (int elnr, NgArray<int> & eledges) const
{
int ned = GetNEdges (mesh->VolumeElement(elnr).GetType());
eledges.SetSize (ned);
for (int i = 0; i < ned; i++)
eledges[i] = edges.Get(elnr)[i].nr+1;
// eledges[i] = abs (edges.Get(elnr)[i]);
}
void MeshTopology :: GetElementFaces (int elnr, NgArray<int> & elfaces, bool withorientation) const
{
int nfa = GetNFaces (mesh->VolumeElement(elnr).GetType());
elfaces.SetSize (nfa);
if (!withorientation)
for (int i = 1; i <= nfa; i++)
{
// elfaces.Elem(i) = (faces.Get(elnr)[i-1]-1) / 8 + 1;
elfaces.Elem(i) = faces.Get(elnr)[i-1].fnr+1;
}
else
{
cerr << "GetElementFaces with orientation currently not supported" << endl;
/*
for (int i = 1; i <= nfa; i++)
{
elfaces.Elem(i) = (faces.Get(elnr)[i-1]-1) / 8 + 1;
int orient = (faces.Get(elnr)[i-1]-1) % 8;
if(orient == 1 || orient == 2 || orient == 4 || orient == 7)
elfaces.Elem(i) *= -1;
}
*/
}
}
void MeshTopology :: GetElementEdgeOrientations (int elnr, NgArray<int> & eorient) const
{
int ned = GetNEdges (mesh->VolumeElement(elnr).GetType());
eorient.SetSize (ned);
for (int i = 1; i <= ned; i++)
// eorient.Elem(i) = (edges.Get(elnr)[i-1] > 0) ? 1 : -1;
// eorient.Elem(i) = (edges.Get(elnr)[i-1].orient) ? -1 : 1;
eorient.Elem(i) = GetElementEdgeOrientation (elnr, i-1) ? -1 : 1;
}
void MeshTopology :: GetElementFaceOrientations (int elnr, NgArray<int> & forient) const
{
int nfa = GetNFaces (mesh->VolumeElement(elnr).GetType());
forient.SetSize (nfa);
for (int i = 1; i <= nfa; i++)
// forient.Elem(i) = faces.Get(elnr)[i-1].forient;
// forient.Elem(i) = (faces.Get(elnr)[i-1]-1) % 8;
forient.Elem(i) = GetElementFaceOrientation(elnr, i-1);
}
int MeshTopology :: GetElementEdges (int elnr, int * eledges, int * orient) const
{
// int ned = GetNEdges (mesh.VolumeElement(elnr).GetType());
if (mesh->GetDimension()==3 || 1)
{
if (orient)
{
for (int i = 0; i < 12; i++)
{
/*
if (!edges.Get(elnr)[i]) return i;
eledges[i] = abs (edges.Get(elnr)[i]);
orient[i] = (edges.Get(elnr)[i] > 0 ) ? 1 : -1;
*/
if (edges.Get(elnr)[i].nr == -1) return i;
eledges[i] = edges.Get(elnr)[i].nr+1;
// orient[i] = edges.Get(elnr)[i].orient ? -1 : 1;
orient[i] = GetElementEdgeOrientation(elnr, i) ? -1 : 1;
}
}
else
{
for (int i = 0; i < 12; i++)
{
// if (!edges.Get(elnr)[i]) return i;
// eledges[i] = abs (edges.Get(elnr)[i]);
if (edges.Get(elnr)[i].nr == -1) return i;
eledges[i] = edges.Get(elnr)[i].nr+1;
}
}
return 12;
}
else
{
throw NgException("rethink implementation");
/*
if (orient)
{
for (i = 0; i < 4; i++)
{
if (!surfedges.Get(elnr)[i]) return i;
eledges[i] = abs (surfedges.Get(elnr)[i]);
orient[i] = (surfedges.Get(elnr)[i] > 0 ) ? 1 : -1;
}
}
else
{
if (!surfedges.Get(elnr)[i]) return i;
for (i = 0; i < 4; i++)
eledges[i] = abs (surfedges.Get(elnr)[i]);
}
*/
return 4;
// return GetSurfaceElementEdges (elnr, eledges, orient);
}
}
