netgen/libsrc/core/array.hpp
2020-11-19 17:35:29 +01:00

1570 lines
40 KiB
C++

#ifndef NETGEN_CORE_ARRAY_HPP
#define NETGEN_CORE_ARRAY_HPP
/**************************************************************************/
/* File: array.hpp */
/* Author: Joachim Schoeberl */
/* Date: 01. Jun. 95 */
/**************************************************************************/
#include "archive.hpp"
#include "exception.hpp"
#include "localheap.hpp"
#include "profiler.hpp"
#include "utils.hpp"
namespace ngcore
{
using std::ostream;
template <typename ... ARGS> class Tuple
{
public:
int Size() const { return 0; }
};
template <typename HEAD, typename ... TAIL>
class Tuple<HEAD, TAIL...> : Tuple<TAIL...>
{
typedef Tuple<TAIL...> BASE;
HEAD head;
public:
Tuple () { ; }
Tuple (HEAD h, TAIL ... t) : Tuple<TAIL...> (t...), head(h) { ; }
HEAD Head() const { return head; }
Tuple<TAIL...> Tail() const { return *this; }
int Size() const { return BASE::Size()+1; }
};
template <typename ... ARGS>
ostream & operator<< (ostream & ost, Tuple<ARGS...> tup)
{
return ost;
}
template <typename FIRST, typename ... ARGS>
ostream & operator<< (ostream & ost, Tuple<FIRST, ARGS...> tup)
{
ost << tup.Head() << ", " << tup.Tail();
return ost;
}
template <typename ... ARGS>
Tuple<ARGS...> MakeTuple (ARGS ... args)
{
return Tuple<ARGS...> (args...);
}
template <typename AO>
class AOWrapperIterator
{
const AO & ao;
size_t ind;
public:
NETGEN_INLINE AOWrapperIterator (const AO & aao, size_t ai)
: ao(aao), ind(ai) { ; }
NETGEN_INLINE AOWrapperIterator operator++ (int)
{ return AOWrapperIterator(ao, ind++); }
NETGEN_INLINE AOWrapperIterator& operator++ ()
{ ++ind; return *this; }
NETGEN_INLINE auto operator*() const -> decltype(ao[ind]) { return ao[ind]; }
NETGEN_INLINE auto operator*() -> decltype(ao[ind]) { return ao[ind]; }
NETGEN_INLINE bool operator != (AOWrapperIterator d2) { return ind != d2.ind; }
NETGEN_INLINE bool operator == (AOWrapperIterator d2) { return ind == d2.ind; }
};
/*
Some class which can be treated as array
*/
template <typename T> // , typename TA = T>
class BaseArrayObject
{
public:
NETGEN_INLINE BaseArrayObject() { ; }
NETGEN_INLINE const T & Spec() const { return static_cast<const T&> (*this); }
NETGEN_INLINE size_t Size() const { return Spec().Size(); }
template <typename T2>
NETGEN_INLINE bool Contains(const T2 & el) const
{
for (size_t i = 0; i < Size(); i++)
if (Spec()[i] == el)
return true;
return false;
}
static constexpr size_t ILLEGAL_POSITION = size_t(-1);
template <typename T2>
NETGEN_INLINE size_t Pos(const T2 & el) const
{
for (size_t i = 0; i < Size(); i++)
if (Spec()[i] == el)
return i;
return ILLEGAL_POSITION;
}
template <typename T2>
NETGEN_INLINE size_t PosSure(const T2 & el) const
{
for (size_t i = 0; ; i++)
if (Spec()[i] == el)
return i;
}
// NETGEN_INLINE auto & operator[] (size_t i) { return Spec()[i]; }
NETGEN_INLINE auto operator[] (size_t i) const { return Spec()[i]; }
// NETGEN_INLINE auto begin() const { return Spec().begin(); }
// NETGEN_INLINE auto end() const { return Spec().end(); }
NETGEN_INLINE auto begin () const { return AOWrapperIterator<BaseArrayObject> (*this, 0); }
NETGEN_INLINE auto end () const { return AOWrapperIterator<BaseArrayObject> (*this, Size()); }
};
template <typename T>
class AOWrapper : public BaseArrayObject<AOWrapper<T>>
{
T ar;
public:
NETGEN_INLINE AOWrapper (T aar) : ar(aar) { ; }
NETGEN_INLINE operator T () const { return ar; }
NETGEN_INLINE size_t Size() const { return ar.Size(); }
NETGEN_INLINE auto operator[] (size_t i) { return ar[i]; }
NETGEN_INLINE auto operator[] (size_t i) const { return ar[i]; }
NETGEN_INLINE AOWrapperIterator<AOWrapper> begin () const { return AOWrapperIterator<AOWrapper> (*this, 0); }
NETGEN_INLINE AOWrapperIterator<AOWrapper> end () const { return AOWrapperIterator<AOWrapper> (*this, Size()); }
};
template <typename T>
NETGEN_INLINE AOWrapper<const T&> ArrayObject (const T & ar)
{
return AOWrapper<const T&> (ar);
}
template <typename T>
NETGEN_INLINE AOWrapper<T> ArrayObject (T && ar)
{
return AOWrapper<T> (ar);
}
template <typename FUNC>
auto ArrayObject (size_t s, FUNC f)
{
class Dummy
{
size_t s;
FUNC f;
public:
Dummy (size_t _s, FUNC _f) : s(_s), f(_f) { ; }
size_t Size() const { return s; }
auto operator[] (size_t i) const { return f(i); }
};
return ArrayObject(Dummy(s,f));
}
template <typename T, typename FUNC>
auto Substitute (const BaseArrayObject<T> & ao, FUNC f)
{
return ArrayObject(ao.Size(),
[&ao,f] (size_t i) { return f(ao[i]); });
}
/**
nothing more but a new type for a C array.
