mirror of
https://github.com/NGSolve/netgen.git
synced 2025-01-19 09:20:33 +05:00
1557 lines
53 KiB
C++
1557 lines
53 KiB
C++
|
|
#include <set>
|
|
#include <regex>
|
|
#include <mystdlib.h>
|
|
|
|
#include "global.hpp"
|
|
#include "debugging.hpp"
|
|
|
|
#include "boundarylayer.hpp"
|
|
#include "meshfunc.hpp"
|
|
|
|
|
|
namespace netgen
|
|
{
|
|
// checks if a segment is intersecting a plane, spanned by three points, lam will be set s.t. p_intersect = seg[0] + lam * (seg[1]-seg[0])
|
|
bool isIntersectingPlane ( const array<Point<3>, 2> & seg, const array<Point<3>, 3> & trig, double & lam)
|
|
{
|
|
auto n = Cross(trig[1]-trig[0], trig[2]-trig[0]);
|
|
auto v0n = (seg[0]-trig[0])*n;
|
|
auto v1n = (seg[1]-trig[0])*n;
|
|
if(v0n * v1n >= 0)
|
|
return false;
|
|
|
|
lam = -v0n/(v1n-v0n);
|
|
lam *= 0.9;
|
|
if(lam < -1e-8 || lam>1+1e-8)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool isIntersectingPlane ( const array<Point<3>, 2> & seg, const ArrayMem<Point<3>, 4> & face, double & lam)
|
|
{
|
|
lam = 1.0;
|
|
bool intersect0 = isIntersectingPlane( seg, array<Point<3>, 3>{face[0], face[1], face[2]}, lam );
|
|
if(face.Size()==3)
|
|
return intersect0;
|
|
|
|
double lam1 = 1.0;
|
|
bool intersect1 = isIntersectingPlane( seg, array<Point<3>, 3>{face[2], face[3], face[0]}, lam1 );
|
|
lam = min(lam, lam1);
|
|
return intersect0 || intersect1;
|
|
}
|
|
|
|
bool isIntersectingTrig ( const array<Point<3>, 2> & seg, const array<Point<3>, 3> & trig, double & lam)
|
|
{
|
|
if(!isIntersectingPlane(seg, trig, lam))
|
|
return false;
|
|
|
|
|
|
//buffer enlargement of triangle
|
|
auto pt0 = trig[0];
|
|
auto pt1 = trig[1];
|
|
auto pt2 = trig[2];
|
|
Point<3> center = { (pt0[0] + pt1[0] + pt2[0]) / 3.0, (pt0[1] + pt1[1] + pt2[1]) / 3.0, (pt0[2] + pt1[2] + pt2[2]) / 3.0 };
|
|
array<Point<3>, 3> larger_trig = {
|
|
center + (pt0 - center) * 1.1,
|
|
center + (pt1 - center) * 1.1,
|
|
center + (pt2 - center) * 1.1, };
|
|
|
|
auto p = seg[0] + lam/0.9*(seg[1]-seg[0]);
|
|
|
|
auto n_trig = Cross(trig[1]-trig[0], trig[2]-trig[0]).Normalize();
|
|
for(auto i : Range(3))
|
|
{
|
|
// check if p0 and p are on same side of segment p1-p2
|
|
auto p0 = larger_trig[i];
|
|
auto p1 = larger_trig[(i+1)%3];
|
|
auto p2 = larger_trig[(i+2)%3];
|
|
// auto n = Cross(p2-p1, n_trig);
|
|
|
|
auto v0 = (p2-p1).Normalize();
|
|
auto v1 = (p0-p1).Normalize();
|
|
auto inside_dir = (v1 - (v1*v0) * v0).Normalize();
|
|
auto v2 = (p-p1).Normalize();
|
|
if(inside_dir * v1 < 0)
|
|
inside_dir = -inside_dir;
|
|
|
|
if( (inside_dir*v2) < 0 )
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
|
|
bool isIntersectingFace( const array<Point<3>, 2> & seg, const ArrayMem<Point<3>, 4> & face, double & lam )
|
|
{
|
|
lam = 1.0;
|
|
double lam0 = 1.0;
|
|
bool intersect0 = isIntersectingTrig( seg, {face[0], face[1], face[2]}, lam0 );
|
|
if(intersect0)
|
|
lam = min(lam, lam0);
|
|
if(face.Size()==3)
|
|
return intersect0;
|
|
|
|
double lam1 = 1.0;
|
|
bool intersect1 = isIntersectingTrig( seg, {face[2], face[3], face[0]}, lam1 );
|
|
if(intersect1)
|
|
lam = min(lam, lam1);
|
|
return intersect0 || intersect1;
|
|
}
|
|
|
|
array<Point<3>, 2> BoundaryLayerTool :: GetMappedSeg( PointIndex pi )
|
|
{
|
|
return { mesh[pi], mesh[pi] + height*limits[pi]*growthvectors[pi] * 1.5 };
|
|
}
|
|
|
|
ArrayMem<Point<3>, 4> BoundaryLayerTool :: GetFace( SurfaceElementIndex sei )
|
|
{
|
|
const auto & sel = mesh[sei];
|
|
ArrayMem<Point<3>, 4> points(sel.GetNP());
|
|
for(auto i : Range(sel.GetNP()))
|
|
points[i] = mesh[sel[i]];
|
|
return points;
|
|
}
|
|
|
|
ArrayMem<Point<3>, 4> BoundaryLayerTool :: GetMappedFace( SurfaceElementIndex sei )
|
|
{
|
|
const auto & sel = mesh[sei];
|
|
ArrayMem<Point<3>, 4> points(sel.GetNP());
|
|
for(auto i : Range(sel.GetNP()))
|
|
points[i] = mesh[sel[i]] + height * limits[sel[i]]*growthvectors[sel[i]];
|
|
return points;
|
|
}
|
|
|
|
ArrayMem<Point<3>, 4> BoundaryLayerTool :: GetMappedFace( SurfaceElementIndex sei, int face )
|
|
{
|
|
if(face == -1) return GetFace(sei);
|
|
if(face == -2) return GetMappedFace(sei);
|
|
const auto & sel = mesh[sei];
|
|
auto np = sel.GetNP();
|
|
auto pi0 = sel[face % np];
|
|
auto pi1 = sel[(face+1) % np];
|
|
ArrayMem<Point<3>, 4> points(4);
|
|
points[0] = points[3] = mesh[pi0];
|
|
points[1] = points[2] = mesh[pi1];
|
|
points[3] += height * limits[pi0]*growthvectors[pi0];
|
|
points[2] += height * limits[pi1]*growthvectors[pi1];
|
|
return points;
|
|
}
|
|
|
|
Vec<3> BoundaryLayerTool :: getEdgeTangent(PointIndex pi, int edgenr)
|
|
{
|
|
Vec<3> tangent = 0.0;
|
|
ArrayMem<PointIndex,2> pts;
|
|
for(auto segi : topo.GetVertexSegments(pi))
|
|
{
|
|
auto & seg = mesh[segi];
|
|
if(seg.edgenr != edgenr+1)
|
|
continue;
|
|
PointIndex other = seg[0]+seg[1]-pi;
|
|
if(!pts.Contains(other))
|
|
pts.Append(other);
|
|
}
|
|
if(pts.Size() != 2)
|
|
throw Exception("Something went wrong in getEdgeTangent!");
|
|
tangent = mesh[pts[1]] - mesh[pts[0]];
|
|
return tangent.Normalize();
|
|
}
|
|
|
|
void BoundaryLayerTool :: LimitGrowthVectorLengths()
|
|
{
|
|
static Timer tall("BoundaryLayerTool::LimitGrowthVectorLengths"); RegionTimer rtall(tall);
|
|
|
|
limits.SetSize(np);
|
|
limits = 1.0;
|
|
|
|
// Function to calculate the dot product of two 3D vectors
|
|
// Is there netgen native function for this?