int MeshTopology :: GetElementFaces (int elnr, int * elfaces, int * orient) const
{
// int nfa = GetNFaces (mesh.VolumeElement(elnr).GetType());
if (orient)
{
for (int i = 0; i < 6; i++)
{
/*
if (!faces.Get(elnr)[i]) return i;
elfaces[i] = (faces.Get(elnr)[i]-1) / 8 + 1;
orient[i] = (faces.Get(elnr)[i]-1) % 8;
*/
if (faces.Get(elnr)[i].fnr == -1) return i;
elfaces[i] = faces.Get(elnr)[i].fnr+1;
// orient[i] = faces.Get(elnr)[i].forient;
orient[i] = GetElementFaceOrientation (elnr, i);
}
}
else
{
for (int i = 0; i < 6; i++)
{
// if (!faces.Get(elnr)[i]) return i;
// elfaces[i] = (faces.Get(elnr)[i]-1) / 8 + 1;
if (faces.Get(elnr)[i].fnr == -1) return i;
elfaces[i] = faces.Get(elnr)[i].fnr+1;
}
}
return 6;
}
void MeshTopology :: GetSurfaceElementEdges (int elnr, NgArray<int> & eledges) const
{
int ned = GetNEdges (mesh->SurfaceElement(elnr).GetType());
eledges.SetSize (ned);
for (int i = 0; i < ned; i++)
// eledges[i] = abs (surfedges.Get(elnr)[i]);
eledges[i] = surfedges.Get(elnr)[i].nr+1;
}
void MeshTopology :: GetEdges (SurfaceElementIndex elnr, NgArray<int> & eledges) const
{
int ned = GetNEdges ( (*mesh)[elnr].GetType());
eledges.SetSize (ned);
for (int i = 0; i < ned; i++)
// eledges[i] = abs (surfedges[elnr][i])-1;
eledges[i] = surfedges[elnr][i].nr;
}
int MeshTopology :: GetSurfaceElementFace (int elnr) const
{
return surffaces.Get(elnr).fnr+1;
}
/*
int MeshTopology :: GetFace (SurfaceElementIndex elnr) const
{
return surffaces[elnr].fnr;
}
*/
void MeshTopology ::
GetSurfaceElementEdgeOrientations (int elnr, NgArray<int> & eorient) const
{
int ned = GetNEdges (mesh->SurfaceElement(elnr).GetType());
eorient.SetSize (ned);
for (int i = 0; i < ned; i++)
// eorient[i] = (surfedges.Get(elnr)[i] > 0) ? 1 : -1;
// eorient[i] = (surfedges.Get(elnr)[i].orient) ? -1 : 1;
eorient[i] = GetSurfaceElementEdgeOrientation(elnr, i) ? -1 : 1;
}
int MeshTopology :: GetSurfaceElementFaceOrientation (int elnr) const
{
// return (surffaces.Get(elnr)-1) % 8;
// return surffaces.Get(elnr).forient;
return GetSurfaceElementFaceOrientation2(elnr);
}
int MeshTopology :: GetSurfaceElementEdges (int elnr, int * eledges, int * orient) const
{
int i;
if (mesh->GetDimension() == 3 || 1)
{
if (orient)
{
for (i = 0; i < 4; i++)
{
/*
if (!surfedges.Get(elnr)[i]) return i;
eledges[i] = abs (surfedges.Get(elnr)[i]);
orient[i] = (surfedges.Get(elnr)[i] > 0 ) ? 1 : -1;
*/
if (surfedges.Get(elnr)[i].nr == -1) return i;
eledges[i] = surfedges.Get(elnr)[i].nr+1;
// orient[i] = (surfedges.Get(elnr)[i].orient) ? -1 : 1;
orient[i] = GetSurfaceElementEdgeOrientation(elnr, i) ? -1 : 1;
}
}
else
{
for (i = 0; i < 4; i++)
{
/*
if (!surfedges.Get(elnr)[i]) return i;
eledges[i] = abs (surfedges.Get(elnr)[i]);
*/
if (surfedges.Get(elnr)[i].nr == -1) return i;
eledges[i] = surfedges.Get(elnr)[i].nr+1;
}
}
return 4;
}
else
{
/*
eledges[0] = abs (segedges.Get(elnr));
if (orient)
orient[0] = segedges.Get(elnr) > 0 ? 1 : -1;
