netgen/libsrc/meshing/basegeom.cpp

1365 lines
44 KiB
C++

#include <set>
#include <mystdlib.h>
#include "meshing.hpp"
#include <core/register_archive.hpp>
namespace netgen
{
struct PointTree
{
std::map<int, BoxTree<3>> tree;
Box<3> bounding_box;
PointTree( Box<3> bb ) : bounding_box(bb) {}
void Insert(Point<3> p, PointIndex n, int index)
{
if(tree.count(index) == 0)
tree.emplace(index, bounding_box);
tree.at(index).Insert(p, p, n);
}
PointIndex Find(Point<3> p, int index) const
{
ArrayMem<int, 1> points;
tree.at(index).GetIntersecting(p, p, points);
if(points.Size()==0)
throw Exception("cannot find mapped point " + ToString(p));
return points[0];
}
};
DLL_HEADER GeometryRegisterArray geometryregister;
//DLL_HEADER NgArray<GeometryRegister*> geometryregister;
GeometryRegister :: ~GeometryRegister()
{ ; }
bool GeometryShape :: IsMappedShape( const GeometryShape & other_, const Transformation<3> & trafo, double tol ) const
{
throw Exception("GeometryShape::IsMappedShape not implemented for class " + Demangle(typeid(this).name()));
}
bool GeometryVertex :: IsMappedShape( const GeometryShape & other_, const Transformation<3> & trafo, double tol ) const
{
const auto other_ptr = dynamic_cast<const GeometryVertex*>(&other_);
if(!other_ptr)
return false;
return Dist(trafo(GetPoint()), other_ptr->GetPoint()) < tol;
}
bool GeometryEdge :: IsMappedShape( const GeometryShape & other_, const Transformation<3> & trafo, double tol ) const
{
const auto other_ptr = dynamic_cast<const GeometryEdge*>(&other_);
if(!other_ptr)
return false;
auto & e = *other_ptr;
if (IsDegenerated(tol) || e.IsDegenerated(tol))
return false;
if(tol < Dist(trafo(GetCenter()), e.GetCenter()))
return false;
auto v0 = trafo(GetStartVertex().GetPoint());
auto v1 = trafo(GetEndVertex().GetPoint());
auto w0 = e.GetStartVertex().GetPoint();
auto w1 = e.GetEndVertex().GetPoint();
// have two closed edges, use midpoints to compare
if(Dist(v0,v1) < tol && Dist(w0,w1) < tol)
{
v1 = trafo(GetPoint(0.5));
w1 = other_ptr->GetPoint(0.5);
}
return( (Dist(v0, w0) < tol && Dist(v1, w1) < tol) ||
(Dist(v0, w1) < tol && Dist(v1, w0) < tol) );
}
bool GeometryFace :: IsMappedShape( const GeometryShape & other_, const Transformation<3> & trafo, double tol ) const
{
const auto other_ptr = dynamic_cast<const GeometryFace*>(&other_);
if(!other_ptr)
return false;
auto & f = *other_ptr;
if(tol < Dist(GetCenter(), f.GetCenter()))
return false;
// simple check: check if there is a bijective mapping of mapped edges
auto & other_edges = f.edges;
if(edges.Size() != other_edges.Size())
return false;
auto nedges = edges.Size();
Array<bool> is_mapped(nedges);
is_mapped = false;
for(auto e : edges)
{
int found_mapping = 0;
for(auto other_e : other_edges)
if(e->IsMappedShape(*other_e, trafo, tol))
found_mapping++;
if(found_mapping != 1)
return false;
}
return true;
}
bool GeometryFace :: IsConnectingCloseSurfaces() const
{
std::map<const GeometryShape*, bool> verts;
for(const auto& edge : edges)
{
verts[&edge->GetStartVertex()] = false;
verts[&edge->GetEndVertex()] = false;
}
for(const auto& [v, is_mapped] : verts)
