netgen/libsrc/meshing/python_mesh.cpp
Monty Montgomery 6159d89386 Numerous changes to python bindings for clean stub generation
I'm uncertain about earlier/alternate versions, but the current
version of mainline pybind11_stubgen requires a number of changes in
the python binding cpp files to succeed:

__repr__ implementation added for some basic types

Added default descriptions via py::arg_v variant syntax for those
cases where a __repr__ implementation made no sense (eg, for a default
sonstructor of a complex type)

Moved class declarations to precede first use in arguments/returns

Added trailing default arguments, so that mandatory args did not
follow optional args (without resorting to kwargs trickery).
2022-05-15 01:16:58 -04:00

1603 lines
60 KiB
C++

#ifdef NG_PYTHON
#include <regex>
#include <../general/ngpython.hpp>
#include <core/python_ngcore.hpp>
#include "python_mesh.hpp"
#include <mystdlib.h>
#include "meshing.hpp"
// #include <csg.hpp>
// #include <geometry2d.hpp>
#include <../interface/writeuser.hpp>
#include <../include/nginterface.h>
#include <../general/gzstream.h>
class ClearSolutionClass
{
public:
ClearSolutionClass() { }
~ClearSolutionClass() { Ng_ClearSolutionData(); }
};
#ifdef NG_MPI4PY
#include <mpi4py.h>
struct mpi4py_comm {
mpi4py_comm() = default;
mpi4py_comm(MPI_Comm value) : value(value) {}
operator MPI_Comm () { return value; }
MPI_Comm value;
};
namespace pybind11 { namespace detail {
template <> struct type_caster<mpi4py_comm> {
public:
PYBIND11_TYPE_CASTER(mpi4py_comm, _("mpi4py_comm"));
// Python -> C++
bool load(handle src, bool) {
PyObject *py_src = src.ptr();
// Check that we have been passed an mpi4py communicator
if (PyObject_TypeCheck(py_src, &PyMPIComm_Type)) {
// Convert to regular MPI communicator
value.value = *PyMPIComm_Get(py_src);
} else {
return false;
}
return !PyErr_Occurred();
}
// C++ -> Python
static handle cast(mpi4py_comm src,
return_value_policy /* policy */,
handle /* parent */)
{
// Create an mpi4py handle
return PyMPIComm_New(src.value);
}
};
}} // namespace pybind11::detail
#endif // NG_MPI4PY
using namespace netgen;
extern const char *ngscript[];
namespace netgen
{
extern bool netgen_executable_started;
extern shared_ptr<NetgenGeometry> ng_geometry;
extern void Optimize2d (Mesh & mesh, MeshingParameters & mp);
}
void TranslateException (const NgException & ex)
{
string err = string("Netgen exception: ")+ex.What();
PyErr_SetString(PyExc_RuntimeError, err.c_str());
}
static Transformation<3> global_trafo(Vec<3> (0,0,0));
DLL_HEADER void ExportNetgenMeshing(py::module &m)
{
#ifdef NG_MPI4PY
import_mpi4py();
#endif // NG_MPI4PY
py::register_exception<NgException>(m, "NgException");
m.attr("_netgen_executable_started") = py::cast(netgen::netgen_executable_started);
string script;
const char ** hcp = ngscript;
while (*hcp)
script += *hcp++;
m.attr("_ngscript") = py::cast(script);
m.def("_GetStatus", []()
{
MyStr s; double percent;
GetStatus(s, percent);
return py::make_tuple(s.c_str(), percent);
});
m.def("_PushStatus", [](string s) { PushStatus(MyStr(s)); });
m.def("_SetThreadPercentage", [](double percent) { SetThreadPercent(percent); });
py::enum_<Identifications::ID_TYPE>(m,"IdentificationType")
.value("UNDEFINED", Identifications::UNDEFINED)
.value("PERIODIC", Identifications::PERIODIC)
.value("CLOSESURFACES", Identifications::CLOSESURFACES)
.value("CLOSEEDGES", Identifications::CLOSEEDGES)
;
py::implicitly_convertible<int, Identifications::ID_TYPE>();
py::class_<NgMPI_Comm> (m, "MPI_Comm")
#ifdef NG_MPI4PY
.def(py::init([] (mpi4py_comm comm)
{
return NgMPI_Comm(comm);
}))
.def_property_readonly ("mpi4py", [] (NgMPI_Comm comm) { return mpi4py_comm(comm); })
#endif // NG_MPI4PY
.def_property_readonly ("rank", &NgMPI_Comm::Rank)
.def_property_readonly ("size", &NgMPI_Comm::Size)
.def("Barrier", &NgMPI_Comm::Barrier)
#ifdef PARALLEL
.def("WTime", [](NgMPI_Comm & c) { return MPI_Wtime(); })
#else
.def("WTime", [](NgMPI_Comm & c) { return -1.0; })
#endif
.def("Sum", [](NgMPI_Comm & c, double x) { return c.AllReduce(x, MPI_SUM); })
.def("Min", [](NgMPI_Comm & c, double x) { return c.AllReduce(x, MPI_MIN); })
.def("Max", [](NgMPI_Comm & c, double x) { return c.AllReduce(x, MPI_MAX); })
.def("Sum", [](NgMPI_Comm & c, int x) { return c.AllReduce(x, MPI_SUM); })
.def("Min", [](NgMPI_Comm & c, int x) { return c.AllReduce(x, MPI_MIN); })
.def("Max", [](NgMPI_Comm & c, int x) { return c.AllReduce(x, MPI_MAX); })
.def("Sum", [](NgMPI_Comm & c, size_t x) { return c.AllReduce(x, MPI_SUM); })
.def("Min", [](NgMPI_Comm & c, size_t x) { return c.AllReduce(x, MPI_MIN); })
.def("Max", [](NgMPI_Comm & c, size_t x) { return c.AllReduce(x, MPI_MAX); })
.def("SubComm", [](NgMPI_Comm & c, std::vector<int> proc_list) {
Array<int> procs(proc_list.size());
for (int i = 0; i < procs.Size(); i++)
{ procs[i] = proc_list[i]; }
if (!procs.Contains(c.Rank()))
{ throw Exception("rank "+ToString(c.Rank())+" not in subcomm"); }
return c.SubCommunicator(procs);
}, py::arg("procs"));
;
#ifdef NG_MPI4PY
py::implicitly_convertible<mpi4py_comm, NgMPI_Comm>();
#endif // NG_MPI4PY
py::class_<Vec<3>> (m, "Vec3d")
.def(py::init<double,double,double>())
.def(py::init([](py::tuple v)
{
return Vec<3> { v[0].cast<double>(), v[1].cast<double>(),
v[2].cast<double>() };
}))
.def ("__str__", &ToString<Vec<3>>)
.def(py::self==py::self)
.def(py::self+py::self)
.def(py::self-py::self)
.def(-py::self)
.def(double()*py::self)
.def(py::self*double())