*/
eledges[0] = segedges.Get(elnr).nr+1;
if (orient)
// orient[0] = segedges.Get(elnr).orient ? -1 : 1;
orient[0] = GetSegmentEdgeOrientation(elnr) ? -1 : 1;
}
return 1;
}
int MeshTopology :: GetElementEdgeOrientation (int elnr, int locedgenr) const
{
const Element & el = mesh->VolumeElement (elnr);
const ELEMENT_EDGE * eledges = MeshTopology::GetEdges0 (el.GetType());
int k = locedgenr;
INDEX_2 edge(el[eledges[k][0]], el[eledges[k][1]]);
int edgedir = (edge.I1() > edge.I2());
return edgedir;
}
int MeshTopology :: GetElementFaceOrientation (int elnr, int locfacenr) const
{
const Element & el = mesh->VolumeElement (elnr);
const ELEMENT_FACE * elfaces = MeshTopology::GetFaces0 (el.GetType());
int j = locfacenr;
if (elfaces[j][3] < 0)
{ // triangle
INDEX_4 face(el[elfaces[j][0]], el[elfaces[j][1]],
el[elfaces[j][2]], 0);
int facedir = 0;
if (face.I1() > face.I2())
{ swap (face.I1(), face.I2()); facedir += 1; }
if (face.I2() > face.I3())
{ swap (face.I2(), face.I3()); facedir += 2; }
if (face.I1() > face.I2())
{ swap (face.I1(), face.I2()); facedir += 4; }
return facedir;
}
else
{
// quad
// int facenum;
INDEX_4 face4(el[elfaces[j][0]], el[elfaces[j][1]],
el[elfaces[j][2]], el[elfaces[j][3]]);
int facedir = 0;
if (min2 (face4.I1(), face4.I2()) >
min2 (face4.I4(), face4.I3()))
{ // z - flip
facedir += 1;
swap (face4.I1(), face4.I4());
swap (face4.I2(), face4.I3());
}
if (min2 (face4.I1(), face4.I4()) >
min2 (face4.I2(), face4.I3()))
{ // x - flip
facedir += 2;
swap (face4.I1(), face4.I2());
swap (face4.I3(), face4.I4());
}
if (face4.I2() > face4.I4())
{ // diagonal flip
facedir += 4;
swap (face4.I2(), face4.I4());
}
return facedir;
}
}
int MeshTopology :: GetSurfaceElementEdgeOrientation (int elnr, int locedgenr) const
{
const Element2d & el = mesh->SurfaceElement (elnr);
const ELEMENT_EDGE * eledges = MeshTopology::GetEdges0 (el.GetType());
int k = locedgenr;
INDEX_2 edge(el[eledges[k][0]], el[eledges[k][1]]);
int edgedir = (edge.I1() > edge.I2());
return edgedir;
}
int MeshTopology :: GetSurfaceElementFaceOrientation2 (int elnr) const
{
const Element2d & el = mesh->SurfaceElement (elnr);
const ELEMENT_FACE * elfaces = MeshTopology::GetFaces0 (el.GetType());
int j = 0;
if (elfaces[j][3] < 0)
{ // triangle
INDEX_4 face(el[elfaces[j][0]], el[elfaces[j][1]],
el[elfaces[j][2]], 0);
int facedir = 0;
if (face.I1() > face.I2())
{ swap (face.I1(), face.I2()); facedir += 1; }
if (face.I2() > face.I3())
{ swap (face.I2(), face.I3()); facedir += 2; }
if (face.I1() > face.I2())
{ swap (face.I1(), face.I2()); facedir += 4; }
return facedir;
}
else
{
// quad
// int facenum;
INDEX_4 face4(el[elfaces[j][0]], el[elfaces[j][1]],
el[elfaces[j][2]], el[elfaces[j][3]]);
int facedir = 0;
if (min2 (face4.I1(), face4.I2()) >
min2 (face4.I4(), face4.I3()))
{ // z - flip
facedir += 1;
swap (face4.I1(), face4.I4());