return value for Addr - operator of array
*/
template <class T>
class CArray
{
protected:
/// the data
T * data;
public:
/// initialize array
NETGEN_INLINE CArray () { data = 0; }
/// provide size and memory
NETGEN_INLINE CArray (T * adata)
: data(adata) { ; }
/// Access array
NETGEN_INLINE T & operator[] (size_t i) const
{
return data[i];
}
NETGEN_INLINE operator T* () const { return data; }
};
template <typename T>
constexpr T IndexBASE () { return T(0); }
template <class T, class IndexType = size_t> class FlatArray;
template <typename TELEM, typename IndexType>
class ArrayIterator
{
FlatArray<TELEM, IndexType> ar;
IndexType ind;
public:
NETGEN_INLINE ArrayIterator (FlatArray<TELEM, IndexType> aar, IndexType ai)
: ar(aar), ind(ai) { ; }
NETGEN_INLINE ArrayIterator operator++ (int)
{ return ArrayIterator(ar, ind++); }
NETGEN_INLINE ArrayIterator operator++ ()
{ return ArrayIterator(ar, ++ind); }
// NETGEN_INLINE const TELEM & operator*() const { return ar[ind]; }
// NETGEN_INLINE TELEM & operator*() { return ar[ind]; }
NETGEN_INLINE auto operator*() const -> decltype(ar[ind]) { return ar[ind]; }
NETGEN_INLINE auto operator*() -> decltype(ar[ind]) { return ar[ind]; }
NETGEN_INLINE bool operator != (ArrayIterator d2) { return ind != d2.ind; }
NETGEN_INLINE bool operator == (ArrayIterator d2) { return ind == d2.ind; }
};
template <typename TSIZE>
class ArrayRangeIterator
{
TSIZE ind;
public:
NETGEN_INLINE ArrayRangeIterator (TSIZE ai) : ind(ai) { ; }
NETGEN_INLINE ArrayRangeIterator operator++ (int) { return ind++; }
NETGEN_INLINE ArrayRangeIterator operator++ () { return ++ind; }
NETGEN_INLINE TSIZE operator*() const { return ind; }
NETGEN_INLINE TSIZE Index() { return ind; }
NETGEN_INLINE operator TSIZE () const { return ind; }
NETGEN_INLINE bool operator != (ArrayRangeIterator d2) { return ind != d2.ind; }
NETGEN_INLINE bool operator == (ArrayRangeIterator d2) { return ind == d2.ind; }
};
/// a range of integers
template <typename T>
class T_Range : public BaseArrayObject <T_Range<T>>
{
T first, next;
public:
NETGEN_INLINE T_Range () { ; }
NETGEN_INLINE T_Range (T n) : first(0), next(n) {;}
NETGEN_INLINE T_Range (T f, T n) : first(f), next(n) {;}
template <typename T2>
NETGEN_INLINE T_Range(T_Range<T2> r2) : first(r2.First()), next(r2.Next()) { ; }
NETGEN_INLINE T First() const { return first; }
NETGEN_INLINE T Next() const { return next; }
NETGEN_INLINE T & First() { return first; }
NETGEN_INLINE T & Next() { return next; }
NETGEN_INLINE auto Size() const { return next-first; }
NETGEN_INLINE T operator[] (size_t i) const { return first+i; }
NETGEN_INLINE bool Contains (T i) const { return ((i >= first) && (i < next)); }
NETGEN_INLINE T_Range Modify(int inc_beg, int inc_end) const
{ return T_Range(first+inc_beg, next+inc_end); }
NETGEN_INLINE ArrayRangeIterator<T> begin() const { return first; }
NETGEN_INLINE ArrayRangeIterator<T> end() const { return next; }
T_Range Split (size_t nr, int tot) const
{
T diff = next-first;
return T_Range (first + nr * diff / tot,
first + (nr+1) * diff / tot);
}
// NETGEN_INLINE operator IntRange () const { return IntRange(first,next); }
};
using IntRange = T_Range<size_t>;
template <typename T>
NETGEN_INLINE T_Range<T> Range (T a, T b)
{
return T_Range<T>(a,b);
}
template<typename T>
NETGEN_INLINE auto Range (const T& ao)
-> typename std::enable_if<has_range<T>, decltype(std::declval<T>().Range())>::type
{ return ao.Range(); }
template <typename T>
NETGEN_INLINE T_Range<T> Range_impl (T n, std::true_type)
{
return T_Range<T> (0, n);
}
template <typename TA>
NETGEN_INLINE auto Range_impl (const TA & ao, std::false_type)
-> T_Range<index_type<TA>>
{
return T_Range<index_type<TA>> (IndexBASE<index_type<TA>>(),
IndexBASE<index_type<TA>>() + index_type<TA>(ao.Size()));
}
/*
Range(obj) will create a range in using the following steps:
* if obj is an integral type it will create T_Range<type(obj)>(0, obj)
* if obj has a function Range() it will return obj.Range()
* if obj has a typedef index_type it will return
T_Range<index_type>(IndexBASE<index_type>(), IndexBASE<index_type>() + index_type(obj.Size()))
