netgen/libsrc/geom2d/spline.hpp
Joachim Schoeberl 310cb00b13 autotools
2009-01-12 23:40:13 +00:00

1042 lines
22 KiB
C++

#ifndef FILE_SPLINE_HPP
#define FILE_SPLINE_HPP
/**************************************************************************/
/* File: spline.hpp */
/* Author: Joachim Schoeberl */
/* Date: 24. Jul. 96 */
/**************************************************************************/
void CalcPartition (double l, double h, double r1, double r2,
double ra, double elto0, ARRAY<double> & points);
/*
Spline curves for 2D mesh generation
*/
/// Geometry point
template < int D >
class GeomPoint : public Point<D>
{
public:
/// refinement to point
double refatpoint;
bool hpref;
GeomPoint ()
{ ; }
///
GeomPoint (double ax, double ay, double aref = 1, bool ahpref=false)
: Point<D> (ax, ay), refatpoint(aref), hpref(ahpref) { ; }
GeomPoint (double ax, double ay, double az, double aref, bool ahpref=false)
: Point<D> (ax, ay, az), refatpoint(aref), hpref(ahpref) { ; }
GeomPoint (const Point<D> & ap, double aref = 1, bool ahpref=false)
: Point<D>(ap), refatpoint(aref), hpref(ahpref) { ; }
};
/// base class for 2d - segment
template < int D >
class SplineSeg
{
public:
/// left domain
int leftdom;
/// right domain
int rightdom;
/// refinement at line
double reffak;
/// boundary condition number
int bc;
/// copy spline mesh from other spline (-1.. do not copy)
int copyfrom;
/// perfrom anisotropic refinement (hp-refinement) to edge
bool hpref_left;
bool hpref_right;
/// calculates length of curve
virtual double Length () const;
/// returns point at curve, 0 <= t <= 1
virtual Point<D> GetPoint (double t) const = 0;
/// returns a (not necessarily uniform) tangent vector for 0 <= t <= 1
virtual Vec<D> GetTangent (const double t) const
{ cerr << "GetTangent not implemented for spline base-class" << endl; Vec<D> dummy; return dummy;}
virtual void GetDerivatives (const double t,
Point<D> & point,
Vec<D> & first,
Vec<D> & second) const {;}
/// partitionizes curve
void Partition (double h, double elto0,
Mesh & mesh, Point3dTree & searchtree, int segnr) const;
/// returns initial point on curve
virtual const GeomPoint<D> & StartPI () const = 0;
/// returns terminal point on curve
virtual const GeomPoint<D> & EndPI () const = 0;
/** writes curve description for fepp:
for implicitly given quadratic curves, the 6 coefficients of
the polynomial
$$ a x^2 + b y^2 + c x y + d x + e y + f = 0 $$
are written to ost */
void PrintCoeff (ostream & ost) const;
virtual void GetCoeff (Vector & coeffs) const = 0;
virtual void GetPoints (int n, ARRAY<Point<D> > & points);
/** calculates (2D) lineintersections:
for lines $$ a x + b y + c = 0 $$ the interecting points are calculated
and stored in points */
virtual void LineIntersections (const double a, const double b, const double c,
ARRAY < Point<D> > & points, const double eps) const
{points.SetSize(0);}
virtual double MaxCurvature(void) const = 0;
virtual string GetType(void) const {return "splinebase";}