.def("Norm", &Vec<3>::Length)
.def("__getitem__", [](Vec<3>& vec, int index) { return vec[index]; })
.def("__len__", [](Vec<3>& /*unused*/) { return 3; })
;
py::implicitly_convertible<py::tuple, Vec<3>>();
py::class_<Vec<2>> (m, "Vec2d")
.def(py::init<double,double>())
.def(py::init( [] (std::pair<double,double> xy)
{
return Vec<2>{xy.first, xy.second};
}))
.def ("__str__", &ToString<Vec<3>>)
.def(py::self==py::self)
.def(py::self+py::self)
.def(py::self-py::self)
.def(-py::self)
.def(double()*py::self)
.def(py::self*double())
.def("Norm", &Vec<2>::Length)
.def("__getitem__", [](Vec<2>& vec, int index) { return vec[index]; })
.def("__len__", [](Vec<2>& /*unused*/) { return 2; })
;
py::implicitly_convertible<py::tuple, Vec<2>>();
py::class_<NGDummyArgument>(m, "NGDummyArgument")
.def("__bool__", []( NGDummyArgument &self ) { return false; } )
;
py::class_<Point<2>> (m, "Point2d")
.def(py::init<double,double>())
.def(py::init( [] (std::pair<double,double> xy)
{
return Point<2>{xy.first, xy.second};
}))
.def ("__str__", &ToString<Point<2>>)
.def(py::self-py::self)
.def(py::self+Vec<2>())
.def(py::self-Vec<2>())
.def("__getitem__", [](Point<2>& self, int index) { return self[index]; })
;
py::implicitly_convertible<py::tuple, Point<2>>();
py::class_<Point<3>> (m, "Point3d")
.def(py::init<double,double,double>())
.def(py::init([](py::tuple p)
{
return Point<3> { p[0].cast<double>(), p[1].cast<double>(),
p[2].cast<double>() };
}))
.def ("__str__", &ToString<Point<3>>)
.def(py::self-py::self)
.def(py::self+Vec<3>())
.def(py::self-Vec<3>())
.def("__getitem__", [](Point<2>& self, int index) { return self[index]; })
;
py::implicitly_convertible<py::tuple, Point<3>>();
m.def("Pnt", [](double x, double y, double z)
{ return global_trafo(Point<3>(x,y,z)); });
m.def("Pnt", [](double x, double y) { return Point<2>(x,y); });
m.def("Pnt", [](py::array_t<double> np_array)
{
int dim = np_array.size();
if(!(dim == 2 || dim == 3))
throw Exception("Invalid dimension of input array!");
if(dim == 2)
return py::cast(Point<2>(np_array.at(0),
np_array.at(1)));
return py::cast(global_trafo(Point<3>(np_array.at(0),
np_array.at(1),
np_array.at(2))));
});
m.def ("Vec", FunctionPointer
([] (double x, double y, double z) { return global_trafo(Vec<3>(x,y,z)); }));
m.def("Vec", [](py::array_t<double> np_array)
{
int dim = np_array.size();
if(!(dim == 2 || dim == 3))
throw Exception("Invalid dimension of input array!");
if(dim == 2)
return py::cast(Vec<2>(np_array.at(0),
np_array.at(1)));
return py::cast(global_trafo(Vec<3>(np_array.at(0),
np_array.at(1),
np_array.at(2))));
});
m.def ("Vec", FunctionPointer
([] (double x, double y) { return Vec<2>(x,y); }));
py::class_<Transformation<3>> (m, "Trafo")
.def(py::init<Vec<3>>(), "a translation")
.def(py::init<Point<3>,Vec<3>,double>(), "a rotation given by point on axes, direction of axes, angle")
.def("__mul__", [](Transformation<3> a, Transformation<3> b)->Transformation<3>
{ Transformation<3> res; res.Combine(a,b); return res; })
.def("__call__", [] (Transformation<3> trafo, Point<3> p) { return trafo(p); })
;
m.def ("GetTransformation", [] () { return global_trafo; });
m.def ("SetTransformation", [] (Transformation<3> trafo) { global_trafo = trafo; });
m.def ("SetTransformation",
[](int dir, double angle)
{
if (dir > 0)
global_trafo.SetAxisRotation (dir, angle*M_PI/180);
else
global_trafo = Transformation<3> (Vec<3>(0,0,0));
},
py::arg("dir")=int(0), py::arg("angle")=int(0));
m.def ("SetTransformation",
[](Point<3> p0, Vec<3> ex, Vec<3> ey, Vec<3> ez)
{
Point<3> pnts[4];
pnts[0] = p0;
pnts[1] = p0 + ex;
pnts[2] = p0 + ey;
pnts[3] = p0 + ez;
global_trafo = Transformation<3> (pnts);
},
py::arg("p0"), py::arg("ex"), py::arg("ey"), py::arg("ez"));
py::class_<PointIndex>(m, "PointId")
.def(py::init<int>())
.def("__repr__", &ToString<PointIndex>)
.def("__str__", &ToString<PointIndex>)
.def_property_readonly("nr", &PointIndex::operator int)
.def("__eq__" , FunctionPointer( [](PointIndex &self, PointIndex &other)
{ return static_cast<int>(self)==static_cast<int>(other); }) )
.def("__hash__" , FunctionPointer( [](PointIndex &self ) { return static_cast<int>(self); }) )
;
py::class_<ElementIndex>(m, "ElementId3D")
.def(py::init<int>())
.def("__repr__", &ToString<ElementIndex>)
.def("__str__", &ToString<ElementIndex>)
.def_property_readonly("nr", &ElementIndex::operator int)
.def("__eq__" , FunctionPointer( [](ElementIndex &self, ElementIndex &other)
{ return static_cast<int>(self)==static_cast<int>(other); }) )
.def("__hash__" , FunctionPointer( [](ElementIndex &self ) { return static_cast<int>(self); }) )
;
py::class_<SurfaceElementIndex>(m, "ElementId2D")
.def(py::init<int>())
.def("__repr__", &ToString<SurfaceElementIndex>)
.def("__str__", &ToString<SurfaceElementIndex>)
.def_property_readonly("nr", &SurfaceElementIndex::operator int)
.def("__eq__" , FunctionPointer( [](SurfaceElementIndex &self, SurfaceElementIndex &other)
{ return static_cast<int>(self)==static_cast<int>(other); }) )
.def("__hash__" , FunctionPointer( [](SurfaceElementIndex &self ) { return static_cast<int>(self); }) )
;
py::class_<SegmentIndex>(m, "ElementId1D")
.def(py::init<int>())
.def("__repr__", &ToString<SegmentIndex>)
.def("__str__", &ToString<SegmentIndex>)
.def_property_readonly("nr", &SegmentIndex::operator int)
.def("__eq__" , FunctionPointer( [](SegmentIndex &self, SegmentIndex &other)
{ return static_cast<int>(self)==static_cast<int>(other); }) )