|
|
const auto Dot = [](Vec<3> a, Vec<3> b) {
|
|
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
|
|
};
|
|
|
|
auto parallel_limiter = [&](PointIndex pi1, PointIndex pi2, SurfaceElementIndex si) {
|
|
MeshPoint& a_base = mesh[pi1];
|
|
MeshPoint& b_base = mesh[pi2];
|
|
MeshPoint a_end = mesh[pi1] + height * limits[pi1] * growthvectors[pi1];
|
|
MeshPoint b_end = mesh[pi2] + height * limits[pi2] * growthvectors[pi2];
|
|
|
|
double ab_base = (b_base - a_base).Length();
|
|
Vec<3> a_vec = (a_end - a_base);
|
|
Vec<3> b_vec = (b_end - b_base);
|
|
|
|
// Calculate parallel projections
|
|
Vec<3> ab_base_norm = (b_base - a_base).Normalize();
|
|
double a_vec_x = Dot(a_vec, ab_base_norm);
|
|
double b_vec_x = Dot(b_vec, -ab_base_norm);
|
|
double ratio_parallel = (a_vec_x + b_vec_x) / ab_base;
|
|
|
|
double PARALLEL_RATIO_LIMIT = 0.85;
|
|
if (ratio_parallel > PARALLEL_RATIO_LIMIT) {
|
|
// Adjust limits, vectors, and projections if parallel ratio exceeds the limit
|
|
double corrector = PARALLEL_RATIO_LIMIT / ratio_parallel;
|
|
limits[pi1] *= corrector;
|
|
limits[pi2] *= corrector;
|
|
}
|
|
};
|
|
|
|
auto perpendicular_limiter = [&](PointIndex pi1, PointIndex pi2, SurfaceElementIndex si) {
|
|
// this part is same as in parallel limiter, but note that limits contents are already changed
|
|
MeshPoint& a_base = mesh[pi1];
|
|
MeshPoint& b_base = mesh[pi2];
|
|
MeshPoint a_end = mesh[pi1] + height * limits[pi1] * growthvectors[pi1];
|
|
MeshPoint b_end = mesh[pi2] + height * limits[pi2] * growthvectors[pi2];
|
|
|
|
double ab_base = (b_base - a_base).Length();
|
|
Vec<3> a_vec = (a_end - a_base);
|
|
Vec<3> b_vec = (b_end - b_base);
|
|
|
|
// Calculate parallel projections
|
|
Vec<3> ab_base_norm = (b_base - a_base).Normalize();
|
|
double a_vec_x = Dot(a_vec, ab_base_norm);
|
|
double b_vec_x = Dot(b_vec, -ab_base_norm);
|
|
// double ratio_parallel = (a_vec_x + b_vec_x) / ab_base;
|
|
|
|
// Calculate surface normal at point si
|
|
Vec<3> surface_normal = getNormal(mesh[si]);
|
|
|
|
double a_vec_y = abs(Dot(a_vec, surface_normal));
|
|
double b_vec_y = abs(Dot(b_vec, surface_normal));
|
|
double diff_perpendicular = abs(a_vec_y - b_vec_y);
|
|
double tan_alpha = diff_perpendicular / (ab_base - a_vec_x - b_vec_x);
|
|
|
|
double TAN_ALPHA_LIMIT = 0.36397; // Approximately 20 degrees in radians
|
|
if (tan_alpha > TAN_ALPHA_LIMIT) {
|
|
if (a_vec_y > b_vec_y) {
|
|
double correction = (TAN_ALPHA_LIMIT / tan_alpha * diff_perpendicular + b_vec_y) / a_vec_y;
|
|
limits[pi1] *= correction;
|
|
}
|
|
else {
|
|
double correction = (TAN_ALPHA_LIMIT / tan_alpha * diff_perpendicular + a_vec_y) / b_vec_y;
|
|
limits[pi2] *= correction;
|
|
}
|
|
}
|
|
};
|
|
|
|
auto neighbour_limiter = [&](PointIndex pi1, PointIndex pi2, SurfaceElementIndex si) {
|
|
parallel_limiter(pi1, pi2, si);
|
|
perpendicular_limiter(pi1, pi2, si);
|
|
};
|
|
|
|
auto modifiedsmooth = [&](size_t nsteps) {
|
|
for ([[maybe_unused]] auto i : Range(nsteps))
|
|
for (SurfaceElementIndex sei : mesh.SurfaceElements().Range())
|
|
{
|
|
// assuming triangle
|
|
neighbour_limiter(mesh[sei].PNum(1), mesh[sei].PNum(2), sei);
|
|
neighbour_limiter(mesh[sei].PNum(2), mesh[sei].PNum(3), sei);
|
|
neighbour_limiter(mesh[sei].PNum(3), mesh[sei].PNum(1), sei);
|
|
}
|
|
};
|
|
|
|
/*
|
|
auto smooth = [&] (size_t nsteps) {
|
|
for([[maybe_unused]] auto i : Range(nsteps))
|
|
for(const auto & sel : mesh.SurfaceElements())
|
|
{
|
|
double min_limit = 999;
|
|
for(auto pi : sel.PNums())
|
|
min_limit = min(min_limit, limits[pi]);
|
|
for(auto pi : sel.PNums())
|
|
limits[pi] = min(limits[pi], 1.4*min_limit);
|
|
}
|
|
};
|
|
*/
|
|
|
|
// check for self-intersection within new elements (prisms/hexes)
|
|
auto self_intersection = [&] () {
|
|
for(SurfaceElementIndex sei : mesh.SurfaceElements().Range())
|
|
{
|
|
auto facei = mesh[sei].GetIndex();
|
|
if(facei < nfd_old && !params.surfid.Contains(facei))
|
|
continue;
|
|
|
|
auto sel = mesh[sei];
|
|
auto np = sel.GetNP();
|
|
// check if a new edge intesects the plane of any opposing face
|
|
double lam;
|
|
for(auto i : Range(np))
|
|
for(auto fi : Range(np-2))
|
|
if(isIntersectingPlane(GetMappedSeg(sel[i]), GetMappedFace(sei, i+fi+1), lam))
|
|
if(lam < 1.0)
|
|
limits[sel[i]] *= lam;
|
|
}
|
|
};
|
|
|
|
// first step: intersect with other surface elements that are boundary of domain the layer is grown into
|
|
// second (and subsequent) steps: intersect with other boundary layers, allow restriction by 20% in each step
|
|
auto changed_domains = domains;
|
|
if(!params.outside)
|
|
changed_domains.Invert();
|
|
|
|
bool limit_reached = true;
|
|
double lam_lower_limit = 1.0;
|
|
int step = 0;
|
|
|
|
while(limit_reached || step<3)
|
|
{
|
|
Array<double, PointIndex> new_limits;
|
|
new_limits.SetSize(np);
|
|
new_limits = 1.0;
|
|
|
|
if(step>1)
|
|
lam_lower_limit *= 0.8;
|
|
limit_reached = false;
|
|
|
|
// build search tree with all surface elements (bounding box of a surface element also covers the generated boundary layer)
|
|
Box<3> bbox(Box<3>::EMPTY_BOX);
|
|
for(auto pi : mesh.Points().Range())
|
|
{
|
|
bbox.Add(mesh[pi]);
|
|
bbox.Add(mesh[pi]+limits[pi]*height*growthvectors[pi]);
|
|
}
|
|
BoxTree<3> tree(bbox);
|
|
|
|
for(auto sei : mesh.SurfaceElements().Range())
|
|
{
|
|
const auto & sel = mesh[sei];
|
|
Box<3> box(Box<3>::EMPTY_BOX);
|
|
const auto& fd = mesh.GetFaceDescriptor(sel.GetIndex());
|
|
if(!changed_domains.Test(fd.DomainIn()) &&
|
|
!changed_domains.Test(fd.DomainOut()))
|
|
continue;
|
|