virtual void Project (const Point<D> point, Point<D> & point_on_curve, double & t) const
{ cerr << "Project not implemented for spline base-class" << endl;}
virtual void GetRawData (ARRAY<double> & data) const
{ cerr << "GetRawData not implemented for spline base-class" << endl;}
};
/// Straight line form p1 to p2
template< int D >
class LineSeg : public SplineSeg<D>
{
///
GeomPoint<D> p1, p2;
//const GeomPoint<D> &p1, &p2;
public:
///
LineSeg (const GeomPoint<D> & ap1, const GeomPoint<D> & ap2);
///
virtual double Length () const;
///
virtual Point<D> GetPoint (double t) const;
///
virtual Vec<D> GetTangent (const double t) const;
virtual void GetDerivatives (const double t,
Point<D> & point,
Vec<D> & first,
Vec<D> & second) const;
///
virtual const GeomPoint<D> & StartPI () const { return p1; };
///
virtual const GeomPoint<D> & EndPI () const { return p2; }
///
virtual void GetCoeff (Vector & coeffs) const;
virtual string GetType(void) const {return "line";}
virtual void LineIntersections (const double a, const double b, const double c,
ARRAY < Point<D> > & points, const double eps) const;
virtual double MaxCurvature(void) const {return 0;}
virtual void Project (const Point<D> point, Point<D> & point_on_curve, double & t) const;
virtual void GetRawData (ARRAY<double> & data) const;
};
/// curve given by a rational, quadratic spline (including ellipses)
template< int D >
class SplineSeg3 : public SplineSeg<D>
{
///
GeomPoint<D> p1, p2, p3;
//const GeomPoint<D> &p1, &p2, &p3;
mutable double proj_latest_t;
public:
///
SplineSeg3 (const GeomPoint<D> & ap1,
const GeomPoint<D> & ap2,
const GeomPoint<D> & ap3);
///
virtual Point<D> GetPoint (double t) const;
///
virtual Vec<D> GetTangent (const double t) const;
virtual void GetDerivatives (const double t,
Point<D> & point,
Vec<D> & first,
Vec<D> & second) const;
///
virtual const GeomPoint<D> & StartPI () const { return p1; };
///
virtual const GeomPoint<D> & EndPI () const { return p3; }
///
virtual void GetCoeff (Vector & coeffs) const;
virtual string GetType(void) const {return "spline3";}
const GeomPoint<D> & TangentPoint (void) const { return p2; }
virtual void LineIntersections (const double a, const double b, const double c,
ARRAY < Point<D> > & points, const double eps) const;
virtual double MaxCurvature(void) const;
virtual void Project (const Point<D> point, Point<D> & point_on_curve, double & t) const;
virtual void GetRawData (ARRAY<double> & data) const;
};
// Gundolf Haase 8/26/97
/// A circle
template < int D >
class CircleSeg : public SplineSeg<D>
{
///
private:
GeomPoint<D> p1, p2, p3;
//const GeomPoint<D> &p1, &p2, &p3;
Point<D> pm;
double radius, w1,w3;
public:
///
CircleSeg (const GeomPoint<D> & ap1,
const GeomPoint<D> & ap2,
const GeomPoint<D> & ap3);
///
virtual Point<D> GetPoint (double t) const;
///
virtual const GeomPoint<D> & StartPI () const { return p1; }
///
virtual const GeomPoint<D> & EndPI () const { return p3; }
///
virtual void GetCoeff (Vector & coeffs) const;
///