.def("__hash__" , FunctionPointer( [](SegmentIndex &self ) { return static_cast<int>(self); }) )
;
/*
py::class_<Point<3>> ("Point")
.def(py::init<double,double,double>())
;
*/
py::class_<MeshPoint /* ,py::bases<Point<3>> */ >(m, "MeshPoint")
.def(py::init<Point<3>>())
.def("__str__", &ToString<MeshPoint>)
.def("__repr__", &ToString<MeshPoint>)
.def_property_readonly("p", [](const MeshPoint & self)
{
py::list l;
l.append ( py::cast(self[0]) );
l.append ( py::cast(self[1]) );
l.append ( py::cast(self[2]) );
return py::tuple(l);
})
.def("__getitem__", [](const MeshPoint & self, int index) {
if(index<0 || index>2)
throw py::index_error();
return self[index];
})
.def("__setitem__", [](MeshPoint & self, int index, double val) {
if(index<0 || index>2)
throw py::index_error();
self(index) = val;
})
;
py::class_<Element>(m, "Element3D")
.def(py::init([](int index, std::vector<PointIndex> vertices)
{
int np = vertices.size();
ELEMENT_TYPE et;
switch (np)
{
case 4: et = TET; break;
case 5: et = PYRAMID; break;
case 6: et = PRISM; break;
case 8: et = HEX; break;
case 10: et = TET10; break;
case 13: et = PYRAMID13; break;
case 15: et = PRISM15; break;
case 20: et = HEX20; break;
default:
throw Exception ("no Element3D with " + ToString(np) +
" points");
}
auto newel = new Element(et);
for(int i=0; i<np; i++)
(*newel)[i] = vertices[i];
newel->SetIndex(index);
return newel;
}),
py::arg("index")=1,py::arg_v("vertices", std::vector<PointIndex>(), "[]"),
"create volume element"
)
.def("__repr__", &ToString<Element>)
.def_property("index", &Element::GetIndex, &Element::SetIndex)
.def_property("curved", &Element::IsCurved, &Element::SetCurved)
.def_property_readonly("vertices",
FunctionPointer ([](const Element & self) -> py::list
{
py::list li;
for (int i = 0; i < self.GetNV(); i++)
li.append (py::cast(self[i]));
return li;
}))
.def_property_readonly("points",
FunctionPointer ([](const Element & self) -> py::list
{
py::list li;
for (int i = 0; i < self.GetNP(); i++)
li.append (py::cast(self[i]));
return li;
}))
;
py::class_<Element2d>(m, "Element2D")
.def(py::init ([](int index, std::vector<PointIndex> vertices)
{
Element2d * newel = nullptr;
if (vertices.size() == 3)
{
newel = new Element2d(TRIG);
for (int i = 0; i < 3; i++)
(*newel)[i] = vertices[i];
newel->SetIndex(index);
}
else if (vertices.size() == 4)
{
newel = new Element2d(QUAD);
for (int i = 0; i < 4; i++)
(*newel)[i] = vertices[i];
newel->SetIndex(index);
}
else if (vertices.size() == 6)
{
newel = new Element2d(TRIG6);
for(int i = 0; i<6; i++)
(*newel)[i] = vertices[i];
newel->SetIndex(index);
}
else if (vertices.size() == 8)
{
newel = new Element2d(QUAD8);
for(int i = 0; i<8; i++)
(*newel)[i] = vertices[i];
newel->SetIndex(index);
}
else
throw NgException("Inconsistent number of vertices in Element2D");
return newel;
}),
py::arg("index")=1,py::arg_v("vertices", std::vector<PointIndex>(), "[]"),
"create surface element"
)
.def_property("index", &Element2d::GetIndex, &Element2d::SetIndex)
.def_property("curved", &Element2d::IsCurved, &Element2d::SetCurved)
.def_property_readonly("vertices",
FunctionPointer([](const Element2d & self) -> py::list
{
py::list li;
for (int i = 0; i < self.GetNV(); i++)
li.append(py::cast(self[i]));
return li;
}))
.def_property_readonly("points",
FunctionPointer ([](const Element2d & self) -> py::list
{
py::list li;
for (int i = 0; i < self.GetNP(); i++)
li.append (py::cast(self[i]));
return li;
}))
;
py::class_<Segment>(m, "Element1D")
.def(py::init([](py::list vertices, py::list surfaces, int index, int edgenr)
{
Segment * newel = new Segment();
for (int i = 0; i < 2; i++)
(*newel)[i] = py::extract<PointIndex>(vertices[i])();
newel -> si = index;
newel -> edgenr = edgenr;
newel -> epgeominfo[0].edgenr = edgenr;
newel -> epgeominfo[1].edgenr = edgenr;
// needed for codim2 in 3d
newel -> edgenr = index;
if (len(surfaces))
{
newel->surfnr1 = py::extract<int>(surfaces[0])();
newel->surfnr2 = py::extract<int>(surfaces[1])();
}
return newel;
}),
py::arg("vertices"),
py::arg("surfaces")=py::list(),
py::arg("index")=1,
py::arg("edgenr")=1,
"create segment element"
)
.def("__repr__", &ToString<Segment>)
.def_property_readonly("vertices",
FunctionPointer ([](const Segment & self) -> py::list
{
py::list li;
for (int i = 0; i < 2; i++)
li.append (py::cast(self[i]));
return li;
}))
.def_property_readonly("points",
FunctionPointer ([](const Segment & self) -> py::list
{
py::list li;
for (int i = 0; i < self.GetNP(); i++)
li.append (py::cast(self[i]));
return li;
}))
.def_property_readonly("surfaces",
FunctionPointer ([](const Segment & self) -> py::list
{
py::list li;
li.append (py::cast(self.surfnr1));
li.append (py::cast(self.surfnr2));
return li;
}))
.def_property_readonly("index", FunctionPointer([](const Segment &self) -> size_t
{
return self.si;
}))
.def_property_readonly("edgenr", FunctionPointer([](const Segment & self) -> size_t
{
return self.edgenr;
}))
;
py::class_<Element0d>(m, "Element0D")
.def(py::init([](PointIndex vertex, int index)
{
Element0d * instance = new Element0d;
instance->pnum = vertex;
instance->index = index;
return instance;
}),
py::arg("vertex"),
py::arg("index")=1,
"create point element"
)
.def("__repr__", &ToString<Element0d>)
.def_property_readonly("vertices",
FunctionPointer ([](const Element0d & self) -> py::list
{
py::list li;
li.append (py::cast(self.pnum));
return li;
}))
;
py::class_<FaceDescriptor>(m, "FaceDescriptor")
.def(py::init<const FaceDescriptor&>())
.def(py::init([](int surfnr, int domin, int domout, int bc)