for(auto pi : sel.PNums())
|
|
box.Add(mesh[pi]);
|
|
// also add moved points to bounding box
|
|
if(params.surfid.Contains(sel.GetIndex()))
|
|
for(auto pi : sel.PNums())
|
|
box.Add(mesh[pi]+limits[pi]*height*growthvectors[pi]);
|
|
tree.Insert(box, sei);
|
|
}
|
|
|
|
for(auto pi : mesh.Points().Range())
|
|
{
|
|
if(mesh[pi].Type() == INNERPOINT)
|
|
continue;
|
|
if(growthvectors[pi].Length2() == 0.0)
|
|
continue;
|
|
Box<3> box(Box<3>::EMPTY_BOX);
|
|
auto seg = GetMappedSeg(pi);
|
|
box.Add(seg[0]);
|
|
box.Add(seg[1]);
|
|
double lam = 1.0;
|
|
tree.GetFirstIntersecting(box.PMin(), box.PMax(), [&](SurfaceElementIndex sei)
|
|
{
|
|
const auto & sel = mesh[sei];
|
|
if(sel.PNums().Contains(pi))
|
|
return false;
|
|
auto face = GetMappedFace(sei, -2);
|
|
double lam_ = 999;
|
|
bool is_bl_sel = params.surfid.Contains(sel.GetIndex());
|
|
|
|
if (step == 0)
|
|
{
|
|
face = GetMappedFace(sei, -1);
|
|
if (isIntersectingFace(seg, face, lam_))
|
|
{
|
|
if (is_bl_sel)
|
|
lam_ *= params.limit_safety;
|
|
lam = min(lam, lam_);
|
|
}
|
|
}
|
|
|
|
if(step==1)
|
|
{
|
|
if(isIntersectingFace(seg, face, lam_))
|
|
{
|
|
if(is_bl_sel) // allow only half the distance if the opposing surface element has a boundary layer too
|
|
lam_ *= params.limit_safety;
|
|
lam = min(lam, lam_);
|
|
}
|
|
}
|
|
// if the opposing surface element has a boundary layer, we need to additionally intersect with the new faces
|
|
if(step>1 && is_bl_sel)
|
|
{
|
|
for(auto facei : Range(-1, sel.GetNP()))
|
|
{
|
|
auto face = GetMappedFace(sei, facei);
|
|
if(isIntersectingFace(seg, face, lam_)) // && lam_ > other_limit)
|
|
{
|
|
lam = min(lam, lam_);
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
});
|
|
if(lam<1)
|
|
{
|
|
if(lam<lam_lower_limit && step>1)
|
|
{
|
|
limit_reached = true;
|
|
lam = lam_lower_limit;
|
|
}
|
|
}
|
|
|
|
new_limits[pi] = min(limits[pi], lam* limits[pi]);
|
|
}
|
|
step++;
|
|
limits = new_limits;
|
|
if (step > 0)
|
|
modifiedsmooth(1);
|
|
}
|
|
|
|
self_intersection();
|
|
modifiedsmooth(1);
|
|
|
|
for(auto pi : Range(growthvectors))
|
|
growthvectors[pi] *= limits[pi];
|
|
|
|
}
|
|
|
|
|
|
// depending on the geometry type, the mesh contains segments multiple times (once for each face)
|
|
bool HaveSingleSegments( const Mesh & mesh )
|
|
{
|
|
auto& topo = mesh.GetTopology();
|
|
NgArray<SurfaceElementIndex> surf_els;
|
|
|
|
for(auto segi : Range(mesh.LineSegments()))
|
|
{
|
|
mesh.GetTopology().GetSegmentSurfaceElements(segi+1, surf_els);
|
|
if(surf_els.Size()<2)
|
|
continue;
|
|
|
|
auto seg = mesh[segi];
|
|
auto pi0 = min(seg[0], seg[1]);
|
|
auto pi1 = max(seg[0], seg[1]);
|
|
auto p0_segs = topo.GetVertexSegments(seg[0]);
|
|
|
|
for(auto segi_other : p0_segs)
|
|
{
|
|
if(segi_other == segi)
|
|
continue;
|
|
|
|
auto seg_other = mesh[segi_other];
|
|
auto pi0_other = min(seg_other[0], seg_other[1]);
|
|
auto pi1_other = max(seg_other[0], seg_other[1]);
|
|
if( pi0_other == pi0 && pi1_other == pi1 )
|
|
return false;
|
|
}
|
|
|
|
// found segment with multiple adjacent surface elements but no other segments with same points -> have single segments
|
|
return true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// duplicates segments (and sets seg.si accordingly) to have a unified data structure for all geometry types
|
|
Array<Segment> BuildSegments( Mesh & mesh )
|
|
{
|
|
Array<Segment> segments;
|
|
// auto& topo = mesh.GetTopology();
|
|
|
|
NgArray<SurfaceElementIndex> surf_els;
|
|
|
|
for(auto segi : Range(mesh.LineSegments()))
|
|
{
|
|
auto seg = mesh[segi];
|
|
mesh.GetTopology().GetSegmentSurfaceElements(segi+1, surf_els);
|
|
for(auto seli : surf_els)
|
|
{
|
|
const auto & sel = mesh[seli];
|
|
seg.si = sel.GetIndex();
|
|
|
|
auto np = sel.GetNP();
|
|
for(auto i : Range(np))
|
|
{
|
|
if(sel[i] == seg[0])
|
|
{
|
|
if(sel[(i+1)%np] != seg[1])
|
|
swap(seg[0], seg[1]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
segments.Append(seg);
|
|
}
|
|
}
|
|
return segments;
|
|
}
|
|
|
|
void MergeAndAddSegments( Mesh & mesh, FlatArray<Segment> new_segments)
|
|
{
|
|
INDEX_2_HASHTABLE<bool> already_added( mesh.LineSegments().Size() + 2*new_segments.Size() );
|
|
|
|
for(auto & seg : mesh.LineSegments())
|
|
{
|
|
INDEX_2 i2 (seg[0], seg[1]);
|
|
i2.Sort();
|
|
if(!already_added.Used(i2))
|
|
already_added.Set(i2, true);
|
|
}
|
|
|
|
for(auto & seg : new_segments)
|
|
{
|
|
INDEX_2 i2 (seg[0], seg[1]);
|
|
i2.Sort();
|
|
|
|
if(!already_added.Used(i2))
|
|
{
|
|
mesh.AddSegment(seg);
|
|
already_added.Set(i2, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
void BoundaryLayerTool :: InterpolateSurfaceGrowthVectors()
|
|
{
|
|
static Timer tall("InterpolateSurfaceGrowthVectors"); RegionTimer rtall(tall);
|
|
static Timer tsmooth("InterpolateSurfaceGrowthVectors-Smoothing");
|
|
auto np = mesh.GetNP();
|
|
BitArray is_point_on_bl_surface(np+1);
|
|
is_point_on_bl_surface.Clear();
|
|
BitArray is_point_on_other_surface(np+1);
|
|
is_point_on_other_surface.Clear();
|
|
Array<Vec<3>, PointIndex> normals(np);
|
|
for(auto pi : Range(growthvectors))
|
|
normals[pi] = growthvectors[pi];
|
|
|
|
ParallelForRange( mesh.SurfaceElements().Range(), [&] ( auto myrange )
|
|
{
|
|
for(SurfaceElementIndex sei : myrange)
|
|
{
|
|
auto facei = mesh[sei].GetIndex();
|
|
if(facei < nfd_old && !params.surfid.Contains(facei))
|
|
{
|
|
for(auto pi : mesh[sei].PNums())
|
|
if(mesh[pi].Type() == SURFACEPOINT)
|
|
is_point_on_other_surface.SetBitAtomic(pi);
|
|
}
|
|
else
|
|
{
|
|
for(auto pi : mesh[sei].PNums())
