netgen/libsrc/gprim/geomops.hpp

395 lines
6.9 KiB
C++

#ifndef FILE_GEOMOPS
#define FILE_GEOMOPS
/* *************************************************************************/
/* File: geomops.hpp */
/* Author: Joachim Schoeberl */
/* Date: 20. Jul. 02 */
/* *************************************************************************/
namespace netgen
{
/*
Point - Vector operations
*/
template <int D>
inline Vec<D> operator+ (const Vec<D> & a, const Vec<D> & b)
{
Vec<D> res;
for (int i = 0; i < D; i++)
res(i) = a(i) + b(i);
return res;
}
template <int D>
inline Point<D> operator+ (const Point<D> & a, const Vec<D> & b)
{
Point<D> res;
for (int i = 0; i < D; i++)
res(i) = a(i) + b(i);
return res;
}
template <int D>
inline Vec<D> operator- (const Point<D> & a, const Point<D> & b)
{
Vec<D> res;
for (int i = 0; i < D; i++)
res(i) = a(i) - b(i);
return res;
}
template <int D>
inline Point<D> operator- (const Point<D> & a, const Vec<D> & b)
{
Point<D> res;
for (int i = 0; i < D; i++)
res(i) = a(i) - b(i);
return res;
}
template <int D>
inline Vec<D> operator- (const Vec<D> & a, const Vec<D> & b)
{
Vec<D> res;
for (int i = 0; i < D; i++)
res(i) = a(i) - b(i);
return res;
}
template <int D>
inline Vec<D> operator* (double s, const Vec<D> & b)
{
Vec<D> res;
for (int i = 0; i < D; i++)
res(i) = s * b(i);
return res;
}
template <int D>
inline double operator* (const Vec<D> & a, const Vec<D> & b)
{
double sum = 0;
for (int i = 0; i < D; i++)
sum += a(i) * b(i);
return sum;
}
template <int D>
inline Vec<D> operator- (const Vec<D> & b)
{
Vec<D> res;
for (int i = 0; i < D; i++)
res(i) = -b(i);
return res;
}
template <int D>
inline Point<D> & operator+= (Point<D> & a, const Vec<D> & b)
{
for (int i = 0; i < D; i++)
a(i) += b(i);
return a;
}
template <int D>
inline Vec<D> & operator+= (Vec<D> & a, const Vec<D> & b)
{
for (int i = 0; i < D; i++)
a(i) += b(i);
return a;
}
template <int D>
inline Point<D> & operator-= (Point<D> & a, const Vec<D> & b)
{
for (int i = 0; i < D; i++)
a(i) -= b(i);
return a;
}
template <int D>
inline Vec<D> & operator-= (Vec<D> & a, const Vec<D> & b)
{
for (int i = 0; i < D; i++)
a(i) -= b(i);
return a;
}
template <int D>
inline Vec<D> & operator*= (Vec<D> & a, double s)
{
for (int i = 0; i < D; i++)
a(i) *= s;
return a;
}
template <int D>
inline Vec<D> & operator/= (Vec<D> & a, double s)
{
for (int i = 0; i < D; i++)
a(i) /= s;
return a;
}
// Matrix - Vector operations
/*
template <int H, int W>
inline Vec<H> operator* (const Mat<H,W> & m, const Vec<W> & v)
{
Vec<H> res;
for (int i = 0; i < H; i++)
{
res(i) = 0;
for (int j = 0; j < W; j++)
res(i) += m(i,j) * v(j);
}
return res;
}
*/
// thanks to VC60 partial template specialization features !!!