double Radius() const { return radius; }
///
double StartAngle() const { return w1; }
///
double EndAngle() const { return w3; }
///
const Point<D> & MidPoint(void) const {return pm; }
virtual string GetType(void) const {return "circle";}
virtual void LineIntersections (const double a, const double b, const double c,
ARRAY < Point<D> > & points, const double eps) const;
virtual double MaxCurvature(void) const {return 1./radius;}
};
///
template<int D>
class DiscretePointsSeg : public SplineSeg<D>
{
ARRAY<Point<D> > pts;
GeomPoint<D> p1, p2;
public:
///
DiscretePointsSeg (const ARRAY<Point<D> > & apts);
///
virtual ~DiscretePointsSeg ();
///
virtual Point<D> GetPoint (double t) const;
///
virtual const GeomPoint<D> & StartPI () const { return p1; };
///
virtual const GeomPoint<D> & EndPI () const { return p2; }
///
virtual void GetCoeff (Vector & coeffs) const {;}
virtual double MaxCurvature(void) const {return 1;}
};
// calculates length of spline-curve
template<int D>
double SplineSeg<D> :: Length () const
{
Point<D> p, pold;
int i, n = 100;
double dt = 1.0 / n;
pold = GetPoint (0);
double l = 0;
for (i = 1; i <= n; i++)
{
p = GetPoint (i * dt);
l += Dist (p, pold);
pold = p;
}
return l;
}
// partitionizes spline curve
template<int D>
void SplineSeg<D> :: Partition (double h, double elto0,
Mesh & mesh, Point3dTree & searchtree, int segnr) const
{
int i, j;
double l, r1, r2, ra;
double lold, dt, frac;
int n = 100;
Point<D> p, pold, mark, oldmark;
ARRAY<double> curvepoints;
double edgelength, edgelengthold;
l = Length();
r1 = StartPI().refatpoint;
r2 = EndPI().refatpoint;
ra = reffak;
// cout << "Partition, l = " << l << ", h = " << h << endl;
CalcPartition (l, h, r1, r2, ra, elto0, curvepoints);
// cout << "curvepoints = " << curvepoints << endl;
dt = 1.0 / n;
l = 0;
j = 1;
pold = GetPoint (0);
lold = 0;
oldmark = pold;
edgelengthold = 0;
ARRAY<int> locsearch;
for (i = 1; i <= n; i++)
{
p = GetPoint (i*dt);
l = lold + Dist (p, pold);
while (j < curvepoints.Size() && (l >= curvepoints[j] || i == n))
{
frac = (curvepoints[j]-lold) / (l-lold);
mark = pold + frac * (p-pold);
edgelength = i*dt + (frac-1)*dt;
{
PointIndex pi1 = -1, pi2 = -1;
Point3d mark3(mark(0), mark(1), 0);
Point3d oldmark3(oldmark(0), oldmark(1), 0);
Vec<3> v (1e-4*h, 1e-4*h, 1e-4*h);
searchtree.GetIntersecting (oldmark3 - v, oldmark3 + v, locsearch);
if (locsearch.Size()) pi1 = locsearch[0];
searchtree.GetIntersecting (mark3 - v, mark3 + v, locsearch);
if (locsearch.Size()) pi2 = locsearch[0];
/*
for (PointIndex pk = PointIndex::BASE;
pk < mesh.GetNP()+PointIndex::BASE; pk++)
{
if (Dist (mesh[pk], oldmark3) < 1e-4 * h) pi1 = pk;
if (Dist (mesh[pk], mark3) < 1e-4 * h) pi2 = pk;
}
*/
// cout << "pi1 = " << pi1 << endl;
// cout << "pi2 = " << pi2 << endl;
if (pi1 == -1)
{
pi1 = mesh.AddPoint(oldmark3);
searchtree.Insert (oldmark3, pi1);
}
if (pi2 == -1)
{
pi2 = mesh.AddPoint(mark3);
searchtree.Insert (mark3, pi2);
}
// cout << "pi1 = " << pi1 << endl;
// cout << "pi2 = " << pi2 << endl;