{
FaceDescriptor * instance = new FaceDescriptor();
instance->SetSurfNr(surfnr);
instance->SetDomainIn(domin);
instance->SetDomainOut(domout);
instance->SetBCProperty(bc);
return instance;
}),
py::arg("surfnr")=1,
py::arg("domin")=1,
py::arg("domout")=py::int_(0),
py::arg("bc")=py::int_(0),
"create facedescriptor")
.def("__str__", &ToString<FaceDescriptor>)
.def("__repr__", &ToString<FaceDescriptor>)
.def_property("surfnr", &FaceDescriptor::SurfNr, &FaceDescriptor::SetSurfNr)
.def_property("domin", &FaceDescriptor::DomainIn, &FaceDescriptor::SetDomainIn)
.def_property("domout", &FaceDescriptor::DomainOut, &FaceDescriptor::SetDomainOut)
.def_property("bc", &FaceDescriptor::BCProperty, &FaceDescriptor::SetBCProperty)
.def_property("bcname",
[](FaceDescriptor & self) -> string { return self.GetBCName(); },
[](FaceDescriptor & self, string name) { self.SetBCName(new string(name)); } // memleak
)
.def_property("color",
[](const FaceDescriptor& self)
{
auto sc = self.SurfColour();
return py::make_tuple(sc[0], sc[1], sc[2]);
},
[](FaceDescriptor& self, py::tuple col)
{
Vec<4> sc = 1;
sc[0] = py::cast<double>(col[0]);
sc[1] = py::cast<double>(col[1]);
sc[2] = py::cast<double>(col[2]);
if(py::len(col) > 3)
sc[3] = py::cast<double>(col[3]);
self.SetSurfColour(sc);
}
)
.def_property("transparency",
[](const FaceDescriptor& self)
{
return self.SurfColour()[3];
},
[](FaceDescriptor& self, double val)
{
auto sc = self.SurfColour();
sc[3] = val;
self.SetSurfColour(sc);
})
;
ExportArray<Element,ElementIndex>(m);
ExportArray<Element2d,SurfaceElementIndex>(m);
ExportArray<Segment,SegmentIndex>(m);
ExportArray<Element0d>(m);
ExportArray<MeshPoint,PointIndex>(m);
ExportArray<FaceDescriptor>(m);
py::implicitly_convertible< int, PointIndex>();
py::class_<NetgenGeometry, shared_ptr<NetgenGeometry>> (m, "NetgenGeometry", py::dynamic_attr())
.def("RestrictH", &NetgenGeometry::RestrictH)
;
typedef MeshingParameters MP;
auto mp = py::class_<MP> (m, "MeshingParameters")
.def(py::init<>())
.def(py::init([](MeshingParameters* other, py::kwargs kwargs)
{
MeshingParameters mp;
if(other) mp = *other;
CreateMPfromKwargs(mp, kwargs, false);
return mp;
}), py::arg("mp")=nullptr, meshingparameter_description.c_str())
.def("__str__", &ToString<MP>)
.def("RestrictH", [](MP & mp, double x, double y, double z, double h)
{
mp.meshsize_points.Append ( MeshingParameters::MeshSizePoint(Point<3> (x,y,z), h));
}, py::arg("x"), py::arg("y"), py::arg("z"), py::arg("h")
)
.def("RestrictH", [](MP & mp, const Point<3>& p, double h)
{
mp.meshsize_points.Append ({p, h});
}, py::arg("p"), py::arg("h"))
.def("RestrictHLine", [](MP& mp, const Point<3>& p1, const Point<3>& p2,
double maxh)
{
int steps = int(Dist(p1, p2) / maxh) + 2;
auto v = p2 - p1;
for (int i = 0; i <= steps; i++)
{
mp.meshsize_points.Append({p1 + double(i)/steps * v, maxh});
}
}, py::arg("p1"), py::arg("p2"), py::arg("maxh"))
;
py::class_<Mesh,shared_ptr<Mesh>>(m, "Mesh")
// .def(py::init<>("create empty mesh"))
.def(py::init( [] (int dim, NgMPI_Comm comm)
{
auto mesh = make_shared<Mesh>();
mesh->SetCommunicator(comm);
mesh -> SetDimension(dim);
SetGlobalMesh(mesh); // for visualization
mesh -> SetGeometry (nullptr);
return mesh;
} ),
py::arg("dim")=3, py::arg_v("comm", NgMPI_Comm(), "NgMPI_Comm()")
)
.def(NGSPickle<Mesh>())
.def_property_readonly("comm", [](const Mesh & amesh) -> NgMPI_Comm
{ return amesh.GetCommunicator(); },
"MPI-communicator the Mesh lives in")
/*
.def("__init__",
[](Mesh *instance, int dim)
{
new (instance) Mesh();
instance->SetDimension(dim);
},
py::arg("dim")=3
)
*/
.def_property_readonly("_timestamp", &Mesh::GetTimeStamp)
.def_property_readonly("ne", [](Mesh& m) { return m.GetNE(); })
.def("Partition", [](shared_ptr<Mesh> self, int numproc) {
self->ParallelMetis(numproc);
}, py::arg("numproc"))
.def("Distribute", [](shared_ptr<Mesh> self, NgMPI_Comm comm) {
self->SetCommunicator(comm);
if(comm.Size()==1) return self;
// if(MyMPI_GetNTasks(comm)==2) throw NgException("Sorry, cannot handle communicators with NP=2!");
// cout << " rank " << MyMPI_GetId(comm) << " of " << MyMPI_GetNTasks(comm) << " called Distribute " << endl;
if(comm.Rank()==0) self->Distribute();
else self->SendRecvMesh();
return self;
}, py::arg("comm"))
.def_static("Receive", [](NgMPI_Comm comm) -> shared_ptr<Mesh> {
auto mesh = make_shared<Mesh>();
mesh->SetCommunicator(comm);
mesh->SendRecvMesh();
return mesh;
}, py::arg("comm"))
.def("Load", FunctionPointer
([](shared_ptr<Mesh> self, const string & filename)
{
auto comm = self->GetCommunicator();
int id = comm.Rank();
int ntasks = comm.Size();
auto & mesh = self;
{
ifstream infile(filename.c_str());
if(!infile.good())
throw NgException(string("Error opening file ") + filename);
}
if ( filename.find(".vol") == string::npos )
{
if(ntasks>1)
throw NgException("Not sure what to do with this?? Does this work with MPI??");
mesh->SetCommunicator(comm);
ReadFile(*mesh,filename.c_str());
//mesh->SetGlobalH (mparam.maxh);
//mesh->CalcLocalH();
return;
}
istream * infile = nullptr;
Array<char> buf; // for distributing geometry!
int strs;
if( id == 0) {
if (filename.length() > 8 && filename.substr (filename.length()-8, 8) == ".vol.bin")
mesh -> Load(filename);
else if (filename.substr (filename.length()-3, 3) == ".gz")
infile = new igzstream (filename.c_str());
else
infile = new ifstream (filename.c_str());
if(infile)
{
mesh -> Load(*infile);
// make string from rest of file (for geometry info!)