* else it will return T_Range<size_t> (0, obj.Size())
*/
template <typename T>
auto Range(const T & x)
-> typename std::enable_if<std::is_integral_v<T> || !has_range<T>,
decltype(Range_impl(x, std::is_integral<T>()))>::type {
return Range_impl(x, std::is_integral<T>());
}
NETGEN_INLINE IntRange operator+ (const IntRange & range, int shift)
{
return IntRange (range.First()+shift, range.Next()+shift);
}
NETGEN_INLINE IntRange operator+ (int shift, const IntRange & range)
{
return IntRange (range.First()+shift, range.Next()+shift);
}
NETGEN_INLINE IntRange operator* (int scale, const IntRange & range)
{
return IntRange (scale*range.First(), scale*range.Next());
}
NETGEN_INLINE IntRange operator* (const IntRange & range, int scale)
{
return IntRange (scale*range.First(), scale*range.Next());
}
template <typename TI>
inline ostream & operator<< (ostream & s, T_Range<TI> ir)
{
s << "[" << ir.First() << "," << ir.Next() << ")";
return s;
}
template <typename ... ARGS>
ostream & operator<< (ostream & ost, Tuple<IntRange, ARGS...> tup)
{
ost << tup.Head() << ", " << tup.Tail();
return ost;
}
template <typename T>
inline ostream & operator<< (ostream & ost, const BaseArrayObject<T> & array)
{
for (auto i : Range(array.Size()))
ost << i << ":" << array[i] << std::endl;
return ost;
}
template <typename T, typename TI, typename INDEX_ARRAY>
class IndirectArray : public BaseArrayObject<IndirectArray<T, TI, INDEX_ARRAY> >
{
FlatArray<T,TI> ba;
const INDEX_ARRAY & ia;
public:
NETGEN_INLINE IndirectArray (FlatArray<T,TI> aba,
const INDEX_ARRAY & aia)
: ba(aba), ia(aia) { ; }
NETGEN_INLINE size_t Size() const { return ia.Size(); }
NETGEN_INLINE T & operator[] (size_t i) const { return ba[ia[i]]; }
// NETGEN_INLINE T & operator[] (size_t i) { return ba[ia[i]]; }
NETGEN_INLINE IndirectArray operator= (const T & val)
{
for (auto i : Range(Size()))
(*this)[i] = val;
return IndirectArray (ba, ia);
}
template <typename T2>
NETGEN_INLINE IndirectArray operator= (const BaseArrayObject<T2> & a2)
{
for (auto i : Range(Size()))
(*this)[i] = a2[i];
return IndirectArray (ba, ia);
}
NETGEN_INLINE AOWrapperIterator<IndirectArray> begin() const { return { *this, 0 }; }
NETGEN_INLINE AOWrapperIterator<IndirectArray> end() const { return { *this, Size() }; }
};
/**
A simple array container.
Array represented by size and data-pointer.
No memory allocation and deallocation, must be provided by user.
Helper functions for printing.
Optional range check by macro NETGEN_CHECK_RANGE
*/
template <class T, class IndexType>
class FlatArray : public BaseArrayObject<FlatArray<T,IndexType> >
{
protected:
static constexpr IndexType BASE = IndexBASE<IndexType>();
/// the size
size_t size;
/// the data
T * __restrict data;
public:
typedef T value_type;
typedef IndexType index_type;
using BaseArrayObject<FlatArray>::ILLEGAL_POSITION;
/// initialize array
NETGEN_INLINE FlatArray () = default;
// { ; } // size = 0; data = 0; }
/// copy constructor allows size-type conversion
NETGEN_INLINE FlatArray (const FlatArray & a2) = default;
// : size(a2.Size()), data(a2.data) { ; }
/// provide size and memory
NETGEN_INLINE FlatArray (size_t asize, T * adata)
: size(asize), data(adata) { ; }
/// memory from local heap
NETGEN_INLINE FlatArray(size_t asize, Allocator & lh)
: size(asize), data(new (lh) T[asize])
{ ; }
NETGEN_INLINE FlatArray(size_t asize, LocalHeap & lh)
: size(asize), data (lh.Alloc<T> (asize))
{ ; }
/// the size
NETGEN_INLINE size_t Size() const { return size; }
/// the data
NETGEN_INLINE T* Data() const { return data; }
/// Fill array with value val
NETGEN_INLINE const FlatArray & operator= (const T & val) const
{
size_t hsize = size;
T * hdata = data;
for (size_t i = 0; i < hsize; i++)
hdata[i] = val;
return *this;
}
/// copies array
NETGEN_INLINE const FlatArray & operator= (const FlatArray & a2) const
{
size_t hsize = size;
T * hdata = data;
for (size_t i = 0; i < hsize; i++) hdata[i] = a2.data[i];
return *this;
}
template <typename T2>
NETGEN_INLINE const FlatArray & operator= (const BaseArrayObject<T2> & a2) const