Segment seg;
seg.edgenr = segnr;
seg.si = bc; // segnr;
seg.p1 = pi1;
seg.p2 = pi2;
seg.domin = leftdom;
seg.domout = rightdom;
seg.epgeominfo[0].edgenr = segnr;
seg.epgeominfo[0].dist = edgelengthold;
seg.epgeominfo[1].edgenr = segnr;
seg.epgeominfo[1].dist = edgelength;
seg.singedge_left = hpref_left;
seg.singedge_right = hpref_right;
mesh.AddSegment (seg);
}
oldmark = mark;
edgelengthold = edgelength;
j++;
}
pold = p;
lold = l;
}
}
template<int D>
void SplineSeg<D> :: GetPoints (int n, ARRAY<Point<D> > & points)
{
points.SetSize (n);
if (n >= 2)
for (int i = 0; i < n; i++)
points[i] = GetPoint(double(i) / (n-1));
}
template<int D>
void SplineSeg<D> :: PrintCoeff (ostream & ost) const
{
Vector u(6);
GetCoeff(u);
for ( int i=0; i<6; i++)
ost << u[i] << " ";
ost << endl;
}
/*
Implementation of line-segment from p1 to p2
*/
template<int D>
LineSeg<D> :: LineSeg (const GeomPoint<D> & ap1,
const GeomPoint<D> & ap2)
: p1(ap1), p2(ap2)
{
;
}
template<int D>
Point<D> LineSeg<D> :: GetPoint (double t) const
{
return p1 + t * (p2 - p1);
}
template<int D>
Vec<D> LineSeg<D> :: GetTangent (const double t) const
{
return p2-p1;
}
template<int D>
void LineSeg<D> :: GetDerivatives (const double t,
Point<D> & point,
Vec<D> & first,
Vec<D> & second) const
{
first = p2 - p1;
point = p1 + t * first;
second = 0;
}
template<int D>
double LineSeg<D> :: Length () const
{
return Dist (p1, p2);
}
template<int D>
void LineSeg<D> :: GetCoeff (Vector & coeffs) const
{
coeffs.SetSize(6);
double dx = p2(0) - p1(0);
double dy = p2(1) - p1(1);
coeffs[0] = coeffs[1] = coeffs[2] = 0;
coeffs[3] = -dy;
coeffs[4] = dx;
coeffs[5] = -dx * p1(1) + dy * p1(0);
}
template<int D>
void LineSeg<D> :: LineIntersections (const double a, const double b, const double c,
ARRAY < Point<D> > & points, const double eps) const
{
points.SetSize(0);
double denom = -a*p2(0)+a*p1(0)-b*p2(1)+b*p1(1);
if(fabs(denom) < 1e-20)
return;
double t = (a*p1(0)+b*p1(1)+c)/denom;
if((t > -eps) && (t < 1.+eps))
points.Append(GetPoint(t));
}
template<int D>
void LineSeg<D> :: Project (const Point<D> point, Point<D> & point_on_curve, double & t) const
{
Vec<D> v = p2-p1;
double l = v.Length();
v *= 1./l;
t = (point-p1)*v;
if(t<0) t = 0;
if(t>l) t = l;
point_on_curve = p1+t*v;
t *= 1./l;
}
template<int D>
void LineSeg<D> :: GetRawData (ARRAY<double> & data) const
{
data.Append(2);
for(int i=0; i<D; i++)
data.Append(p1[i]);
for(int i=0; i<D; i++)
data.Append(p2[i]);
}
template<int D>
void SplineSeg3<D> :: Project (const Point<D> point, Point<D> & point_on_curve, double & t) const
{
double t_old = -1;
if(proj_latest_t > 0. && proj_latest_t < 1.)
t = proj_latest_t;
else
t = 0.5;
Point<D> phi;
Vec<D> phip,phipp,phimp;
int i=0;
while(t > -0.5 && t < 1.5 && i<20 && fabs(t-t_old) > 1e-15 )
{
GetDerivatives(t,phi,phip,phipp);
t_old = t;
phimp = phi-point;
//t = min2(max2(t-(phip*phimp)/(phipp*phimp + phip*phip),0.),1.);
t -= (phip*phimp)/(phipp*phimp + phip*phip);
i++;
}
//if(i<10 && t > 0. && t < 1.)