// (this might be empty, in which case we take the global ng_geometry)
stringstream geom_part;
geom_part << infile->rdbuf();
string geom_part_string = geom_part.str();
strs = geom_part_string.size();
// buf = new char[strs];
buf.SetSize(strs);
memcpy(buf.Data(), geom_part_string.c_str(), strs*sizeof(char));
delete infile;
}
if (ntasks > 1)
{
char * weightsfilename = new char [filename.size()+1];
strcpy (weightsfilename, filename.c_str());
weightsfilename[strlen (weightsfilename)-3] = 'w';
weightsfilename[strlen (weightsfilename)-2] = 'e';
weightsfilename[strlen (weightsfilename)-1] = 'i';
ifstream weightsfile(weightsfilename);
delete [] weightsfilename;
if (!(weightsfile.good()))
{
// cout << "regular distribute" << endl;
mesh -> Distribute();
}
else
{
char str[20];
bool endfile = false;
int n, dummy;
NgArray<int> segment_weights;
NgArray<int> surface_weights;
NgArray<int> volume_weights;
while (weightsfile.good() && !endfile)
{
weightsfile >> str;
if (strcmp (str, "edgeweights") == 0)
{
weightsfile >> n;
segment_weights.SetSize(n);
for (int i = 0; i < n; i++)
weightsfile >> dummy >> segment_weights[i];
}
if (strcmp (str, "surfaceweights") == 0)
{
weightsfile >> n;
surface_weights.SetSize(n);
for (int i=0; i<n; i++)
weightsfile >> dummy >> surface_weights[i];
}
if (strcmp (str, "volumeweights") == 0)
{
weightsfile >> n;
volume_weights.SetSize(n);
for (int i=0; i<n; i++)
weightsfile >> dummy >> volume_weights[i];
}
if (strcmp (str, "endfile") == 0)
endfile = true;
}
mesh -> Distribute(volume_weights, surface_weights, segment_weights);
}
} // ntasks>1 end
} // id==0 end
else {
mesh->SendRecvMesh();
}
if(ntasks>1) {
// #ifdef PARALLEL
/** Scatter the geometry-string (no dummy-implementation in mpi_interface) **/
/*
int strs = buf.Size();
MyMPI_Bcast(strs, comm);
if(strs>0)
MyMPI_Bcast(buf, comm);
*/
comm.Bcast(buf);
// #endif
}
shared_ptr<NetgenGeometry> geo;
if(buf.Size()) { // if we had geom-info in the file, take it
istringstream geom_infile(string((const char*)buf.Data(), buf.Size()));
geo = geometryregister.LoadFromMeshFile(geom_infile);
}
if(geo!=nullptr) mesh->SetGeometry(geo);
else if(ng_geometry!=nullptr) mesh->SetGeometry(ng_geometry);
}),py::call_guard<py::gil_scoped_release>())
.def("Save", static_cast<void(Mesh::*)(const filesystem::path & name)const>(&Mesh::Save),py::call_guard<py::gil_scoped_release>())
.def("Export",
[] (Mesh & self, string filename, string format)
{
if (WriteUserFormat (format, self, /* *self.GetGeometry(), */ filename))
{
string err = string ("nothing known about format")+format;
NgArray<const char*> names, extensions;
RegisterUserFormats (names, extensions);
err += "\navailable formats are:\n";
for (auto name : names)
err += string("'") + name + "'\n";
throw NgException (err);
}
},
py::arg("filename"), py::arg("format"),py::call_guard<py::gil_scoped_release>())
.def_property("dim", &Mesh::GetDimension, &Mesh::SetDimension)
.def("Elements3D",
static_cast<Array<Element,ElementIndex>&(Mesh::*)()> (&Mesh::VolumeElements),
py::return_value_policy::reference)
.def("Elements2D",
static_cast<Array<Element2d,SurfaceElementIndex>&(Mesh::*)()> (&Mesh::SurfaceElements),
py::return_value_policy::reference)
.def("Elements1D",
static_cast<Array<Segment, SegmentIndex>&(Mesh::*)()> (&Mesh::LineSegments),
py::return_value_policy::reference)
.def("Elements0D", FunctionPointer([] (Mesh & self) -> Array<Element0d>&
{
return self.pointelements;
} ),
py::return_value_policy::reference)
.def("Points",
static_cast<Mesh::T_POINTS&(Mesh::*)()> (&Mesh::Points),
py::return_value_policy::reference)
.def("Coordinates", [](Mesh & self) {
return py::array
(
py::memoryview::from_buffer
(&self.Points()[PointIndex::BASE](0), sizeof(double),
py::format_descriptor<double>::value,
{ self.Points().Size(), size_t(self.GetDimension()) },
{ sizeof(self.Points()[PointIndex::BASE]), sizeof(double) } )
);
})
.def("FaceDescriptor", static_cast<FaceDescriptor&(Mesh::*)(int)> (&Mesh::GetFaceDescriptor),
py::return_value_policy::reference)
.def("GetNFaceDescriptors", &Mesh::GetNFD)
.def("FaceDescriptors",
// static_cast<Array<Element>&(Mesh::*)()> (&Mesh::FaceDescriptors),
&Mesh::FaceDescriptors,
py::return_value_policy::reference)
.def("GetNDomains", &Mesh::GetNDomains)
.def("GetVolumeNeighboursOfSurfaceElement", [](Mesh & self, size_t sel)
{
int elnr1, elnr2;
self.GetTopology().GetSurface2VolumeElement(sel+1, elnr1, elnr2);
return py::make_tuple(elnr1, elnr2);
}, "Returns element nrs of volume element connected to surface element, -1 if no volume element")
.def("GetNCD2Names", &Mesh::GetNCD2Names)
.def("__getitem__", [](const Mesh & self, PointIndex id) { return self[id]; })
.def("__getitem__", [](const Mesh & self, ElementIndex id) { return self[id]; })
.def("__getitem__", [](const Mesh & self, SurfaceElementIndex id) { return self[id]; })
.def("__getitem__", [](const Mesh & self, SegmentIndex id) { return self[id]; })
.def("__setitem__", [](Mesh & self, PointIndex id, const MeshPoint & mp) { return self[id] = mp; })
.def ("Add", [](Mesh & self, MeshPoint p)
{
return self.AddPoint (Point3d(p));
})
.def ("Add", [](Mesh & self, const Element & el)