|
|
if(mesh[pi].Type() == SURFACEPOINT)
|
|
is_point_on_bl_surface.SetBitAtomic(pi);
|
|
}
|
|
}
|
|
});
|
|
|
|
Array<PointIndex> points;
|
|
for(PointIndex pi : mesh.Points().Range())
|
|
{
|
|
if(is_point_on_bl_surface[pi])
|
|
{
|
|
points.Append(pi);
|
|
growthvectors[pi] = 0.0;
|
|
}
|
|
if(is_point_on_other_surface[pi])
|
|
{
|
|
points.Append(pi);
|
|
}
|
|
}
|
|
|
|
// smooth tangential part of growth vectors from edges to surface elements
|
|
RegionTimer rtsmooth(tsmooth);
|
|
for([[maybe_unused]] auto i : Range(10))
|
|
{
|
|
for(auto pi : points)
|
|
{
|
|
auto sels = p2sel[pi];
|
|
Vec<3> new_gw = growthvectors[pi];
|
|
// int cnt = 1;
|
|
std::set<PointIndex> suround;
|
|
suround.insert(pi);
|
|
auto normal = normals[pi];
|
|
for(auto sei: sels)
|
|
{
|
|
const auto & sel = mesh[sei];
|
|
for(auto pi1 : sel.PNums())
|
|
if(suround.count(pi1)==0)
|
|
{
|
|
suround.insert(pi1);
|
|
auto gw_other = growthvectors[pi1];
|
|
auto normal_other = getNormal(mesh[sei]);
|
|
auto tangent_part = gw_other - (gw_other*normal_other)*normal_other;
|
|
if(is_point_on_bl_surface[pi])
|
|
new_gw += tangent_part;
|
|
else
|
|
new_gw += gw_other;
|
|
}
|
|
}
|
|
|
|
growthvectors[pi] = 1.0/suround.size() * new_gw;
|
|
}
|
|
}
|
|
|
|
for(auto pi : points)
|
|
growthvectors[pi] += normals[pi];
|
|
}
|
|
|
|
|
|
BoundaryLayerTool::BoundaryLayerTool(Mesh & mesh_, const BoundaryLayerParameters & params_)
|
|
: mesh(mesh_), topo(mesh_.GetTopology()), params(params_)
|
|
{
|
|
static Timer timer("BoundaryLayerTool::ctor");
|
|
RegionTimer regt(timer);
|
|
|
|
//for(auto & seg : mesh.LineSegments())
|
|
//seg.edgenr = seg.epgeominfo[1].edgenr;
|
|
|
|
height = 0.0;
|
|
for (auto h : params.heights)
|
|
height += h;
|
|
|
|
max_edge_nr = -1;
|
|
for(const auto& seg : mesh.LineSegments())
|
|
if(seg.edgenr > max_edge_nr)
|
|
max_edge_nr = seg.edgenr;
|
|
|
|
int ndom = mesh.GetNDomains();
|
|
ndom_old = ndom;
|
|
|
|
new_mat_nrs.SetSize(mesh.FaceDescriptors().Size() + 1);
|
|
new_mat_nrs = -1;
|
|
for(auto [bcname, matname] : params.new_mat)
|
|
{
|
|
mesh.SetMaterial(++ndom, matname);
|
|
regex pattern(bcname);
|
|
for(auto i : Range(1, mesh.GetNFD()+1))
|
|
{
|
|
auto& fd = mesh.GetFaceDescriptor(i);
|
|
if(regex_match(fd.GetBCName(), pattern))
|
|
new_mat_nrs[i] = ndom;
|
|
}
|
|
}
|
|
|
|
domains = params.domains;
|
|
if(!params.outside)
|
|
domains.Invert();
|
|
|
|
topo.SetBuildVertex2Element(true);
|
|
mesh.UpdateTopology();
|
|
|
|
have_single_segments = HaveSingleSegments(mesh);
|
|
if(have_single_segments)
|
|
segments = BuildSegments(mesh);
|
|
else
|
|
segments = mesh.LineSegments();
|
|
|
|
np = mesh.GetNP();
|
|
ne = mesh.GetNE();
|
|
nse = mesh.GetNSE();
|
|
nseg = segments.Size();
|
|
|
|
p2sel = mesh.CreatePoint2SurfaceElementTable();
|
|
|
|
nfd_old = mesh.GetNFD();
|
|
moved_surfaces.SetSize(nfd_old+1);
|
|
moved_surfaces.Clear();
|
|
si_map.SetSize(nfd_old+1);
|
|
for(auto i : Range(nfd_old+1))
|
|
si_map[i] = i;
|
|
}
|
|
|
|
void BoundaryLayerTool :: CreateNewFaceDescriptors()
|
|
{
|
|
surfacefacs.SetSize(nfd_old+1);
|
|
surfacefacs = 0.0;
|
|
// create new FaceDescriptors
|
|
for(auto i : Range(1, nfd_old+1))
|
|
{
|
|
const auto& fd = mesh.GetFaceDescriptor(i);
|
|
string name = fd.GetBCName();
|
|
if(params.surfid.Contains(i))
|
|
{
|
|
if(auto isIn = domains.Test(fd.DomainIn()); isIn != domains.Test(fd.DomainOut()))
|
|
{
|
|
int new_si = mesh.GetNFD()+1;
|
|
surfacefacs[i] = isIn ? 1. : -1.;
|
|
// -1 surf nr is so that curving does not do anything
|
|
FaceDescriptor new_fd(-1, isIn ? new_mat_nrs[i] : fd.DomainIn(),
|
|
isIn ? fd.DomainOut() : new_mat_nrs[i], -1);
|
|
new_fd.SetBCProperty(new_si);
|
|
new_fd.SetSurfColour(fd.SurfColour());
|
|
mesh.AddFaceDescriptor(new_fd);
|
|
si_map[i] = new_si;
|
|
moved_surfaces.SetBit(i);
|
|
mesh.SetBCName(new_si-1, "mapped_" + name);
|
|
}
|
|
// curving of surfaces with boundary layers will often
|
|
// result in pushed through elements, since we do not (yet)
|
|
// curvature through layers.
|
|
// Therefore we disable curving for these surfaces.
|
|
if(!params.keep_surfaceindex)
|
|
mesh.GetFaceDescriptor(i).SetSurfNr(-1);
|
|
}
|
|
}
|
|
|
|
for(auto si : params.surfid)
|
|
if(surfacefacs[si] == 0.0)
|
|
throw Exception("Surface " + to_string(si) + " is not a boundary of the domain to be grown into!");
|
|
}
|
|
|
|
void BoundaryLayerTool ::CreateFaceDescriptorsSides()
|
|
{
|
|
BitArray face_done(mesh.GetNFD()+1);
|
|
face_done.Clear();
|
|
for(const auto& sel : mesh.SurfaceElements())
|
|
{
|
|
auto facei = sel.GetIndex();
|
|
if(face_done.Test(facei))
|
|
continue;
|
|
bool point_moved = false;
|
|
// bool point_fixed = false;
|
|
for(auto pi : sel.PNums())
|
|
{
|
|
if(growthvectors[pi].Length() > 0)
|
|
point_moved = true;
|
|
/*
|
|
else
|
|
point_fixed = true;
|
|
*/
|
|
}
|
|
if(point_moved && !moved_surfaces.Test(facei))
|
|
{
|
|
int new_si = mesh.GetNFD()+1;
|
|
const auto& fd = mesh.GetFaceDescriptor(facei);
|
|
// auto isIn = domains.Test(fd.DomainIn());
|
|
// auto isOut = domains.Test(fd.DomainOut());
|
|
int si = params.sides_keep_surfaceindex ? facei : -1;
|
|
// domin and domout can only be set later
|
|
FaceDescriptor new_fd(si, -1,
|
|
-1, si);
|
|
new_fd.SetBCProperty(new_si);
|
|
mesh.AddFaceDescriptor(new_fd);
|
|
si_map[facei] = new_si;
|
|
mesh.SetBCName(new_si-1, fd.GetBCName());
|
|
face_done.SetBit(facei);
|
|
}
|
|
}
|
|
}
|
|
|
|
void BoundaryLayerTool :: CalculateGrowthVectors()
|
|
{
|
|
growthvectors.SetSize(np);
|
|
growthvectors = 0.;
|