if(i<20 && t > -0.4 && t < 1.4)
{
if(t < 0)
{
t = 0.;
}
if(t > 1)
{
t = 1.;
}
point_on_curve = GetPoint(t);
double dist = Dist(point,point_on_curve);
phi = GetPoint(0);
double auxdist = Dist(phi,point);
if(auxdist < dist)
{
t = 0.;
point_on_curve = phi;
dist = auxdist;
}
phi = GetPoint(1);
auxdist = Dist(phi,point);
if(auxdist < dist)
{
t = 1.;
point_on_curve = phi;
dist = auxdist;
}
}
else
{
double t0 = 0;
double t1 = 0.5;
double t2 = 1.;
double d0,d1,d2;
//(*testout) << "newtonersatz" << endl;
while(t2-t0 > 1e-8)
{
phi = GetPoint(t0); d0 = Dist(phi,point);
phi = GetPoint(t1); d1 = Dist(phi,point);
phi = GetPoint(t2); d2 = Dist(phi,point);
double a = (2.*d0 - 4.*d1 +2.*d2)/pow(t2-t0,2);
if(a <= 0)
{
if(d0 < d2)
t2 -= 0.3*(t2-t0);
else
t0 += 0.3*(t2-t0);
t1 = 0.5*(t2+t0);
}
else
{
double b = (d1-d0-a*(t1*t1-t0*t0))/(t1-t0);
double auxt1 = -0.5*b/a;
if(auxt1 < t0)
{
t2 -= 0.4*(t2-t0);
t0 = max2(0.,t0-0.1*(t2-t0));
}
else if (auxt1 > t2)
{
t0 += 0.4*(t2-t0);
t2 = min2(1.,t2+0.1*(t2-t0));
}
else
{
t1 = auxt1;
auxt1 = 0.25*(t2-t0);
t0 = max2(0.,t1-auxt1);
t2 = min2(1.,t1+auxt1);
}
t1 = 0.5*(t2+t0);
}
}
phi = GetPoint(t0); d0 = Dist(phi,point);
phi = GetPoint(t1); d1 = Dist(phi,point);
phi = GetPoint(t2); d2 = Dist(phi,point);
double mind = d0;
t = t0;
if(d1 < mind)
{
t = t1;
mind = d1;
}
if(d2 < mind)
{
t = t2;
mind = d2;
}
point_on_curve = GetPoint(t);
}
//(*testout) << " latest_t " << proj_latest_t << " t " << t << endl;
proj_latest_t = t;
}
template<int D>
SplineSeg3<D> :: SplineSeg3 (const GeomPoint<D> & ap1,
const GeomPoint<D> & ap2,
const GeomPoint<D> & ap3)
: p1(ap1), p2(ap2), p3(ap3)
{
proj_latest_t = 0.5;
}
template<int D>
Point<D> SplineSeg3<D> :: GetPoint (double t) const
{
double x, y, w;
double b1, b2, b3;
b1 = (1-t)*(1-t);
b2 = sqrt(2.0) * t * (1-t);
b3 = t * t;
x = p1(0) * b1 + p2(0) * b2 + p3(0) * b3;
y = p1(1) * b1 + p2(1) * b2 + p3(1) * b3;
w = b1 + b2 + b3;
if(D==3)
{
double z = p1(2) * b1 + p2(2) * b2 + p3(2) * b3;
return Point<D> (x/w, y/w, z/w);
}
else
return Point<D> (x/w, y/w);
}
template<int D>
void SplineSeg3<D> :: GetDerivatives (const double t,
Point<D> & point,
Vec<D> & first,
Vec<D> & second) const
{
Vec<D> v1(p1), v2(p2), v3(p3);
double b1 = (1.-t)*(1.-t);
double b2 = sqrt(2.)*t*(1.-t);
double b3 = t*t;
double w = b1+b2+b3;
b1 *= 1./w; b2 *= 1./w; b3 *= 1./w;
double b1p = 2.*(t-1.);
double b2p = sqrt(2.)*(1.-2.*t);
double b3p = 2.*t;
const double wp = b1p+b2p+b3p;
const double fac1 = wp/w;
b1p *= 1./w; b2p *= 1./w; b3p *= 1./w;
const double b1pp = 2.;
const double b2pp = -2.*sqrt(2.);
const double b3pp = 2.;
const double wpp = b1pp+b2pp+b3pp;
const double fac2 = (wpp*w-2.*wp*wp)/(w*w);
for(int i=0; i<D; i++)
point(i) = b1*p1(i) + b2*p2(i) + b3*p3(i);
first = (b1p - b1*fac1) * v1 +
(b2p - b2*fac1) * v2 +
(b3p - b3*fac1) * v3;