{
size_t hsize = size;
T * hdata = data;
auto p2 = a2.begin();
for (size_t i = 0; i < hsize; i++, p2++) hdata[i] = *p2;
return *this;
}
NETGEN_INLINE const FlatArray & operator= (const std::function<T(int)> & func) const
{
for (size_t i = 0; i < size; i++)
data[i] = func(i+BASE);
return *this;
}
// template <typename T2>
// const FlatArray operator= (ParallelValue<T2> val);
// template <typename T2>
// const FlatArray operator= (ParallelFunction<T2> val);
/// copies pointers
NETGEN_INLINE const FlatArray & Assign (const FlatArray & a2)
{
size = a2.size;
data = a2.data;
return *this;
}
/// assigns memory from local heap
NETGEN_INLINE const FlatArray & Assign (size_t asize, LocalHeap & lh)
{
size = asize;
data = lh.Alloc<T> (asize);
return *this;
}
/// Access array. range check by macro NETGEN_CHECK_RANGE
NETGEN_INLINE T & operator[] (IndexType i) const
{
NETGEN_CHECK_RANGE(i,BASE,size+BASE);
return data[i-BASE];
}
NETGEN_INLINE T_Range<index_type> Range () const
{
return T_Range<index_type> (BASE, size+BASE);
}
NETGEN_INLINE const CArray<T> Addr (size_t pos) const
{
return CArray<T> (data+pos-BASE);
}
// const CArray<T> operator+ (int pos)
// { return CArray<T> (data+pos); }
NETGEN_INLINE T * operator+ (size_t pos) const { return data+pos; }
/// access last element. check by macro NETGEN_CHECK_RANGE
T & Last () const
{
NETGEN_CHECK_RANGE(size-1,0,size);
return data[size-1];
}
/// takes sub-array starting from position pos
NETGEN_INLINE const FlatArray<T> Part (size_t pos)
{
return FlatArray<T> (size-pos, data+pos);
}
/// takes subsize elements starting from position pos
NETGEN_INLINE const FlatArray<T> Part (size_t pos, size_t subsize)
{
return FlatArray<T> (subsize, data+pos);
}
/// takes range starting from position start of end-start elements
NETGEN_INLINE FlatArray<T> Range (size_t start, size_t end) const
{
return FlatArray<T> (end-start, data+start);
}
/// takes range starting from position start of end-start elements
NETGEN_INLINE FlatArray<T> Range (T_Range<size_t> range) const
{
return FlatArray<T> (range.Size(), data+range.First());
}
/// takes range starting from position start of end-start elements
NETGEN_INLINE const FlatArray<T> operator[] (T_Range<IndexType> range) const
{
return FlatArray<T> (range.Size(), data+range.First());
}
template <typename TI1>
auto operator[] (const BaseArrayObject<TI1> & ind_array) const
{
return IndirectArray<T, IndexType, BaseArrayObject<TI1> > (*this, ind_array);
}
/// first position of element elem, returns -1 if element not contained in array
NETGEN_INLINE size_t Pos(const T & el) const
{
for (size_t i = 0; i < Size(); i++)
if (data[i] == el)
return i;
return ILLEGAL_POSITION;
}
/// does the array contain element elem ?
NETGEN_INLINE bool Contains(const T & elem) const
{
return Pos(elem) != ILLEGAL_POSITION;
}
auto begin() const { return ArrayIterator<T,IndexType> (*this, BASE); }
auto end() const { return ArrayIterator<T,IndexType> (*this, size+BASE); }
};
template <typename T>
FlatArray<T> View (FlatArray<T> fa) { return fa; }
template <typename T, typename TI>
auto Max (FlatArray<T,TI> array, T max = std::numeric_limits<T>::min()) -> T
{
for (auto & v : array)
if (v > max) max = v;
return max;
}
template <typename T, typename TI>
auto Min (FlatArray<T,TI> array, T min = std::numeric_limits<T>::max()) -> T
{
for (auto & v : array)
if (v < min) min = v;
return min;
}
/// print array
template <class T, class TIND>
inline ostream & operator<< (ostream & s, const FlatArray<T, TIND> & a)
{
for (auto i : a.Range())
s << i << ": " << a[i] << "\n";
return s;
}
/// have arrays the same contents ?
template <class T1, class T2>
inline bool operator== (const FlatArray<T1> & a1,
const FlatArray<T2> & a2)
{
if (a1.Size () != a2.Size()) return 0;
for (size_t i = 0; i < a1.Size(); i++)
if (a1[i] != a2[i]) return false;
return true;
}
/**
Dynamic array container.
Array<T> is an automatically increasing array container.
The allocated memory doubles on overflow.
Either the container takes care of memory allocation and deallocation,
or the user provides one block of data.