|
|
|
for(auto pi : mesh.Points().Range())
|
|
{
|
|
const auto & p = mesh[pi];
|
|
if(p.Type() == INNERPOINT)
|
|
continue;
|
|
|
|
std::map<int, Vec<3>> normals;
|
|
|
|
// calculate one normal vector per face (average with angles as weights for multiple surface elements within a face)
|
|
for(auto sei : p2sel[pi])
|
|
{
|
|
const auto & sel = mesh[sei];
|
|
auto facei = sel.GetIndex();
|
|
if(!params.surfid.Contains(facei))
|
|
continue;
|
|
|
|
auto n = surfacefacs[sel.GetIndex()] * getNormal(sel);
|
|
|
|
int itrig = sel.PNums().Pos(pi);
|
|
itrig += sel.GetNP();
|
|
auto v0 = (mesh[sel.PNumMod(itrig+1)] - mesh[pi]).Normalize();
|
|
auto v1 = (mesh[sel.PNumMod(itrig-1)] - mesh[pi]).Normalize();
|
|
if(normals.count(facei)==0)
|
|
normals[facei] = {0.,0.,0.};
|
|
normals[facei] += acos(v0*v1)*n;
|
|
}
|
|
|
|
for(auto & [facei, n] : normals)
|
|
n *= 1.0/n.Length();
|
|
|
|
// combine normal vectors for each face to keep uniform distances
|
|
auto & np = growthvectors[pi];
|
|
ArrayMem<Vec<3>, 3> ns;
|
|
for (auto &[facei, n] : normals) {
|
|
ns.Append(n);
|
|
}
|
|
|
|
ArrayMem<Vec<3>, 3> removed;
|
|
// reduce to full rank of max 3
|
|
while(true)
|
|
{
|
|
if(ns.Size() <= 1)
|
|
break;
|
|
if(ns.Size() == 2 && ns[0] * ns[1] < 1 - 1e-6)
|
|
break;
|
|
if (ns.Size() == 3)
|
|
{
|
|
DenseMatrix mat(3,3);
|
|
for(auto i : Range(3))
|
|
for(auto j : Range(3))
|
|
mat(i,j) = ns[i][j];
|
|
if(fabs(mat.Det()) > 1e-6)
|
|
break;
|
|
}
|
|
int maxpos1;
|
|
int maxpos2;
|
|
double val = 0;
|
|
for (auto i : Range(ns))
|
|
{
|
|
for (auto j : Range(i + 1, ns.Size()))
|
|
{
|
|
double ip = ns[i] * ns[j];
|
|
if(ip > val)
|
|
{
|
|
val = ip;
|
|
maxpos1 = i;
|
|
maxpos2 = j;
|
|
}
|
|
}
|
|
}
|
|
removed.Append(ns[maxpos1]);
|
|
removed.Append(ns[maxpos2]);
|
|
ns[maxpos1] = 0.5 * (ns[maxpos1] + ns[maxpos2]);
|
|
ns.DeleteElement(maxpos2);
|
|
}
|
|
|
|
if(ns.Size() == 0)
|
|
continue;
|
|
if(ns.Size() == 1)
|
|
np = ns[0];
|
|
else if(ns.Size() == 2)
|
|
{
|
|
np = ns[0];
|
|
auto n = ns[1];
|
|
auto npn = np * n;
|
|
auto npnp = np * np;
|
|
auto nn = n * n;
|
|
if(nn-npn*npn/npnp == 0) { np = n; continue; }
|
|
np += (nn - npn)/(nn - npn*npn/npnp) * (n - npn/npnp * np);
|
|
}
|
|
else // ns.Size() == 3
|
|
{
|
|
DenseMatrix mat(3,3);
|
|
for(auto i : Range(3))
|
|
for(auto j : Range(3))
|
|
mat(i, j) = ns[i] * ns[j];
|
|
Vector rhs(3);
|
|
rhs = 1.;
|
|
Vector res(3);
|
|
DenseMatrix inv(3, ns.Size());
|
|
CalcInverse(mat, inv);
|
|
inv.Mult(rhs, res);
|
|
for(auto i : Range(ns))
|
|
np += res[i] * ns[i];
|
|
}
|
|
for(auto& n : removed)
|
|
if(n * np < 0)
|
|
cout << "WARNING: Growth vector at point " << pi << " in opposite direction to face normal!" << endl << "Growthvector = " << np << ", face normal = " << n << endl;
|
|
}
|
|
}
|
|
|
|
Array<Array<pair<SegmentIndex, int>>, SegmentIndex> BoundaryLayerTool :: BuildSegMap()
|
|
{
|
|
// Bit array to keep track of segments already processed
|
|
BitArray segs_done(nseg+1);
|
|
segs_done.Clear();
|
|
|
|
// map for all segments with same points
|
|
// points to pair of SegmentIndex, int
|
|
// int is type of other segment, either:
|
|
// 0 == adjacent surface grows layer
|
|
// 1 == adjacent surface doesn't grow layer, but layer ends on it
|
|
// 2 == adjacent surface is interior surface that ends on layer
|
|
// 3 == adjacent surface is exterior surface that ends on layer (not allowed yet)
|
|
Array<Array<pair<SegmentIndex, int>>, SegmentIndex> segmap(segments.Size());
|
|
|
|
// moved segments
|
|
is_edge_moved.SetSize(max_edge_nr+1);
|
|
is_edge_moved = false;
|
|
|
|
// boundaries to project endings to
|
|
is_boundary_projected.SetSize(nfd_old+1);
|
|
is_boundary_projected.Clear();
|
|
is_boundary_moved.SetSize(nfd_old+1);
|
|
is_boundary_moved.Clear();
|
|
|
|
for(auto si : Range(segments))
|
|
{
|
|
if(segs_done[si]) continue;
|
|
const auto& segi = segments[si];
|
|
if(!moved_surfaces.Test(segi.si)) continue;
|
|
segs_done.SetBit(si);
|
|
segmap[si].Append(make_pair(si, 0));
|
|
moved_segs.Append(si);
|
|
is_edge_moved.SetBit(segi.edgenr);
|
|
for(auto sj : Range(segments))
|
|
{
|
|
if(segs_done.Test(sj)) continue;
|
|
const auto& segj = segments[sj];
|
|
if((segi[0] == segj[0] && segi[1] == segj[1]) ||
|
|
(segi[0] == segj[1] && segi[1] == segj[0]))
|
|
{
|
|
segs_done.SetBit(sj);
|
|
int type;
|
|
if(moved_surfaces.Test(segj.si))
|
|
type = 0;
|
|
else if(const auto& fd = mesh.GetFaceDescriptor(segj.si); domains.Test(fd.DomainIn()) && domains.Test(fd.DomainOut()))
|
|
{
|
|
type = 2;
|
|
if(fd.DomainIn() == 0 || fd.DomainOut() == 0)
|
|
is_boundary_projected.SetBit(segj.si);
|
|
}
|
|
else if(const auto& fd = mesh.GetFaceDescriptor(segj.si); !domains.Test(fd.DomainIn()) && !domains.Test(fd.DomainOut()))
|
|
{
|
|
type = 3;
|
|
is_boundary_moved.SetBit(segj.si);
|
|
}
|
|
else
|
|
{
|
|
type = 1;
|
|
// in case 1 we project the growthvector onto the surface
|
|
is_boundary_projected.SetBit(segj.si);
|
|
}
|
|
segmap[si].Append(make_pair(sj, type));
|
|
}
|
|
}
|
|
}
|
|
|
|
return segmap;
|
|
}
|
|
|
|
BitArray BoundaryLayerTool :: ProjectGrowthVectorsOnSurface()
|
|
{
|
|
BitArray in_surface_direction(nfd_old+1);
|
|
in_surface_direction.Clear();
|
|
// project growthvector on surface for inner angles
|
|
if(params.grow_edges)
|
|
{
|
|
for(const auto& sel : mesh.SurfaceElements())
|
|
if(is_boundary_projected.Test(sel.GetIndex()))
|
|
{
|
|
auto n = getNormal(sel);
|
|
for(auto i : Range(sel.PNums()))
|
|
{
|
|
auto pi = sel.PNums()[i];
|
|
if(growthvectors[pi].Length2() == 0.)