second = (b1pp/w - b1p*fac1 - b1*fac2) * v1 +
(b2pp/w - b2p*fac1 - b2*fac2) * v2 +
(b3pp/w - b3p*fac1 - b3*fac2) * v3;
}
template<int D>
Vec<D> SplineSeg3<D> :: GetTangent (const double t) const
{
const double b1 = (1.-t)*((sqrt(2.)-2.)*t-sqrt(2.));
const double b2 = sqrt(2.)*(1.-2.*t);
const double b3 = t*((sqrt(2.)-2)*t+2.);
Vec<D> retval;
for(int i=0; i<D; i++)
retval(i) = b1*p1(i) + b2*p2(i) + b3*p3(i);
return retval;
}
template<int D>
void SplineSeg3<D> :: GetCoeff (Vector & u) const
{
double t;
int i;
Point<D> p;
DenseMatrix a(6, 6);
DenseMatrix ata(6, 6);
Vector f(6);
u.SetSize(6);
// ata.SetSymmetric(1);
t = 0;
for (i = 1; i <= 5; i++, t += 0.25)
{
p = GetPoint (t);
a.Elem(i, 1) = p(0) * p(0);
a.Elem(i, 2) = p(1) * p(1);
a.Elem(i, 3) = p(0) * p(1);
a.Elem(i, 4) = p(0);
a.Elem(i, 5) = p(1);
a.Elem(i, 6) = 1;
}
a.Elem(6, 1) = 1;
CalcAtA (a, ata);
u = 0;
u.Elem(6) = 1;
a.MultTrans (u, f);
ata.Solve (f, u);
}
/*
template<int D>
double SplineSeg3<D> :: MaxCurvature(void) const
{
Vec<D> v1 = p1-p2;
Vec<D> v2 = p3-p2;
double l1 = v1.Length();
double l2 = v2.Length();
(*testout) << "v1 " << v1 << " v2 " << v2 << endl;
double cosalpha = v1*v2/(l1*l2);
(*testout) << "cosalpha " << cosalpha << endl;
return sqrt(cosalpha + 1.)/(min2(l1,l2)*(1.-cosalpha));
}
*/
template<int D>
void SplineSeg3<D> :: LineIntersections (const double a, const double b, const double c,
ARRAY < Point<D> > & points, const double eps) const
{
points.SetSize(0);
double t;
const double c1 = a*p1(0) - sqrt(2.)*a*p2(0) + a*p3(0)
+ b*p1(1) - sqrt(2.)*b*p2(1) + b*p3(1)
+ (2.-sqrt(2.))*c;
const double c2 = -2.*a*p1(0) + sqrt(2.)*a*p2(0) -2.*b*p1(1) + sqrt(2.)*b*p2(1) + (sqrt(2.)-2.)*c;
const double c3 = a*p1(0) + b*p1(1) + c;
if(fabs(c1) < 1e-20)
{
if(fabs(c2) < 1e-20)
return;
t = -c3/c2;
if((t > -eps) && (t < 1.+eps))
points.Append(GetPoint(t));
return;
}
const double discr = c2*c2-4.*c1*c3;
if(discr < 0)
return;
if(fabs(discr/(c1*c1)) < 1e-14)
{
t = -0.5*c2/c1;
if((t > -eps) && (t < 1.+eps))
points.Append(GetPoint(t));
return;
}
t = (-c2 + sqrt(discr))/(2.*c1);
if((t > -eps) && (t < 1.+eps))
points.Append(GetPoint(t));
t = (-c2 - sqrt(discr))/(2.*c1);
if((t > -eps) && (t < 1.+eps))
points.Append(GetPoint(t));
}
template < int D >
void SplineSeg3<D> :: GetRawData (ARRAY<double> & data) const
{
data.Append(3);
for(int i=0; i<D; i++)
data.Append(p1[i]);
for(int i=0; i<D; i++)
data.Append(p2[i]);
for(int i=0; i<D; i++)
data.Append(p3[i]);
}
//########################################################################
// circlesegment
template<int D>
CircleSeg<D> :: CircleSeg (const GeomPoint<D> & ap1,
const GeomPoint<D> & ap2,
const GeomPoint<D> & ap3)
: p1(ap1), p2(ap2), p3(ap3)
{
Vec<D> v1,v2;
v1 = p1 - p2;
v2 = p3 - p2;
Point<D> p1t(p1+v1);
Point<D> p2t(p3+v2);
// works only in 2D!!!!!!!!!