*/
template <class T, class IndexType = size_t>
class Array : public FlatArray<T, IndexType>
{
protected:
/// physical size of array
size_t allocsize;
/// that's the data we have to delete, nullptr for not owning the memory
T * mem_to_delete;
int mem_tracing_id = 0;
using FlatArray<T,IndexType>::size;
using FlatArray<T,IndexType>::data;
using FlatArray<T,IndexType>::BASE;
public:
using index_type = typename FlatArray<T, IndexType>::index_type;
/// Generate array of logical and physical size asize
NETGEN_INLINE explicit Array()
: FlatArray<T,IndexType> (0, nullptr)
{
allocsize = 0;
mem_to_delete = nullptr;
}
NETGEN_INLINE explicit Array(size_t asize)
: FlatArray<T,IndexType> (asize, new T[asize])
{
allocsize = asize;
mem_to_delete = data;
}
/// Generate array in user data
NETGEN_INLINE Array(size_t asize, T* adata, bool ownMemory = false)
: FlatArray<T> (asize, adata)
{
allocsize = asize;
if(ownMemory)
mem_to_delete = adata;
else
mem_to_delete = nullptr;
}
/// Generate array in user data
template <typename ALLOCATOR>
NETGEN_INLINE Array(size_t asize, ALLOCATOR & lh)
: FlatArray<T> (asize, lh)
{
allocsize = asize;
mem_to_delete = nullptr;
}
NETGEN_INLINE Array (Array && a2)
{
TraceMemorySwap(mem_tracing_id, sizeof(T)*allocsize, a2.mem_tracing_id, sizeof(T)*a2.allocsize);
size = a2.size;
data = a2.data;
allocsize = a2.allocsize;
mem_to_delete = a2.mem_to_delete;
a2.size = 0;
a2.allocsize = 0;
a2.data = nullptr;
a2.mem_to_delete = nullptr;
}
/// array copy
NETGEN_INLINE explicit Array (const Array & a2)
: FlatArray<T,IndexType> (a2.Size(), a2.Size() ? new T[a2.Size()] : nullptr)
{
if constexpr (std::is_copy_assignable<T>::value)
{
allocsize = size;
mem_to_delete = data;
for (size_t i = 0; i < size; i++)
data[i] = a2.data[i];
}
else
throw Exception(std::string("cannot copy-construct Array of type ") + typeid(T).name());
}
template <typename TA>
explicit Array (const BaseArrayObject<TA> & a2)
: FlatArray<T,IndexType> (a2.Size(),
a2.Size() ? new T[a2.Size()] : nullptr)
{
allocsize = size;
mem_to_delete = data;
/*
for (size_t i = 0; i < size; i++)
data[i] = a2[i];
*/
auto p2 = a2.begin();
for (size_t i = 0; i < size; i++, p2++)
data[i] = *p2;
}
Array (std::initializer_list<T> list)
: FlatArray<T> (list.size(),
list.size() ? new T[list.size()] : NULL)
{
allocsize = size;
mem_to_delete = data;
size_t cnt = 0;
for (auto val : list)
data[cnt++] = val;
}
/// array merge-copy
explicit Array (const Array<T> & a2, const Array<T> & a3)
: FlatArray<T> (a2.Size()+a3.Size(),
a2.Size()+a3.Size() ? new T[a2.Size()+a3.Size()] : 0)
{
allocsize = size;
mem_to_delete = data;
for(size_t i = 0; i < a2.Size(); i++)
data[i] = a2[i];
for (size_t i = a2.Size(), j=0; i < size; i++,j++)
data[i] = a3[j];
}
/// if responsible, deletes memory
NETGEN_INLINE ~Array()
{
delete [] mem_to_delete;
TraceMemoryFree(mem_tracing_id, sizeof(T)*allocsize);
}
// Only provide this function if T is archivable
template<typename T2=T>
auto DoArchive(Archive& archive) -> typename std::enable_if_t<is_archivable<T2>, void>
{
if(archive.Output())
archive << size;
else
{
size_t s;
archive & s;
SetSize(s);
}
archive.Do(data, size);
}
/// we tell the compiler that there is no need for deleting the array ..
NETGEN_INLINE void NothingToDelete ()
{
mem_to_delete = nullptr;
}
/// Change logical size. If necessary, do reallocation. Keeps contents.
NETGEN_INLINE void SetSize(size_t nsize)
{
if (nsize > allocsize) ReSize (nsize);
size = nsize;
}
///
NETGEN_INLINE void SetSize0()
{
size = 0;
}
/// Change physical size. Keeps logical size. Keeps contents.
NETGEN_INLINE void SetAllocSize (size_t nallocsize)
{
if (nallocsize > allocsize)
ReSize (nallocsize);
}
/// Change physical size. Keeps logical size. Keeps contents.
NETGEN_INLINE size_t AllocSize () const
{
return allocsize;
}
/// assigns memory from local heap
NETGEN_INLINE const Array & Assign (size_t asize, LocalHeap & lh)
{
delete [] mem_to_delete;
TraceMemoryFree(mem_tracing_id, sizeof(T)*allocsize);
size = allocsize = asize;
data = lh.Alloc<T> (asize);
mem_to_delete = nullptr;
return *this;
}
/// Add element at end of array. reallocation if necessary.
/// Returns index of new element.
NETGEN_INLINE index_type Append (const T & el)
{
if (size == allocsize)
ReSize (size+1);
data[size] = el;
return BASE + size++;
}
/// Add element at end of array. reallocation not necessary.
/// Returns index of new element.
NETGEN_INLINE index_type AppendHaveMem (const T & el)
{
NETGEN_CHECK_RANGE(size, 0, allocsize);
data[size] = el;
return BASE + size++;
}
/// Add element at end of array. reallocation if necessary.
/// Returns index of new element.
NETGEN_INLINE index_type Append (T && el)
{
if (size == allocsize)
ReSize (size+1);
data[size] = std::move(el);
return BASE + size++;
}
// Add elements of initializer list to end of array. Reallocation if necessary.
NETGEN_INLINE void Append(std::initializer_list<T> lst)
{
if(allocsize < size + lst.size())
ReSize(size+lst.size());
for(auto val : lst)
data[size++] = val;
}
/// Add element at end of array. reallocation if necessary.
NETGEN_INLINE void Insert (size_t pos, const T & el)
{
if (size == allocsize)
ReSize (size+1);
for (size_t i = size; i > pos; i--)
data[i] = data[i-1];
data[pos] = el;
size++;
}
NETGEN_INLINE Array & operator += (const T & el)
{
Append (el);
return *this;
}
/// Append array at end of array. reallocation if necessary.
NETGEN_INLINE void Append (FlatArray<T> source)
{
if(size + source.Size() >= allocsize)
ReSize (size + source.Size() + 1);
for(size_t i = size, j=0; j<source.Size(); i++, j++)
data[i] = source[j];
size += source.Size();
}
/// Delete element i. Move last element to position i.