|
|
continue;
|
|
auto next = sel.PNums()[(i+1)%sel.GetNV()];
|
|
auto prev = sel.PNums()[i == 0 ? sel.GetNV()-1 : i-1];
|
|
auto v1 = (mesh[next] - mesh[pi]).Normalize();
|
|
auto v2 = (mesh[prev] - mesh[pi]).Normalize();
|
|
auto v3 = growthvectors[pi];
|
|
v3.Normalize();
|
|
auto tol = v1.Length() * 1e-12;
|
|
if((v1 * v3 > -tol) && (v2 * v3 > -tol))
|
|
in_surface_direction.SetBit(sel.GetIndex());
|
|
else
|
|
continue;
|
|
|
|
if(!params.project_boundaries.Contains(sel.GetIndex()))
|
|
continue;
|
|
auto& g = growthvectors[pi];
|
|
auto ng = n * g;
|
|
auto gg = g * g;
|
|
auto nn = n * n;
|
|
// if(fabs(ng*ng-nn*gg) < 1e-12 || fabs(ng) < 1e-12) continue;
|
|
auto a = -ng*ng/(ng*ng-nn * gg);
|
|
auto b = ng*gg/(ng*ng-nn*gg);
|
|
g += a*g + b*n;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for(const auto& seg : segments)
|
|
{
|
|
int count = 0;
|
|
for(const auto& seg2 : segments)
|
|
if(((seg[0] == seg2[0] && seg[1] == seg2[1]) || (seg[0] == seg2[1] && seg[1] == seg2[0])) && params.surfid.Contains(seg2.si))
|
|
count++;
|
|
if(count == 1)
|
|
{
|
|
growthvectors[seg[0]] = {0., 0., 0.};
|
|
growthvectors[seg[1]] = {0., 0., 0.};
|
|
}
|
|
}
|
|
}
|
|
|
|
return in_surface_direction;
|
|
}
|
|
|
|
void BoundaryLayerTool :: InterpolateGrowthVectors()
|
|
{
|
|
// interpolate tangential component of growth vector along edge
|
|
for(auto edgenr : Range(max_edge_nr))
|
|
{
|
|
// if(!is_edge_moved[edgenr+1]) continue;
|
|
|
|
// build sorted list of edge
|
|
Array<PointIndex> points;
|
|
// find first vertex on edge
|
|
double edge_len = 0.;
|
|
auto is_end_point = [&] (PointIndex pi)
|
|
{
|
|
// if(mesh[pi].Type() == FIXEDPOINT)
|
|
// return true;
|
|
// return false;
|
|
auto segs = topo.GetVertexSegments(pi);
|
|
if(segs.Size() == 1)
|
|
return true;
|
|
auto first_edgenr = mesh[segs[0]].edgenr;
|
|
for(auto segi : segs)
|
|
if(mesh[segi].edgenr != first_edgenr)
|
|
return true;
|
|
return false;
|
|
};
|
|
|
|
bool any_grows = false;
|
|
|
|
for(const auto& seg : segments)
|
|
{
|
|
if(seg.edgenr-1 == edgenr)
|
|
{
|
|
if(growthvectors[seg[0]].Length2() != 0 ||
|
|
growthvectors[seg[1]].Length2() != 0)
|
|
any_grows = true;
|
|
if(points.Size() == 0 && is_end_point(seg[0]))
|
|
{
|
|
points.Append(seg[0]);
|
|
points.Append(seg[1]);
|
|
edge_len += (mesh[seg[1]] - mesh[seg[0]]).Length();
|
|
}
|
|
}
|
|
}
|
|
|
|
if(!any_grows)
|
|
continue;
|
|
|
|
if(!points.Size())
|
|
throw Exception("Could not find startpoint for edge " + ToString(edgenr));
|
|
|
|
while(true)
|
|
{
|
|
bool point_found = false;
|
|
for(auto si : topo.GetVertexSegments(points.Last()))
|
|
{
|
|
const auto& seg = mesh[si];
|
|
if(seg.edgenr-1 != edgenr)
|
|
continue;
|
|
if(seg[0] == points.Last() && points[points.Size()-2] !=seg[1])
|
|
{
|
|
edge_len += (mesh[points.Last()] - mesh[seg[1]]).Length();
|
|
points.Append(seg[1]);
|
|
point_found = true;
|
|
break;
|
|
}
|
|
else if(seg[1] == points.Last() &&
|
|
points[points.Size()-2] != seg[0])
|
|
{
|
|
edge_len += (mesh[points.Last()] - mesh[seg[0]]).Length();
|
|
points.Append(seg[0]);
|
|
point_found = true;
|
|
break;
|
|
}
|
|
}
|
|
if(is_end_point(points.Last()))
|
|
break;
|
|
if(!point_found)
|
|
{
|
|
throw Exception(string("Could not find connected list of line segments for edge ") + edgenr);
|
|
}
|
|
}
|
|
|
|
if(growthvectors[points[0]].Length2() == 0 &&
|
|
growthvectors[points.Last()].Length2() == 0)
|
|
continue;
|
|
|
|
// tangential part of growth vectors
|
|
auto t1 = (mesh[points[1]]-mesh[points[0]]).Normalize();
|
|
auto gt1 = growthvectors[points[0]] * t1 * t1;
|
|
auto t2 = (mesh[points.Last()]-mesh[points[points.Size()-2]]).Normalize();
|
|
auto gt2 = growthvectors[points.Last()] * t2 * t2;
|
|
|
|
if(!is_edge_moved[edgenr+1])
|
|
{
|
|
if(growthvectors[points[0]] * (mesh[points[1]] - mesh[points[0]]) < 0)
|
|
gt1 = 0.;
|
|
if(growthvectors[points.Last()] * (mesh[points[points.Size()-2]] - mesh[points.Last()]) < 0)
|
|
gt2 = 0.;
|
|
}
|
|
|
|
double len = 0.;
|
|
for(size_t i = 1; i < points.Size()-1; i++)
|
|
{
|
|
auto pi = points[i];
|
|
len += (mesh[pi] - mesh[points[i-1]]).Length();
|
|
auto t = getEdgeTangent(pi, edgenr);
|
|
auto lam = len/edge_len;
|
|
auto interpol = (1-lam) * (gt1 * t) * t + lam * (gt2 * t) * t;
|
|
growthvectors[pi] += interpol;
|
|
}
|
|
}
|
|
|
|
InterpolateSurfaceGrowthVectors();
|
|
}
|
|
|
|
void BoundaryLayerTool :: InsertNewElements( FlatArray<Array<pair<SegmentIndex, int>>, SegmentIndex> segmap, const BitArray & in_surface_direction )
|
|
{
|
|
static Timer timer("BoundaryLayerTool::InsertNewElements"); RegionTimer rt(timer);
|
|
Array<Array<PointIndex>, PointIndex> mapto(np);
|
|
// insert new points
|
|
for (PointIndex pi = 1; pi <= np; pi++)
|
|
if (growthvectors[pi].Length2() != 0)
|
|
{
|
|
Point<3> p = mesh[pi];
|
|
for(auto i : Range(params.heights))
|
|
{
|
|
p += params.heights[i] * growthvectors[pi];
|
|
mapto[pi].Append(mesh.AddPoint(p));
|
|
}
|
|
}
|
|
|
|
// add 2d quads on required surfaces
|
|
map<pair<PointIndex, PointIndex>, int> seg2edge;
|
|
if(params.grow_edges)
|
|
{
|
|
for(auto sei : moved_segs)
|
|
{
|
|
// copy here since we will add segments and this would
|
|
// invalidate a reference!