swap (face4.I2(), face4.I3());
}
if (min2 (face4.I1(), face4.I4()) >
min2 (face4.I2(), face4.I3()))
{ // x - flip
facedir += 2;
swap (face4.I1(), face4.I2());
swap (face4.I3(), face4.I4());
}
if (face4.I2() > face4.I4())
{ // diagonal flip
facedir += 4;
swap (face4.I2(), face4.I4());
}
return facedir;
}
}
int MeshTopology :: GetSegmentEdgeOrientation (int elnr) const
{
const Segment & el = mesh->LineSegment (elnr);
const ELEMENT_EDGE * eledges = MeshTopology::GetEdges0 (el.GetType());
int k = 0;
INDEX_2 edge(el[eledges[k][0]], el[eledges[k][1]]);
int edgedir = (edge.I1() > edge.I2());
return edgedir;
}
void MeshTopology :: GetFaceVertices (int fnr, NgArray<int> & vertices) const
{
vertices.SetSize(4);
for (int i = 0; i < 4; i++)
vertices[i] = face2vert.Get(fnr)[i];
if (vertices[3] == 0)
vertices.SetSize(3);
}
void MeshTopology :: GetFaceVertices (int fnr, int * vertices) const
{
for (int i = 0; i <= 3; i++)
vertices[i] = face2vert.Get(fnr)[i];
}
void MeshTopology :: GetEdgeVertices (int ednr, int & v1, int & v2) const
{
// cout << "id = " << id << "getedgevertices, ednr = " << ednr << ", ned = " << edge2vert.Size() << "&v1 = " << &v1 << endl;
if (ednr < 1 || ednr > edge2vert.Size())
cerr << "illegal edge nr: " << ednr << ", numedges = " << edge2vert.Size()
<< " id = " << id
<< endl;
v1 = edge2vert.Get(ednr)[0];
v2 = edge2vert.Get(ednr)[1];
}
void MeshTopology :: GetEdgeVertices (int ednr, PointIndex & v1, PointIndex & v2) const
{
v1 = edge2vert.Get(ednr)[0];
v2 = edge2vert.Get(ednr)[1];
}
void MeshTopology :: GetFaceEdges (int fnr, NgArray<int> & fedges, bool withorientation) const
{
NgArrayMem<int,4> pi(4);
NgArrayMem<int,12> eledges;
fedges.SetSize (0);
GetFaceVertices(fnr, pi);
// Sort Edges according to global vertex numbers
// e1 = fmax, f2
// e2 = fmax, f1
// e3 = op e1(f2,f3)
// e4 = op e2(f1,f3)
/* NgArrayMem<int,4> fp;
fp[0] = pi[0];
for(int k=1;k<pi.Size();k++)
if(fp[k]>fp[0]) swap(fp[k],fp[0]);
fp[1] = fp[0]+ */
// GetVertexElements (pi[0], els);
FlatArray<ElementIndex> els = GetVertexElements (pi[0]);
// find one element having all vertices of the face
for (int i = 0; i < els.Size(); i++)
{
const Element & el = (*mesh)[els[i]];
int nref_faces = GetNFaces (el.GetType());
const ELEMENT_FACE * ref_faces = GetFaces1 (el.GetType());
int nfa_ref_edges = GetNEdges (GetFaceType(fnr));
int cntv = 0,fa=-1;
for(int m=0;m<nref_faces;m++)
{
cntv=0;
for(int j=0;j<nfa_ref_edges && ref_faces[m][j]>0;j++)
for(int k=0;k<pi.Size();k++)
{
if(el[ref_faces[m][j]-1] == pi[k])
cntv++;
}
if (cntv == pi.Size())
{
fa=m;
break;
}
}
if(fa>=0)
{
const ELEMENT_EDGE * fa_ref_edges = GetEdges1 (GetFaceType(fnr));
fedges.SetSize(nfa_ref_edges);
GetElementEdges (els[i]+1, eledges);
for (int j = 0; j < eledges.Size(); j++)
{
int vi1, vi2;
GetEdgeVertices (eledges[j], vi1, vi2);
bool has1 = 0;
bool has2 = 0;
for (int k = 0; k < pi.Size(); k++)
{