NETGEN_INLINE void DeleteElement (size_t i)
{
NETGEN_CHECK_RANGE(i,BASE,BASE+size);
data[i-BASE] = std::move(data[size-1]);
size--;
}
/// Delete element i. Move all remaining elements forward
NETGEN_INLINE void RemoveElement (size_t i)
{
NETGEN_CHECK_RANGE(i, BASE, BASE+size);
for(size_t j = i; j < this->size-1; j++)
this->data[j] = this->data[j+1];
this->size--;
}
/// Delete last element.
NETGEN_INLINE void DeleteLast ()
{
NETGEN_CHECK_RANGE(size-1,0,size);
size--;
}
/// Deallocate memory
NETGEN_INLINE void DeleteAll ()
{
delete [] mem_to_delete;
TraceMemoryFree(mem_tracing_id, sizeof(T)*allocsize);
mem_to_delete = NULL;
data = 0;
size = allocsize = 0;
}
/// Fill array with val
NETGEN_INLINE Array & operator= (const T & val)
{
FlatArray<T,IndexType>::operator= (val);
return *this;
}
/// array copy
NETGEN_INLINE Array & operator= (const Array & a2)
{
if constexpr (std::is_copy_assignable<T>::value)
{
SetSize0 ();
SetSize (a2.Size());
for (size_t i = 0; i < size; i++)
data[i] = a2.data[i];
return *this;
}
else
throw Exception(std::string("cannot copy Array of type ") + typeid(T).name());
}
/// steal array
NETGEN_INLINE Array & operator= (Array && a2)
{
TraceMemorySwap(mem_tracing_id, sizeof(T)*allocsize, a2.mem_tracing_id, sizeof(T)*a2.allocsize);
ngcore::Swap (size, a2.size);
ngcore::Swap (data, a2.data);
ngcore::Swap (allocsize, a2.allocsize);
ngcore::Swap (mem_to_delete, a2.mem_to_delete);
return *this;
}
/// array copy
NETGEN_INLINE Array & operator= (const FlatArray<T> & a2)
{
SetSize (a2.Size());
for (size_t i = 0; i < size; i++)
data[i] = a2[i];
return *this;
}
/*
/// fill array with first, first+1, ...
Array & operator= (const IntRange & range)
{
SetSize (range.Size());
for (int i = 0; i < size; i++)
(*this)[i] = range.First()+i;
return *this;
}
*/
template <typename T2>
Array & operator= (const BaseArrayObject<T2> & a2)
{
size_t newsize = a2.Spec().Size();
SetSize0 ();
SetSize (newsize);
// for (size_t i = 0; i < newsize; i++)
// (*this)[i] = a2.Spec()[i];
size_t i = 0;
for (auto val : a2.Spec())
(*this)[i++] = val;
return *this;
}
template <typename ...ARGS>
Array & operator= (Tuple<ARGS...> tup)
{
SetSize (ArraySize (tup));
StoreToArray (*this, tup);
return *this;
}
Array & operator= (std::initializer_list<T> list)
{
*this = Array<T> (list);
return *this;
}
// template <typename T2>
// Array & operator= (ParallelValue<T2> val)
// {
// FlatArray<T>::operator= (val);
// return *this;
// }
// template <typename T2>
// Array & operator= (ParallelFunction<T2> val)
// {
// FlatArray<T>::operator= (val);
// return *this;
// }
NETGEN_INLINE void Swap (Array & b)
{
TraceMemorySwap(mem_tracing_id, sizeof(T)*allocsize, b.mem_tracing_id, sizeof(T)*b.allocsize);
ngcore::Swap (size, b.size);
ngcore::Swap (data, b.data);
ngcore::Swap (allocsize, b.allocsize);
ngcore::Swap (mem_to_delete, b.mem_to_delete);
}
NETGEN_INLINE void SetMemoryTracing (int mem_id)
{
if(!mem_tracing_id && mem_id)
TraceMemoryAlloc(mem_id, sizeof(T)*allocsize);
if(mem_tracing_id && !mem_id)
TraceMemoryFree(mem_tracing_id, sizeof(T)*allocsize);
mem_tracing_id = mem_id;
}
private:
/// resize array, at least to size minsize. copy contents
NETGEN_INLINE void ReSize (size_t minsize);
};
/// resize array, at least to size minsize. copy contents
template <class T, class IndexType>
NETGEN_INLINE void Array<T, IndexType> :: ReSize (size_t minsize)
{
size_t nsize = 2 * allocsize;
if (nsize < minsize) nsize = minsize;
T * hdata = data;
data = new T[nsize];
TraceMemoryAlloc(mem_tracing_id, sizeof(T)*nsize );
if (hdata)
{
size_t mins = (nsize < size) ? nsize : size;
#if defined(__GNUG__) && __GNUC__ < 5 && !defined(__clang__)
for (size_t i = 0; i < mins; i++) data[i] = std::move(hdata[i]);
#else
if (std::is_trivially_copyable<T>::value)
memcpy ((void*)data, hdata, sizeof(T)*mins);
else
for (size_t i = 0; i < mins; i++) data[i] = std::move(hdata[i]);
#endif
delete [] mem_to_delete;
TraceMemoryFree( mem_tracing_id, sizeof(T)*allocsize );
}
mem_to_delete = data;
allocsize = nsize;
}
//extern template class Array<int,int>;
/**
Array with static and dynamic memory management.