|
|
// auto segi = segments[sei];
|
|
for(auto [sej, type] : segmap[sei])
|
|
{
|
|
auto segj = segments[sej];
|
|
if(type == 0)
|
|
{
|
|
Segment s;
|
|
s[0] = mapto[segj[0]].Last();
|
|
s[1] = mapto[segj[1]].Last();
|
|
s[2] = PointIndex::INVALID;
|
|
auto pair = s[0] < s[1] ? make_pair(s[0], s[1]) : make_pair(s[1], s[0]);
|
|
if(seg2edge.find(pair) == seg2edge.end())
|
|
seg2edge[pair] = ++max_edge_nr;
|
|
s.edgenr = seg2edge[pair];
|
|
s.si = si_map[segj.si];
|
|
new_segments.Append(s);
|
|
}
|
|
// here we need to grow the quad elements
|
|
else if(type == 1)
|
|
{
|
|
PointIndex pp1 = segj[1];
|
|
PointIndex pp2 = segj[0];
|
|
if(in_surface_direction.Test(segj.si))
|
|
{
|
|
Swap(pp1, pp2);
|
|
is_boundary_moved.SetBit(segj.si);
|
|
}
|
|
PointIndex p1 = pp1;
|
|
PointIndex p2 = pp2;
|
|
PointIndex p3, p4;
|
|
Segment s0;
|
|
s0[0] = p1;
|
|
s0[1] = p2;
|
|
s0[2] = PointIndex::INVALID;
|
|
s0.edgenr = segj.edgenr;
|
|
s0.si = segj.si;
|
|
new_segments.Append(s0);
|
|
|
|
for(auto i : Range(params.heights))
|
|
{
|
|
Element2d sel(QUAD);
|
|
p3 = mapto[pp2][i];
|
|
p4 = mapto[pp1][i];
|
|
sel[0] = p1;
|
|
sel[1] = p2;
|
|
sel[2] = p3;
|
|
sel[3] = p4;
|
|
for(auto i : Range(4))
|
|
{
|
|
sel.GeomInfo()[i].u = 0.0;
|
|
sel.GeomInfo()[i].v = 0.0;
|
|
}
|
|
sel.SetIndex(si_map[segj.si]);
|
|
mesh.AddSurfaceElement(sel);
|
|
|
|
// TODO: Too many, would be enough to only add outermost ones
|
|
Segment s1;
|
|
s1[0] = p2;
|
|
s1[1] = p3;
|
|
s1[2] = PointIndex::INVALID;
|
|
auto pair = make_pair(p2, p3);
|
|
if(seg2edge.find(pair) == seg2edge.end())
|
|
seg2edge[pair] = ++max_edge_nr;
|
|
s1.edgenr = seg2edge[pair];
|
|
s1.si = segj.si;
|
|
new_segments.Append(s1);
|
|
Segment s2;
|
|
s2[0] = p4;
|
|
s2[1] = p1;
|
|
s2[2] = PointIndex::INVALID;
|
|
pair = make_pair(p1, p4);
|
|
if(seg2edge.find(pair) == seg2edge.end())
|
|
seg2edge[pair] = ++max_edge_nr;
|
|
s2.edgenr = seg2edge[pair];
|
|
s2.si = segj.si;
|
|
new_segments.Append(s2);
|
|
p1 = p4;
|
|
p2 = p3;
|
|
}
|
|
Segment s3;
|
|
s3[0] = p3;
|
|
s3[1] = p4;
|
|
s3[2] = PointIndex::INVALID;
|
|
auto pair = p3 < p4 ? make_pair(p3, p4) : make_pair(p4, p3);
|
|
if(seg2edge.find(pair) == seg2edge.end())
|
|
seg2edge[pair] = ++max_edge_nr;
|
|
s3.edgenr = seg2edge[pair];
|
|
s3.si = segj.si;
|
|
new_segments.Append(s3);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
BitArray fixed_points(np+1);
|
|
fixed_points.Clear();
|
|
BitArray moveboundarypoint(np+1);
|
|
moveboundarypoint.Clear();
|
|
for(SurfaceElementIndex si = 0; si < nse; si++)
|
|
{
|
|
// copy because surfaceels array will be resized!
|
|
auto sel = mesh[si];
|
|
if(moved_surfaces.Test(sel.GetIndex()))
|
|
{
|
|
Array<PointIndex> points(sel.PNums());
|
|
if(surfacefacs[sel.GetIndex()] > 0) Swap(points[0], points[2]);
|
|
for(auto j : Range(params.heights))
|
|
{
|
|
auto eltype = points.Size() == 3 ? PRISM : HEX;
|
|
Element el(eltype);
|
|
for(auto i : Range(points))
|
|
el[i] = points[i];
|
|
for(auto i : Range(points))
|
|
points[i] = mapto[sel.PNums()[i]][j];
|
|
if(surfacefacs[sel.GetIndex()] > 0) Swap(points[0], points[2]);
|
|
for(auto i : Range(points))
|
|
el[sel.PNums().Size() + i] = points[i];
|
|
auto new_index = new_mat_nrs[sel.GetIndex()];
|
|
if(new_index == -1)
|
|
throw Exception("Boundary " + ToString(sel.GetIndex()) + " with name " + mesh.GetBCName(sel.GetIndex()-1) + " extruded, but no new material specified for it!");
|
|
el.SetIndex(new_mat_nrs[sel.GetIndex()]);
|
|
mesh.AddVolumeElement(el);
|
|
}
|
|
Element2d newel = sel;
|
|
for(auto& p : newel.PNums())
|
|
p = mapto[p].Last();
|
|
newel.SetIndex(si_map[sel.GetIndex()]);
|
|
mesh.AddSurfaceElement(newel);
|
|
}
|
|
else
|
|
{
|
|
bool has_moved = false;
|
|
for(auto p : sel.PNums())
|
|
if(mapto[p].Size())
|
|
has_moved = true;
|
|
if(has_moved)
|
|
for(auto p : sel.PNums())
|
|
{
|
|
if(!mapto[p].Size())
|
|
{
|
|
fixed_points.SetBit(p);
|
|
if(is_boundary_moved.Test(sel.GetIndex()))
|
|
moveboundarypoint.SetBit(p);
|
|
}
|
|
}
|
|
}
|
|
if(is_boundary_moved.Test(sel.GetIndex()))
|
|
{
|
|
for(auto& p : mesh[si].PNums())
|
|
if(mapto[p].Size())
|
|
p = mapto[p].Last();
|
|
}
|
|
}
|
|
|
|
for(SegmentIndex sei = 0; sei < nseg; sei++)
|
|
{
|
|
auto& seg = segments[sei];
|
|
if(is_boundary_moved.Test(seg.si))
|
|
for(auto& p : seg.PNums())
|
|
if(mapto[p].Size())
|
|
p = mapto[p].Last();
|
|
}
|
|
|
|
for(ElementIndex ei = 0; ei < ne; ei++)
|
|
{
|
|
auto el = mesh[ei];
|
|
ArrayMem<PointIndex,4> fixed;
|
|
ArrayMem<PointIndex,4> moved;
|
|
bool moved_bnd = false;
|
|
for(const auto& p : el.PNums())
|
|
{
|
|
if(fixed_points.Test(p))
|
|
fixed.Append(p);
|
|
if(mapto[p].Size())
|
|
moved.Append(p);
|
|
if(moveboundarypoint.Test(p))
|
|
moved_bnd = true;
|
|
}
|
|
|
|
bool do_move, do_insert;
|
|
if(domains.Test(el.GetIndex()))
|
|
{
|
|
do_move = fixed.Size() && moved_bnd;
|
|
do_insert = do_move;
|
|
}
|
|
else
|
|
{
|
|
do_move = !fixed.Size() || moved_bnd;
|
|
do_insert = !do_move;
|
|
}
|
|
|
|
if(do_move)
|
|
{
|
|
for(auto& p : mesh[ei].PNums())
|
|
if(mapto[p].Size())
|
|
p = mapto[p].Last();
|
|
}
|
|
if(do_insert)
|
|
{
|
|
if(el.GetType() == TET)
|
|
{
|
|
if(moved.Size() == 3) // inner corner
|
|
{
|
|
PointIndex p1 = moved[0];
|
|
PointIndex p2 = moved[1];
|
|
PointIndex p3 = moved[2];
|
|
auto v1 = mesh[p1];
|
|
auto n = Cross(mesh[p2]-v1, mesh[p3]-v1);
|
|
auto d = mesh[mapto[p1][0]] - v1;
|
|
if(n*d > 0)
|
|
Swap(p2,p3);
|
|
PointIndex p4 = p1;
|
|
PointIndex p5 = p2;
|
|
PointIndex p6 = p3;
|
|
for(auto i : Range(params.heights))
|
|
{
|
|
Element nel(PRISM);
|
|
nel[0] = p4; nel[1] = p5; nel[2] = p6;
|
|
p4 = mapto[p1][i]; p5 = mapto[p2][i]; p6 = mapto[p3][i];