{
return self.AddVolumeElement (el);
})
.def ("Add", [](Mesh & self, const Element2d & el)
{
return self.AddSurfaceElement (el);
})
.def ("Add", [](Mesh & self, const Segment & el)
{
return self.AddSegment (el);
})
.def ("Add", [](Mesh & self, const Element0d & el)
{
return self.pointelements.Append (el);
})
.def ("Add", [](Mesh & self, const FaceDescriptor & fd)
{
return self.AddFaceDescriptor (fd);
})
.def ("AddPoints", [](Mesh & self, py::buffer b1)
{
static Timer timer("Mesh::AddPoints");
static Timer timercast("Mesh::AddPoints - casting");
RegionTimer reg(timer);
timercast.Start();
// casting from here: https://github.com/pybind/pybind11/issues/1908
auto b = b1.cast<py::array_t<double_t, py::array::c_style | py::array::forcecast>>();
timercast.Stop();
py::buffer_info info = b.request();
// cout << "data format = " << info.format << endl;
if (info.ndim != 2)
throw std::runtime_error("AddPoints needs buffer of dimension 2");
// if (info.format != py::format_descriptor<double>::format())
// throw std::runtime_error("AddPoints needs buffer of type double");
if (info.strides[0] != sizeof(double)*info.shape[1])
throw std::runtime_error("AddPoints needs packed array");
double * ptr = static_cast<double*> (info.ptr);
self.Points().SetAllocSize(self.Points().Size()+info.shape[0]);
if (info.shape[1]==2)
for (auto i : Range(info.shape[0]))
{
self.AddPoint (Point<3>(ptr[0], ptr[1], 0));
ptr += 2;
}
if (info.shape[1]==3)
for (auto i : Range(info.shape[0]))
{
self.AddPoint (Point<3>(ptr[0], ptr[1], ptr[2]));
ptr += 3;
}
})
.def ("AddElements", [](Mesh & self, int dim, int index, py::buffer b1, int base)
{
static Timer timer("Mesh::AddElements");
static Timer timercast("Mesh::AddElements casting");
RegionTimer reg(timer);
timercast.Start();
auto b = b1.cast<py::array_t<int, py::array::c_style | py::array::forcecast>>();
timercast.Stop();
py::buffer_info info = b.request();
if (info.ndim != 2)
throw std::runtime_error("AddElements needs buffer of dimension 2");
// if (info.format != py::format_descriptor<int>::format())
// throw std::runtime_error("AddPoints needs buffer of type int");
int * ptr = static_cast<int*> (info.ptr);
if (dim == 2)
{
ELEMENT_TYPE type;
int np = info.shape[1];
switch (np)
{
case 3: type = TRIG; break;
case 4: type = QUAD; break;
case 6: type = TRIG6; break;
case 8: type = QUAD8; break;
default:
throw Exception("unsupported 2D element with "+ToString(np)+" points");
}
self.SurfaceElements().SetAllocSize(self.SurfaceElements().Size()+info.shape[0]);
for (auto i : Range(info.shape[0]))
{
Element2d el(type);
for (int j = 0; j < np;j ++)
el[j] = ptr[j]+PointIndex::BASE-base;
el.SetIndex(index);
self.AddSurfaceElement (el);
ptr += info.strides[0]/sizeof(int);
}
}
if (dim == 3)
{
ELEMENT_TYPE type;
int np = info.shape[1];
switch (np)
{
case 4: type = TET; break;
/* // have to check ordering of points
case 10: type = TET10; break;
case 8: type = HEX; break;
case 6: type = PRISM; break;
*/
default:
throw Exception("unsupported 3D element with "+ToString(np)+" points");
}
self.VolumeElements().SetAllocSize(self.VolumeElements().Size()+info.shape[0]);
for (auto i : Range(info.shape[0]))
{
Element el(type);
for (int j = 0; j < np;j ++)
el[j] = ptr[j]+PointIndex::BASE-base;
el.SetIndex(index);
self.AddVolumeElement (el);
ptr += info.strides[0]/sizeof(int);
}
}
}, py::arg("dim"), py::arg("index"), py::arg("data"), py::arg("base")=0)
.def ("DeleteSurfaceElement",
[](Mesh & self, SurfaceElementIndex i)
{
return self.Delete(i);
})
.def ("Compress", [](Mesh & self)
{
return self.Compress ();
} ,py::call_guard<py::gil_scoped_release>())
.def ("AddRegion", [] (Mesh & self, string name, int dim) -> int
{
auto & regionnames = self.GetRegionNamesCD(self.GetDimension()-dim);
regionnames.Append (new string(name));
int idx = regionnames.Size();
if (dim == 2)
{
FaceDescriptor fd;
fd.SetBCName(regionnames.Last());
fd.SetBCProperty(idx);
self.AddFaceDescriptor(fd);
}
return idx;
}, py::arg("name"), py::arg("dim"))
.def ("SetBCName", &Mesh::SetBCName)
.def ("GetBCName", FunctionPointer([](Mesh & self, int bc)->string
{ return self.GetBCName(bc); }))
.def ("SetMaterial", &Mesh::SetMaterial)
.def ("GetMaterial", FunctionPointer([](Mesh & self, int domnr)
{ return string(self.GetMaterial(domnr)); }))
.def ("GetCD2Name", &Mesh::GetCD2Name)
.def ("SetCD2Name", &Mesh::SetCD2Name)
.def ("GetCD3Name", &Mesh::GetCD3Name)
.def ("SetCD3Name", &Mesh::SetCD3Name)
.def ("AddPointIdentification", [](Mesh & self, py::object pindex1, py::object pindex2, int identnr, Identifications::ID_TYPE type)
{
if(py::extract<PointIndex>(pindex1).check() && py::extract<PointIndex>(pindex2).check())
{
self.GetIdentifications().Add (py::extract<PointIndex>(pindex1)(), py::extract<PointIndex>(pindex2)(), identnr);
self.GetIdentifications().SetType(identnr, type); // type = 2 ... periodic
}
},
//py::default_call_policies(),
py::arg("pid1"),
py::arg("pid2"),
py::arg("identnr"),
py::arg("type")=Identifications::PERIODIC)
.def("IdentifyPeriodicBoundaries", &Mesh::IdentifyPeriodicBoundaries,
py::arg("face1"), py::arg("face2"), py::arg("mapping"), py::arg("point_tolerance") = -1.)