Declares a static array which size is given by the template parameter.
If the dynamic size fits into the static size, use static memory,
otherwise perform dynamic allocation
*/
template <class T, int S>
class ArrayMem : public Array<T>
{
T mem[S];
using Array<T>::size;
using Array<T>::allocsize;
using Array<T>::data;
using Array<T>::mem_to_delete;
// using Array<T>::ownmem;
public:
/// Generate array of logical and physical size asize
explicit ArrayMem(size_t asize = 0)
: Array<T> (S, mem)
{
size = asize;
if (asize > S)
{
data = new T[asize];
allocsize = size;
mem_to_delete = data;
}
}
/// copies from Array a2
explicit ArrayMem(const Array<T> & a2)
: Array<T> (S, (T*)mem)
{
Array<T>::operator= (a2);
}
/// copies from ArrayMem a2
explicit ArrayMem(const ArrayMem & a2)
: Array<T> (S, (T*)mem)
{
Array<T>::operator= (a2);
}
ArrayMem(ArrayMem && a2)
: Array<T> (a2.Size(), (T*)mem)
{
if (a2.mem_to_delete)
{
mem_to_delete = a2.mem_to_delete;
data = a2.data;
allocsize = a2.allocsize;
a2.mem_to_delete = nullptr;
a2.data = nullptr;
a2.size = 0;
}
else
{
allocsize = S;
for (auto i : ngcore::Range(size))
mem[i] = a2.mem[i];
}
}
ArrayMem (std::initializer_list<T> list)
: ArrayMem (list.size())
{
size_t cnt = 0;
for (auto val : list)
data[cnt++] = val;
}
ArrayMem & operator= (const T & val)
{
FlatArray<T>::operator= (val);
return *this;
}
ArrayMem & operator= (ArrayMem && a2)
{
ngcore::Swap (mem_to_delete, a2.mem_to_delete);
ngcore::Swap (allocsize, a2.allocsize);
ngcore::Swap (size, a2.size);
if (mem_to_delete==nullptr)
{
for (auto i : ngcore::Range(size))
mem[i] = std::move(a2.mem[i]);
data = mem;
}
else
ngcore::Swap (data, a2.data);
return *this;
}
/// array copy
ArrayMem & operator= (const FlatArray<T> & a2)
{
this->SetSize (a2.Size());
for (size_t i = 0; i < size; i++)
(*this)[i] = a2[i];
return *this;
}
template <typename T2>
ArrayMem & operator= (const BaseArrayObject<T2> & a2)
{
this->SetSize (a2.Spec().Size());
size_t i = 0;
for (auto val : a2.Spec())
(*this)[i++] = val;
return *this;
}
};
template <typename ... ARGS>
size_t ArraySize (Tuple<ARGS...> tup)
{ return 0;}
template <typename ... ARGS>
size_t ArraySize (Tuple<int,ARGS...> tup)
{ return 1+ArraySize(tup.Tail()); }
template <typename ... ARGS>
size_t ArraySize (Tuple<IntRange,ARGS...> tup)
{ return tup.Head().Size()+ArraySize(tup.Tail()); }
template <typename T, typename ... ARGS>
void StoreToArray (FlatArray<T> a, Tuple<ARGS...> tup) { ; }
template <typename T, typename ... ARGS>
void StoreToArray (FlatArray<T> a, Tuple<int,ARGS...> tup)
{
a[0] = tup.Head();
StoreToArray (a.Range(1, a.Size()), tup.Tail());
}
template <typename T, typename ... ARGS>
void StoreToArray (FlatArray<T> a, Tuple<IntRange,ARGS...> tup)
{
IntRange r = tup.Head();
a.Range(0,r.Size()) = r;
StoreToArray (a.Range(r.Size(), a.Size()), tup.Tail());
}
/*
template <typename T> template <typename ...ARGS>
NETGEN_INLINE Array<T> & Array<T> :: operator= (Tuple<ARGS...> tup)
{
SetSize (ArraySize (tup));
StoreToArray (*this, tup);
}
*/
/*
/// append integers to array
inline Array<int> & operator+= (Array<int> & array, const IntRange & range)
{
int oldsize = array.Size();
int s = range.Next() - range.First();
array.SetSize (oldsize+s);
for (int i = 0; i < s; i++)
array[oldsize+i] = range.First()+i;
return array;
}
*/
/*
template <typename T, typename T2>
inline Array<T> & operator+= (Array<T> & array, const BaseArrayObject<T2> & a2)
{
size_t oldsize = array.Size();
size_t s = a2.Spec().Size();
array.SetSize (oldsize+s);
for (size_t i = 0; i < s; i++)
array[oldsize+i] = a2.Spec()[i];
return array;
}
*/
template <typename T, typename T2>
inline Array<T> & operator+= (Array<T> & array, const BaseArrayObject<T2> & a2)
{
auto oldsize = array.Size();
auto s = a2.Spec().Size();
array.SetSize (oldsize+s);
for (auto val : a2.Spec())
array[oldsize++] = val;
return array;
}
/// bubble sort array
template <class T>
inline void BubbleSort (FlatArray<T> data)
{
T hv;
for (size_t i = 0; i < data.Size(); i++)
for (size_t j = i+1; j < data.Size(); j++)
if (data[i] > data[j])
{
hv = data[i];
data[i] = data[j];
data[j] = hv;
}
}
/// bubble sort array
template <class T, class S>
inline void BubbleSort (FlatArray<T> data, FlatArray<S> index)
{
for (size_t i = 0; i < data.Size(); i++)