|
|
nel[3] = p4; nel[4] = p5; nel[5] = p6;
|
|
nel.SetIndex(el.GetIndex());
|
|
mesh.AddVolumeElement(nel);
|
|
}
|
|
}
|
|
if(moved.Size() == 2)
|
|
{
|
|
if(fixed.Size() == 1)
|
|
{
|
|
PointIndex p1 = moved[0];
|
|
PointIndex p2 = moved[1];
|
|
for(auto i : Range(params.heights))
|
|
{
|
|
PointIndex p3 = mapto[moved[1]][i];
|
|
PointIndex p4 = mapto[moved[0]][i];
|
|
Element nel(PYRAMID);
|
|
nel[0] = p1;
|
|
nel[1] = p2;
|
|
nel[2] = p3;
|
|
nel[3] = p4;
|
|
nel[4] = el[0] + el[1] + el[2] + el[3] - fixed[0] - moved[0] - moved[1];
|
|
if(Cross(mesh[p2]-mesh[p1], mesh[p4]-mesh[p1]) * (mesh[nel[4]]-mesh[nel[1]]) > 0)
|
|
Swap(nel[1], nel[3]);
|
|
nel.SetIndex(el.GetIndex());
|
|
mesh.AddVolumeElement(nel);
|
|
p1 = p4;
|
|
p2 = p3;
|
|
}
|
|
}
|
|
}
|
|
if(moved.Size() == 1 && fixed.Size() == 1)
|
|
{
|
|
PointIndex p1 = moved[0];
|
|
for(auto i : Range(params.heights))
|
|
{
|
|
Element nel = el;
|
|
PointIndex p2 = mapto[moved[0]][i];
|
|
for(auto& p : nel.PNums())
|
|
{
|
|
if(p == moved[0])
|
|
p = p1;
|
|
else if(p == fixed[0])
|
|
p = p2;
|
|
}
|
|
p1 = p2;
|
|
mesh.AddVolumeElement(nel);
|
|
}
|
|
}
|
|
}
|
|
else if(el.GetType() == PYRAMID)
|
|
{
|
|
if(moved.Size() == 2)
|
|
{
|
|
if(fixed.Size() != 2)
|
|
throw Exception("This case is not implemented yet! Fixed size = " + ToString(fixed.Size()));
|
|
PointIndex p1 = moved[0];
|
|
PointIndex p2 = moved[1];
|
|
for(auto i : Range(params.heights))
|
|
{
|
|
PointIndex p3 = mapto[moved[1]][i];
|
|
PointIndex p4 = mapto[moved[0]][i];
|
|
Element nel(PYRAMID);
|
|
nel[0] = p1;
|
|
nel[1] = p2;
|
|
nel[2] = p3;
|
|
nel[3] = p4;
|
|
nel[4] = el[0] + el[1] + el[2] + el[3] + el[4] - fixed[0] - fixed[1] - moved[0] - moved[1];
|
|
if(Cross(mesh[p2] - mesh[p1], mesh[p4]-mesh[p1]) * (mesh[nel[4]]-mesh[nel[1]]) > 0)
|
|
Swap(nel[1], nel[3]);
|
|
nel.SetIndex(el.GetIndex());
|
|
mesh.AddVolumeElement(nel);
|
|
p1 = p4;
|
|
p2 = p3;
|
|
}
|
|
}
|
|
else if(moved.Size() == 1)
|
|
throw Exception("This case is not implemented yet!");
|
|
}
|
|
else
|
|
throw Exception("Boundarylayer only implemented for tets and pyramids outside yet!");
|
|
}
|
|
}
|
|
}
|
|
|
|
void BoundaryLayerTool :: SetDomInOut()
|
|
{
|
|
for(auto i : Range(1, nfd_old+1))
|
|
if(moved_surfaces.Test(i))
|
|
{
|
|
if(auto dom = mesh.GetFaceDescriptor(si_map[i]).DomainIn(); dom > ndom_old)
|
|
mesh.GetFaceDescriptor(i).SetDomainOut(dom);
|
|
else
|
|
mesh.GetFaceDescriptor(i).SetDomainIn(mesh.GetFaceDescriptor(si_map[i]).DomainOut());
|
|
}
|
|
}
|
|
|
|
void BoundaryLayerTool :: SetDomInOutSides()
|
|
{
|
|
BitArray done(mesh.GetNFD()+1);
|
|
done.Clear();
|
|
for(auto sei : Range(mesh.SurfaceElements()))
|
|
{
|
|
auto& sel = mesh[sei];
|
|
auto index = sel.GetIndex();
|
|
if(done.Test(index))
|
|
continue;
|
|
done.SetBit(index);
|
|
auto& fd = mesh.GetFaceDescriptor(index);
|
|
if(fd.DomainIn() != -1)
|
|
continue;
|
|
int e1, e2;
|
|
mesh.GetTopology().GetSurface2VolumeElement(sei+1, e1, e2);
|
|
if(e1 == 0)
|
|
fd.SetDomainIn(0);
|
|
else
|
|
fd.SetDomainIn(mesh.VolumeElement(e1).GetIndex());
|
|
if(e2 == 0)
|
|
fd.SetDomainOut(0);
|
|
else
|
|
fd.SetDomainOut(mesh.VolumeElement(e2).GetIndex());
|
|
}
|
|
}
|
|
|
|
void BoundaryLayerTool :: AddSegments()
|
|
{
|
|
if(have_single_segments)
|
|
MergeAndAddSegments(mesh, new_segments);
|
|
else
|
|
{
|
|
for(auto & seg : new_segments)
|
|
mesh.AddSegment(seg);
|
|
}
|
|
}
|
|
|
|
void BoundaryLayerTool :: FixVolumeElements()
|
|
{
|
|
static Timer timer("BoundaryLayerTool::FixVolumeElements"); RegionTimer rt(timer);
|
|
BitArray is_inner_point(mesh.GetNP()+1);
|
|
is_inner_point.Clear();
|
|
|
|
auto changed_domains = domains;
|
|
if(!params.outside)
|
|
changed_domains.Invert();
|
|
|
|
for(ElementIndex ei : Range(ne))
|
|
if(changed_domains.Test(mesh[ei].GetIndex()))
|
|
for(auto pi : mesh[ei].PNums())
|
|
if(mesh[pi].Type() == INNERPOINT)
|
|
is_inner_point.SetBit(pi);
|
|
|
|
Array<PointIndex> points;
|
|
for(auto pi : mesh.Points().Range())
|
|
if(is_inner_point.Test(pi))
|
|
points.Append(pi);
|
|
|
|
auto p2el = mesh.CreatePoint2ElementTable(is_inner_point);
|
|
|
|
// smooth growth vectors to shift additional element layers to the inside and fix flipped tets
|
|
for([[maybe_unused]] auto step : Range(10))
|
|
{
|
|
for(auto pi : points)
|
|
{
|
|
Vec<3> average_gw = 0.0;
|
|
auto & els = p2el[pi];
|
|
size_t cnt = 0;
|
|
for(auto ei : els)
|
|
if(ei<ne)
|
|
for(auto pi1 : mesh[ei].PNums())
|
|
if(pi1<=np)
|
|
{
|
|
average_gw += growthvectors[pi1];
|
|
cnt++;
|
|
}
|
|
growthvectors[pi] = 1.0/cnt * average_gw;
|
|
}
|
|
}
|
|
|
|
for(auto pi : points)
|
|
{
|
|
mesh[pi] += height * growthvectors[pi];
|
|
growthvectors[pi] = 0.0;
|
|
}
|
|
}
|
|
|
|
void BoundaryLayerTool :: Perform()
|
|
{
|
|
CreateNewFaceDescriptors();
|
|
CalculateGrowthVectors();
|
|
CreateFaceDescriptorsSides();
|
|
auto segmap = BuildSegMap();
|
|
|
|
auto in_surface_direction = ProjectGrowthVectorsOnSurface();
|
|
|
|
if(params.limit_growth_vectors)
|
|
LimitGrowthVectorLengths();
|
|
|
|
InterpolateGrowthVectors();
|
|
FixVolumeElements();
|
|
InsertNewElements(segmap, in_surface_direction);
|
|
SetDomInOut();
|
|
AddSegments();
|
|
mesh.GetTopology().ClearEdges();
|
|
mesh.SetNextMajorTimeStamp();
|
|
mesh.UpdateTopology();
|
|
SetDomInOutSides();
|
|
MeshingParameters mp;
|
|
mp.optimize3d ="m";
|
|
mp.optsteps3d = 4;
|
|
OptimizeVolume(mp, mesh);
|
|
}
|
|
|
|
void GenerateBoundaryLayer(Mesh& mesh, const BoundaryLayerParameters& blp)
|
|
{
|
|
static Timer timer("Create Boundarylayers");
|
|
RegionTimer regt(timer);
|
|
|
|
BoundaryLayerTool tool(mesh, blp);
|
|
tool.Perform();
|
|
}
|
|
|
|
} // namespace netgen
|