inline Vec<2> operator* (const Mat<2,2> & m, const Vec<2> & v)
{
Vec<2> res;
for (int i = 0; i < 2; i++)
{
res(i) = 0;
for (int j = 0; j < 2; j++)
res(i) += m(i,j) * v(j);
}
return res;
}
inline Vec<2> operator* (const Mat<2,3> & m, const Vec<3> & v)
{
Vec<2> res;
for (int i = 0; i < 2; i++)
{
res(i) = 0;
for (int j = 0; j < 3; j++)
res(i) += m(i,j) * v(j);
}
return res;
}
inline Vec<3> operator* (const Mat<3,2> & m, const Vec<2> & v)
{
Vec<3> res;
for (int i = 0; i < 3; i++)
{
res(i) = 0;
for (int j = 0; j < 2; j++)
res(i) += m(i,j) * v(j);
}
return res;
}
inline Vec<3> operator* (const Mat<3,3> & m, const Vec<3> & v)
{
Vec<3> res;
for (int i = 0; i < 3; i++)
{
res(i) = 0;
for (int j = 0; j < 3; j++)
res(i) += m(i,j) * v(j);
}
return res;
}
/*
template <int H1, int W1, int H2, int W2>
inline Mat<H1,W2> operator* (const Mat<H1,W1> & a, const Mat<H2,W2> & b)
{
Mat<H1,W2> m;
for (int i = 0; i < H1; i++)
for (int j = 0; j < W2; j++)
{
double sum = 0;
for (int k = 0; k < W1; k++)
sum += a(i,k) * b(k, j);
m(i,j) = sum;
}
return m;
}
*/
inline Mat<2,2> operator* (const Mat<2,2> & a, const Mat<2,2> & b)
{
Mat<2,2> m;
for (int i = 0; i < 2; i++)
for (int j = 0; j < 2; j++)
{
double sum = 0;
for (int k = 0; k < 2; k++)
sum += a(i,k) * b(k, j);
m(i,j) = sum;
}
return m;
}
inline Mat<2,2> operator* (const Mat<2,3> & a, const Mat<3,2> & b)
{
Mat<2,2> m;
for (int i = 0; i < 2; i++)
for (int j = 0; j < 2; j++)
{
double sum = 0;
for (int k = 0; k < 3; k++)
sum += a(i,k) * b(k, j);
m(i,j) = sum;
}
return m;
}
inline Mat<3,2> operator* (const Mat<3,2> & a, const Mat<2,2> & b)
{
Mat<3,2> m;
for (int i = 0; i < 3; i++)
for (int j = 0; j < 2; j++)
{
double sum = 0;
for (int k = 0; k < 2; k++)
sum += a(i,k) * b(k, j);
m(i,j) = sum;
}
return m;
}
inline Mat<2,3> operator* (const Mat<2,2> & a, const Mat<2,3> & b)
{
Mat<2,3> m;
for (int i = 0; i < 2; i++)
for (int j = 0; j < 3; j++)
{
double sum = 0;
for (int k = 0; k < 2; k++)
sum += a(i,k) * b(k, j);
m(i,j) = sum;
}
return m;
}
template <typename T>
inline Mat<3,3,T> operator* (const Mat<3,3,T> & a, const Mat<3,3,T> & b)
{
Mat<3,3,T> m;
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; j++)
{
T sum = T(0);
for (int k = 0; k < 3; k++)
sum += a(i,k) * b(k, j);
m(i,j) = sum;
}
return m;
}
template <int H, int W>
inline Mat<W,H> Trans (const Mat<H,W> & m)
{
Mat<W,H> res;
for (int i = 0; i < H; i++)
for (int j = 0; j < W; j++)
res(j,i) = m(i,j);
return res;
}
template <int D, typename T>
inline ostream & operator<< (ostream & ost, const Vec<D,T> & a)
{
ost << "(";
for (int i = 0; i < D-1; i++)
ost << a(i) << ", ";
ost << a(D-1) << ")";
return ost;
}
template <int D, typename T>
inline ostream & operator<< (ostream & ost, const Point<D,T> & a)
{
ost << "(";
for (int i = 0; i < D-1; i++)
ost << a(i) << ", ";
ost << a(D-1) << ")";
return ost;
}
template <int D>
inline ostream & operator<< (ostream & ost, const Box<D> & b)
{
ost << b.PMin() << " - " << b.PMax();
return ost;
}
template <int H, int W, typename T>
inline ostream & operator<< (ostream & ost, const Mat<H,W,T> & m)
{
ost << "(";
for (int i = 0; i < H; i++)
{
for (int j = 0; j < W; j++)
ost << m(i,j) << " ";
ost << endl;
}
return ost;
}
}
#endif