for (size_t j = i+1; j < data.Size(); j++)
if (data[i] > data[j])
{
T hv = data[i];
data[i] = data[j];
data[j] = hv;
S hvs = index[i];
index[i] = index[j];
index[j] = hvs;
}
}
template <class T, typename TLESS>
void QuickSort (FlatArray<T> data, TLESS less)
{
if (data.Size() <= 1) return;
ptrdiff_t i = 0;
ptrdiff_t j = data.Size()-1;
T midval = data[ (i+j)/2 ];
do
{
while (less (data[i], midval)) i++;
while (less (midval, data[j])) j--;
if (i <= j)
{
Swap (data[i], data[j]);
i++; j--;
}
}
while (i <= j);
QuickSort (data.Range (0, j+1), less);
QuickSort (data.Range (i, data.Size()), less);
}
template <typename T>
NETGEN_INLINE bool DefaultLess (const T & a, const T & b)
{
return a < b;
}
template <typename T>
class DefaultLessCl
{
public:
bool operator() (const T & a, const T & b) const
{
return a < b;
}
};
template <class T>
NETGEN_INLINE void QuickSort (FlatArray<T> data)
{
QuickSort (data, DefaultLessCl<T>());
}
template <class T, typename TLESS>
void QuickSortI (FlatArray<T> data, FlatArray<int> index, TLESS less)
{
if (index.Size() <= 1) return;
ptrdiff_t i = 0;
ptrdiff_t j = index.Size()-1;
int midval = index[ (i+j)/2 ];
do
{
while (less (data[index[i]],data[midval]) ) i++;
while (less (data[midval], data[index[j]])) j--;
if (i <= j)
{
Swap (index[i], index[j]);
i++; j--;
}
}
while (i <= j);
QuickSortI (data, index.Range (0, j+1), less);
QuickSortI (data, index.Range (i, index.Size()), less);
}
template <class T>
NETGEN_INLINE void QuickSortI (FlatArray<T> data, FlatArray<int> index)
{
QuickSortI (data, index, DefaultLessCl<T>());
}
template <typename T>
NETGEN_INLINE T xxxRemoveRef (const T & x)
{
return x;
}
template <class TA1, class TA2>
class SumArray : public BaseArrayObject<SumArray<TA1,TA2>>
{
const TA1 & a1;
const TA2 & a2;
public:
SumArray (const TA1 & aa1, const TA2 & aa2) : a1(aa1), a2(aa2) { ; }
size_t Size() const { return a1.Size()+a2.Size(); }
auto operator[] (size_t i) const -> decltype (xxxRemoveRef (a1[0]))
{
return (i < a1.Size()) ? a1[i] : a2[i-a1.Size()];
}
};
template <class TA1, class TA2>
SumArray<TA1,TA2> operator+ (const BaseArrayObject<TA1> & a1,
const BaseArrayObject<TA2> & a2)
{
return SumArray<TA1,TA2> (a1.Spec(), a2.Spec());
}
// head-tail array
template <size_t S, typename T>
class HTArray
{
HTArray<S-1,T> tail;
T head;
public:
HTArray () = default;
HTArray (const HTArray &) = default;
HTArray & operator= (const HTArray &) = default;
T * Ptr () { return tail.Ptr(); }
T & operator[] (size_t i) { return Ptr()[i]; }
const T * Ptr () const { return tail.Ptr(); }
const T & operator[] (size_t i) const { return Ptr()[i]; }
template <int NR>
T & Elem() { return (NR==S-1) ? head : tail.template Elem<NR>(); }
};
template <typename T>
class HTArray<1,T>
{
T head;
public:
HTArray () = default;
HTArray (const HTArray &) = default;
HTArray & operator= (const HTArray &) = default;
T * Ptr () { return &head; }
T & operator[] (size_t i) { return Ptr()[i]; }
const T * Ptr () const { return &head; }
const T & operator[] (size_t i) const { return Ptr()[i]; }
template <int NR>
T & Elem()
{
// assert(NR==0, "HTArray index error");
return head;
}
};
template <typename T>
class HTArray<0,T>
{
// T head; // dummy variable
public:
HTArray () = default;
HTArray (const HTArray &) = default;
HTArray & operator= (const HTArray &) = default;
/*
T * Ptr () { return &head; }
T & operator[] (size_t i) { return Ptr()[i]; }
const T * Ptr () const { return &head; }
const T & operator[] (size_t i) const { return Ptr()[i]; }
template <int NR>
T & Elem()
{
// assert(false, "HTArray index error");
return head;
}
*/
// T * Ptr () { return (T*)(void*)&head; }
T * Ptr () { return (T*)(void*)this; }
T & operator[] (size_t i) { return Ptr()[i]; }
// const T * Ptr () const { return (const T*)(const void*)&head; }
const T * Ptr () const { return (const T*)(const void*)this; }
const T & operator[] (size_t i) const { return Ptr()[i]; }
template <int NR>
T & Elem()
{
throw Exception("illegal HTArray<0>::Elem<0>");
}
};
template<size_t S, typename T>
const T * operator+ (const HTArray<S,T> & ar, size_t i)
{
return ar.Ptr()+i;
}
template<size_t S, typename T>
T * operator+ (HTArray<S,T> & ar, size_t i)
{
return ar.Ptr()+i;
}
}
#endif // NETGEN_CORE_ARRAY_HPP