if (vi1 == pi[k]) has1 = 1;
if (vi2 == pi[k]) has2 = 1;
}
if (has1 && has2) // eledges[j] is on face
{
// fedges.Append (eledges[j]);
for(int k=0;k<nfa_ref_edges;k++)
{
int w1 = el[ref_faces[fa][fa_ref_edges[k][0]-1]-1];
int w2 = el[ref_faces[fa][fa_ref_edges[k][1]-1]-1];
if(withorientation)
{
if(w1==vi1 && w2==vi2)
fedges[k] = eledges[j];
if(w1==vi2 && w2==vi1)
fedges[k] = -eledges[j];
}
else
if((w1==vi1 && w2==vi2) || (w1==vi2 && w2==vi1))
fedges[k] = eledges[j];
}
}
}
// *testout << " Face " << fnr << endl;
// *testout << " GetFaceEdges " << fedges << endl;
return;
}
}
int surfel = GetFace2SurfaceElement(fnr);
if (surfel != 0)
{
GetSurfaceElementEdges (surfel, fedges);
return;
}
}
/*
ELEMENT_TYPE MeshTopology :: GetFaceType (int fnr) const
{
if (face2vert.Get(fnr)[3] == 0) return TRIG; else return QUAD;
}
*/
void MeshTopology :: GetVertexElements (int vnr, Array<ElementIndex> & elements) const
{
if (vert2element.Size())
elements = vert2element[vnr];
}
/*
NgFlatArray<ElementIndex> MeshTopology :: GetVertexElements (int vnr) const
{
if (vert2element)
return (*vert2element)[vnr];
return NgFlatArray<ElementIndex> (0,0);
}
NgFlatArray<SurfaceElementIndex> MeshTopology :: GetVertexSurfaceElements (int vnr) const
{
if (vert2surfelement)
return (*vert2surfelement)[vnr];
return NgFlatArray<SurfaceElementIndex> (0,0);
}
NgFlatArray<SegmentIndex> MeshTopology :: GetVertexSegments (int vnr) const
{
if (vert2segment)
return (*vert2segment)[vnr];
return NgFlatArray<SegmentIndex> (0,0);
}
*/
void MeshTopology :: GetVertexSurfaceElements( int vnr,
Array<SurfaceElementIndex> & elements ) const
{
if (vert2surfelement.Size())
elements = vert2surfelement[vnr];
}
int MeshTopology :: GetVerticesEdge ( int v1, int v2 ) const
{
Array<ElementIndex> elements_v1;
NgArray<int> elementedges;
GetVertexElements ( v1, elements_v1);
int edv1, edv2;
for ( int i = 0; i < elements_v1.Size(); i++ )
{
GetElementEdges( elements_v1[i]+1, elementedges );
for ( int ed = 0; ed < elementedges.Size(); ed ++)
{
GetEdgeVertices( elementedges[ed], edv1, edv2 );
if ( ( edv1 == v1 && edv2 == v2 ) || ( edv1 == v2 && edv2 == v1 ) )
return elementedges[ed];
}
}
return -1;
}
void MeshTopology ::
GetSegmentVolumeElements ( int segnr, NgArray<ElementIndex> & volels ) const
{
int v1, v2;
GetEdgeVertices ( GetSegmentEdge (segnr), v1, v2 );
auto volels1 = GetVertexElements ( v1 );
auto volels2 = GetVertexElements ( v2 );
volels.SetSize(0);
for ( auto volel1 : volels1 )
if ( volels2.Contains( volel1 ) )
volels.Append ( volel1 );
}
void MeshTopology ::
GetSegmentSurfaceElements (int segnr, NgArray<SurfaceElementIndex> & els) const
{
int v1, v2;
GetEdgeVertices ( GetSegmentEdge (segnr), v1, v2 );
auto els1 = GetVertexSurfaceElements ( v1 );
auto els2 = GetVertexSurfaceElements ( v2 );
els.SetSize(0);
for ( auto el1 : els1 )
if ( els2.Contains( el1 ) )
els.Append ( el1 );
}
}