Line2d g1t,g2t;
g1t.P1() = Point<2>(p1(0),p1(1));
g1t.P2() = Point<2>(p1t(0),p1t(1));
g2t.P1() = Point<2>(p3(0),p3(1));
g2t.P2() = Point<2>(p2t(0),p2t(1));
Point<2> mp = CrossPoint (g1t,g2t);
pm(0) = mp(0); pm(1) = mp(1);
radius = Dist(pm,StartPI());
Vec2d auxv;
auxv.X() = p1(0)-pm(0); auxv.Y() = p1(1)-pm(1);
w1 = Angle(auxv);
auxv.X() = p3(0)-pm(0); auxv.Y() = p3(1)-pm(1);
w3 = Angle(auxv);
if ( fabs(w3-w1) > M_PI )
{
if ( w3>M_PI ) w3 -= 2*M_PI;
if ( w1>M_PI ) w1 -= 2*M_PI;
}
}
template<int D>
Point<D> CircleSeg<D> :: GetPoint (double t) const
{
if (t >= 1.0) { return p3; }
double phi = StartAngle() + t*(EndAngle()-StartAngle());
Vec<D> tmp(cos(phi),sin(phi));
return pm + Radius()*tmp;
}
template<int D>
void CircleSeg<D> :: GetCoeff (Vector & coeff) const
{
coeff[0] = coeff[1] = 1.0;
coeff[2] = 0.0;
coeff[3] = -2.0 * pm[0];
coeff[4] = -2.0 * pm[1];
coeff[5] = sqr(pm[0]) + sqr(pm[1]) - sqr(Radius());
}
template<int D>
void CircleSeg<D> :: LineIntersections (const double a, const double b, const double c,
ARRAY < Point<D> > & points, const double eps) const
{
points.SetSize(0);
double px=0,py=0;
if(fabs(b) > 1e-20)
py = -c/b;
else
px = -c/a;
const double c1 = a*a + b*b;
const double c2 = 2. * ( a*(py-pm(1)) - b*(px-pm(0)));
const double c3 = pow(px-pm(0),2) + pow(py-pm(1),2) - pow(Radius(),2);
const double discr = c2*c2 - 4*c1*c3;
if(discr < 0)
return;
ARRAY<double> t;
if(fabs(discr) < 1e-20)
t.Append(-0.5*c2/c1);
else
{
t.Append((-c2+sqrt(discr))/(2.*c1));
t.Append((-c2-sqrt(discr))/(2.*c1));
}
for(int i=0; i<t.Size(); i++)
{
Point<D> p (px-t[i]*b,py+t[i]*a);
double angle = atan2(p(1),p(0))+M_PI;
if(angle > StartAngle()-eps && angle < EndAngle()+eps)
points.Append(p);
}
}
template<int D>
DiscretePointsSeg<D> :: DiscretePointsSeg (const ARRAY<Point<D> > & apts)
: pts (apts)
{
for(int i=0; i<D; i++)
{
p1(i) = apts[0](i);
p2(i) = apts.Last()(i);
}
p1.refatpoint = true;
p2.refatpoint = true;
}
template<int D>
DiscretePointsSeg<D> :: ~DiscretePointsSeg ()
{ ; }
template<int D>
Point<D> DiscretePointsSeg<D> :: GetPoint (double t) const
{
double t1 = t * (pts.Size()-1);
int segnr = int(t1);
if (segnr < 0) segnr = 0;
if (segnr >= pts.Size()) segnr = pts.Size()-1;
double rest = t1 - segnr;
return pts[segnr] + rest*Vec<D>(pts[segnr+1]-pts[segnr]);
}
typedef GeomPoint<2> GeomPoint2d;
typedef SplineSeg<2> SplineSegment;
typedef LineSeg<2> LineSegment;
typedef SplineSeg3<2> SplineSegment3;
typedef CircleSeg<2> CircleSegment;
typedef DiscretePointsSeg<2> DiscretePointsSegment;
#endif