.def("GetNrIdentifications", [](Mesh& self)
{
return self.GetIdentifications().GetMaxNr();
})
.def ("CalcLocalH", &Mesh::CalcLocalH)
.def ("SetMaxHDomain", [] (Mesh& self, py::list maxhlist)
{
NgArray<double> maxh;
for(auto el : maxhlist)
maxh.Append(py::cast<double>(el));
self.SetMaxHDomain(maxh);
})
.def ("GenerateVolumeMesh",
[](Mesh & self, MeshingParameters* pars,
py::kwargs kwargs)
{
MeshingParameters mp;
if(pars) mp = *pars;
{
py::gil_scoped_acquire acquire;
CreateMPfromKwargs(mp, kwargs);
}
MeshVolume (mp, self);
OptimizeVolume (mp, self);
}, py::arg("mp")=nullptr,
meshingparameter_description.c_str(),
py::call_guard<py::gil_scoped_release>())
.def ("OptimizeVolumeMesh", [](Mesh & self, MeshingParameters* pars)
{
MeshingParameters mp;
if(pars) mp = *pars;
else mp.optsteps3d = 5;
OptimizeVolume (mp, self);
}, py::arg("mp"), py::call_guard<py::gil_scoped_release>())
.def ("OptimizeMesh2d", [](Mesh & self, MeshingParameters* pars)
{
self.CalcLocalH(0.5);
MeshingParameters mp;
if(pars) mp = *pars;
else mp.optsteps2d = 5;
if(!self.GetGeometry())
throw Exception("Cannot optimize surface mesh without geometry!");
Optimize2d (self, mp);
}, py::arg("mp")=nullptr, py::call_guard<py::gil_scoped_release>())
.def ("Refine", FunctionPointer
([](Mesh & self)
{
self.GetGeometry()->GetRefinement().Refine(self);
self.UpdateTopology();
}),py::call_guard<py::gil_scoped_release>())
.def("ZRefine", &Mesh::ZRefine)
.def ("SecondOrder", FunctionPointer
([](Mesh & self)
{
self.GetGeometry()->GetRefinement().MakeSecondOrder(self);
}))
.def ("GetGeometry", [] (Mesh& self) { return self.GetGeometry(); })
.def ("SetGeometry", [](Mesh & self, shared_ptr<NetgenGeometry> geo)
{
self.SetGeometry(geo);
})
/*
.def ("SetGeometry", FunctionPointer
([](Mesh & self, shared_ptr<CSGeometry> geo)
{
self.SetGeometry(geo);
}))
*/
.def ("BuildSearchTree", &Mesh::BuildElementSearchTree,py::call_guard<py::gil_scoped_release>())
.def ("BoundaryLayer", [](Mesh & self, variant<string, int> boundary,
variant<double, py::list> thickness,
string material,
variant<string, int> domain, bool outside,
optional<string> project_boundaries,
bool grow_edges)
{
BoundaryLayerParameters blp;
if(int* bc = get_if<int>(&boundary); bc)
{
for (int i = 1; i <= self.GetNFD(); i++)
if(self.GetFaceDescriptor(i).BCProperty() == *bc)
blp.surfid.Append (i);
}
else
{
regex pattern(*get_if<string>(&boundary));
for(int i = 1; i<=self.GetNFD(); i++)
{
auto& fd = self.GetFaceDescriptor(i);
if(regex_match(fd.GetBCName(), pattern))
{
auto dom_pattern = get_if<string>(&domain);
// only add if adjacent to domain
if(dom_pattern)
{
regex pattern(*dom_pattern);
if((fd.DomainIn() > 0 && regex_match(self.GetMaterial(fd.DomainIn()), pattern)) || (fd.DomainOut() > 0 && regex_match(self.GetMaterial(fd.DomainOut()), pattern)))
blp.surfid.Append(i);
}
else
blp.surfid.Append(i);
}
}
}
blp.new_mat = material;
if(project_boundaries.has_value())
{
regex pattern(*project_boundaries);
for(int i = 1; i<=self.GetNFD(); i++)
if(regex_match(self.GetFaceDescriptor(i).GetBCName(), pattern))
blp.project_boundaries.Append(i);
}
if(double* pthickness = get_if<double>(&thickness); pthickness)
{
blp.heights.Append(*pthickness);
}
else
{
auto thicknesses = *get_if<py::list>(&thickness);
for(auto val : thicknesses)
blp.heights.Append(val.cast<double>());
}
int nr_domains = self.GetNDomains();
blp.domains.SetSize(nr_domains + 1); // one based
blp.domains.Clear();
if(string* pdomain = get_if<string>(&domain); pdomain)
{
regex pattern(*pdomain);
for(auto i : Range(1, nr_domains+1))
if(regex_match(self.GetMaterial(i), pattern))
blp.domains.SetBit(i);
}
else
{
auto idomain = *get_if<int>(&domain);
blp.domains.SetBit(idomain);
}
blp.outside = outside;
blp.grow_edges = grow_edges;
GenerateBoundaryLayer (self, blp);
self.UpdateTopology();
}, py::arg("boundary"), py::arg("thickness"), py::arg("material"),
py::arg("domains") = ".*", py::arg("outside") = false,
py::arg("project_boundaries")=nullopt, py::arg("grow_edges")=true,
R"delimiter(
Add boundary layer to mesh.
Parameters
----------
boundary : string or int
Boundary name or number.
thickness : float or List[float]
Thickness of boundary layer(s).
material : str or List[str]
Material name of boundary layer(s).
domain : str or int
Regexp for domain boundarylayer is going into.
outside : bool = False
If true add the layer on the outside
grow_edges : bool = False
Grow boundary layer over edges.
project_boundaries : Optional[str] = None
Project boundarylayer to these boundaries if they meet them. Set
to boundaries that meet boundarylayer at a non-orthogonal edge and
layer-ending should be projected to that boundary.
)delimiter")
.def_static ("EnableTableClass", [] (string name, bool set)
{
MeshTopology::EnableTableStatic(name, set);
},
py::arg("name"), py::arg("set")=true)
.def ("EnableTable", [] (Mesh & self, string name, bool set)
{
const_cast<MeshTopology&>(self.GetTopology()).EnableTable(name, set);
},
py::arg("name"), py::arg("set")=true)
.def ("Scale", [](Mesh & self, double factor)
{
for(auto & pnt : self.Points())
pnt.Scale(factor);
})
.def ("Copy", [](Mesh & self)
{
auto m2 = make_shared<Mesh> ();
*m2 = self;
return m2;
})
.def ("CalcMinMaxAngle", [](Mesh & self, double badel_limit)
{
double values[4];
self.CalcMinMaxAngle (badel_limit, values);
py::dict res;
res["trig"] = py::make_tuple( values[0], values[1] );
res["tet"] = py::make_tuple( values[2], values[3] );
return res;
}, py::arg("badelement_limit")=175.0)
.def ("Update", [](Mesh & self)
{
self.SetNextTimeStamp();
})
.def ("CalcTotalBadness", &Mesh::CalcTotalBad)
.def ("GetQualityHistogram", &Mesh::GetQualityHistogram)
.def("Mirror", &Mesh::Mirror)
.def("_getVertices", [](Mesh & self)
{
// std::vector<float> verts(3*self.GetNV());
Array<float> verts(3*self.GetNV());
ParallelForRange( self.GetNV(), [&](auto myrange) {
const auto & points = self.Points();
for(auto i : myrange)
{
auto p = points[PointIndex::BASE+i];
auto * v = &verts[3*i];
for(auto k : Range(3))
v[k] = p[k];
} });
return verts;
})
.def("_getSegments", [](Mesh & self)
{
// std::vector<int> output;
// output.resize(2*self.GetNSeg());
Array<int> output(2*self.GetNSeg());
ParallelForRange( self.GetNSeg(), [&](auto myrange) {
const auto & segs = self.LineSegments();
for(auto i : myrange)
{
const auto & seg = segs[i];
for(auto k : Range(2))
output[2*i+k] = seg[k]-PointIndex::BASE;
} });
return output;
})
.def("_getWireframe", [](Mesh & self)
{
const auto & topo = self.GetTopology();
size_t n = topo.GetNEdges();
/*
std::vector<int> output;
output.resize(2*n);
*/
Array<int> output(2*n);
ParallelForRange( n, [&](auto myrange) {
for(auto i : myrange)
{
PointIndex p0,p1;
topo.GetEdgeVertices(i+1, p0, p1);
output[2*i] = p0-PointIndex::BASE;
output[2*i+1] = p1-PointIndex::BASE;
} });
return output;
})
.def("_get2dElementsAsTriangles", [](Mesh & self)
{
/*
std::vector<int> trigs;
trigs.resize(3*self.GetNSE());
*/
Array<int> trigs(3*self.GetNSE());
ParallelForRange( self.GetNSE(), [&](auto myrange) {
const auto & surfels = self.SurfaceElements();
for(auto i : myrange)
{
const auto & sel = surfels[i];
auto * trig = &trigs[3*i];
for(auto k : Range(3))
trig[k] = sel[k]-PointIndex::BASE;
// todo: quads (store the second trig in thread-local extra array, merge them at the end (mutex)
} });
return trigs;
})
.def("_get3dElementsAsTets", [](Mesh & self)
{
// std::vector<int> tets;
// tets.resize(4*self.GetNE());
Array<int> tets(4*self.GetNE());
ParallelForRange( self.GetNE(), [&](auto myrange) {
const auto & els = self.VolumeElements();
for(auto i : myrange)
{
const auto & el = els[i];
auto * trig = &tets[4*i];
for(auto k : Range(4))
trig[k] = el[k]-PointIndex::BASE;
// todo: prisms etc (store the extra tets in thread-local extra array, merge them at the end (mutex)
} });
return tets;
})
;
m.def("ImportMesh", [](const string& filename)
{
auto mesh = make_shared<Mesh>();
ReadFile(*mesh, filename);
return mesh;
}, py::arg("filename"),
R"delimiter(Import mesh from other file format, supported file formats are:
Neutral format (*.mesh, *.emt)
Surface file (*.surf)
Universal format (*.unv)
Olaf format (*.emt)
Tet format (*.tet)
Pro/ENGINEER format (*.fnf)
)delimiter");
py::enum_<MESHING_STEP>(m,"MeshingStep")
.value("ANALYSE", MESHCONST_ANALYSE)
.value("MESHEDGES", MESHCONST_MESHEDGES)
.value("MESHSURFACE", MESHCONST_OPTSURFACE)
.value("MESHVOLUME", MESHCONST_OPTVOLUME)
;
m.def("SetTestoutFile", FunctionPointer ([] (const string & filename)
{
delete testout;
testout = new ofstream (filename);
}));
m.def("SetMessageImportance", FunctionPointer ([] (int importance)
{
int old = printmessage_importance;
printmessage_importance = importance;
return old;
}));
m.def("ReadCGNSFile", &ReadCGNSFile, py::arg("filename"), py::arg("base")=1, "Read mesh and solution vectors from CGNS file");
m.def("WriteCGNSFile", &WriteCGNSFile, py::arg("mesh"), py::arg("filename"), py::arg("names"), py::arg("values"), py::arg("locations"),
R"(Write mesh and solution vectors to CGNS file, possible values for locations:
Vertex = 0
EdgeCenter = 1
FaceCenter = 2
CellCenter = 3
)");
py::class_<SurfaceGeometry, NetgenGeometry, shared_ptr<SurfaceGeometry>> (m, "SurfaceGeometry")
.def(py::init<>())
.def(py::init([](py::object pyfunc)
{
std::function<Vec<3> (Point<2>)> func = [pyfunc](Point<2> p)
{
py::gil_scoped_acquire aq;
py::tuple pyres = py::extract<py::tuple>(pyfunc(p[0],p[1],0.0)) ();
return Vec<3>(py::extract<double>(pyres[0])(),py::extract<double>(pyres[1])(),py::extract<double>(pyres[2])());
};
auto geo = make_shared<SurfaceGeometry>(func);
return geo;
}), py::arg("mapping"))
.def(NGSPickle<SurfaceGeometry>())
.def("GenerateMesh", [](shared_ptr<SurfaceGeometry> geo,
bool quads, int nx, int ny, bool flip_triangles, py::list py_bbbpts, py::list py_bbbnames, py::list py_hppts, py::list py_hpbnd)
{
if (py::len(py_bbbpts) != py::len(py_bbbnames))
throw Exception("In SurfaceGeometry::GenerateMesh bbbpts and bbbnames do not have same lengths.");
Array<Point<3>> bbbpts(py::len(py_bbbpts));
Array<string> bbbname(py::len(py_bbbpts));
Array<Point<3>> hppts(py::len(py_hppts));
Array<float> hpptsfac(py::len(py_hppts));
Array<string> hpbnd(py::len(py_hpbnd));
Array<float> hpbndfac(py::len(py_hpbnd));
for(int i = 0; i<py::len(py_bbbpts);i++)
{
py::tuple pnt = py::extract<py::tuple>(py_bbbpts[i])();
bbbpts[i] = Point<3>(py::extract<double>(pnt[0])(),py::extract<double>(pnt[1])(),py::extract<double>(pnt[2])());
bbbname[i] = py::extract<string>(py_bbbnames[i])();
}
for(int i = 0; i<py::len(py_hppts);i++)
{
py::tuple pnt = py::extract<py::tuple>(py_hppts[i])();
hppts[i] = Point<3>(py::extract<double>(pnt[0])(),py::extract<double>(pnt[1])(),py::extract<double>(pnt[2])());
//hpptsfac[i] = py::len(pnt) > 3 ? py::extract<double>(pnt[3])() : 0.0;
hpptsfac[i] = py::extract<double>(pnt[3])();
}
for(int i = 0; i<py::len(py_hpbnd);i++)
{
py::tuple bnd = py::extract<py::tuple>(py_hpbnd[i])();
hpbnd[i] = py::extract<string>(bnd[0])();
hpbndfac[i] = py::extract<double>(bnd[1])();
}
auto mesh = make_shared<Mesh>();
SetGlobalMesh (mesh);
mesh->SetGeometry(geo);
ng_geometry = geo;
auto result = geo->GenerateStructuredMesh (mesh, quads, nx, ny, flip_triangles, bbbpts, bbbname, hppts, hpptsfac, hpbnd, hpbndfac);
if(result != 0)
throw Exception("SurfaceGeometry: Meshing failed!");
return mesh;
}, py::arg("quads")=true, py::arg("nx")=10, py::arg("ny")=10, py::arg("flip_triangles")=false, py::arg("bbbpts")=py::list(), py::arg("bbbnames")=py::list(), py::arg("hppts")=py::list(), py::arg("hpbnd")=py::list())
;
;
py::class_<ClearSolutionClass> (m, "ClearSolutionClass")
.def(py::init<>())
;
m.def("SetParallelPickling", [](bool par) { parallel_pickling = par; });
m.def ("_Redraw",
([](bool blocking, double fr)
{
static auto last_time = std::chrono::system_clock::now()-std::chrono::seconds(10);
auto now = std::chrono::system_clock::now();
double elapsed = std::chrono::duration<double>(now-last_time).count();
if (blocking || elapsed * fr > 1)
{
Ng_Redraw(blocking);
last_time = std::chrono::system_clock::now();
return true;
}
return false;
}),
py::arg("blocking")=false, py::arg("fr") = 25, R"raw_string(
Redraw all
Parameters:
blocking : bool
input blocking
fr : double
input framerate
)raw_string");
}
PYBIND11_MODULE(libmesh, m) {
ExportNetgenMeshing(m);
}
#endif