{
if(is_mapped)
continue;
for(const auto& v_ident : v->identifications)
{
const auto& other = v_ident.to == v ? v_ident.from : v_ident.to;
if(v_ident.type == Identifications::CLOSESURFACES &&
verts.count(other))
{
verts[v] = true;
verts[other] = true;
}
}
}
for(auto& [v, is_mapped] : verts)
if(!is_mapped)
return false;
return true;
}
void GeometryFace :: RestrictHTrig(Mesh& mesh,
const PointGeomInfo& gi0,
const PointGeomInfo& gi1,
const PointGeomInfo& gi2,
const MeshingParameters& mparam,
int depth, double h) const
{
auto p0 = GetPoint(gi0);
auto p1 = GetPoint(gi1);
auto p2 = GetPoint(gi2);
auto longest = (p0-p1).Length();
int cutedge = 2;
if(auto len = (p0-p2).Length(); len > longest)
{
longest = len;
cutedge = 1;
}
if(auto len = (p1-p2).Length(); len > longest)
{
longest = len;
cutedge = 0;
}
PointGeomInfo gi_mid;
gi_mid.u = (gi0.u + gi1.u + gi2.u)/3;
gi_mid.v = (gi0.v + gi1.v + gi2.v)/3;
if(depth % 3 == 0)
{
double curvature = 0.;
curvature = max({curvature, GetCurvature(gi_mid),
GetCurvature(gi0), GetCurvature(gi1),
GetCurvature(gi2)});
if(curvature < 1e-3)
return;
double kappa = curvature * mparam.curvaturesafety;
h = mparam.maxh * kappa < 1 ? mparam.maxh : 1./kappa;
if(h < 1e-4 * longest)
return;
}
if(h < longest && depth < 10)
{
if(cutedge == 0)
{
PointGeomInfo gi_m;
gi_m.u = 0.5 * (gi1.u + gi2.u);
gi_m.v = 0.5 * (gi1.v + gi2.v);
RestrictHTrig(mesh, gi_m, gi2, gi0, mparam, depth+1, h);
RestrictHTrig(mesh, gi_m, gi0, gi1, mparam, depth+1, h);
}
else if(cutedge == 1)
{
PointGeomInfo gi_m;
gi_m.u = 0.5 * (gi0.u + gi2.u);
gi_m.v = 0.5 * (gi0.v + gi2.v);
RestrictHTrig(mesh, gi_m, gi1, gi2, mparam, depth+1, h);
RestrictHTrig(mesh, gi_m, gi0, gi1, mparam, depth+1, h);
}
else if(cutedge == 2)
{
PointGeomInfo gi_m;
gi_m.u = 0.5 * (gi0.u + gi1.u);
gi_m.v = 0.5 * (gi0.v + gi1.v);
RestrictHTrig(mesh, gi_m, gi1, gi2, mparam, depth+1, h);
RestrictHTrig(mesh, gi_m, gi2, gi0, mparam, depth+1, h);
}
}
else
{
auto pmid = GetPoint(gi_mid);
for(const auto& p : {p0, p1, p2, pmid})
mesh.RestrictLocalH(p, h);
}
}
namespace {
struct Line
{
Point<3> p0, p1;
inline double Length() const { return (p1-p0).Length(); }
inline double Dist(const Line& other) const
{
Vec<3> n = p1-p0;
Vec<3> q = other.p1-other.p0;
double nq = n*q;
Point<3> p = p0 + 0.5*n;
double lambda = (p-other.p0)*n / (nq + 1e-10);
if (lambda >= 0 && lambda <= 1)
return (p-other.p0-lambda*q).Length();
return 1e99;
}
};
}
void NetgenGeometry :: Clear()
{
vertices.SetSize0();
edges.SetSize0();
faces.SetSize0();
solids.SetSize0();
}
void NetgenGeometry :: ProcessIdentifications()
{
for(auto i : Range(vertices))
vertices[i]->nr = i;
for(auto i : Range(edges))
edges[i]->nr = i;
for(auto i : Range(faces))
faces[i]->nr = i;
for(auto i : Range(solids))
solids[i]->nr = i;
auto mirror_identifications = [&] ( auto & shapes )
{
for(auto i : Range(shapes))
{
auto &s = shapes[i];
s->nr = i;
for(auto & ident : s->identifications)
if(s.get() == ident.from && s.get() != ident.to)
ident.to->identifications.Append(ident);
}
};
auto tol = 1e-8 * bounding_box.Diam();
for(auto & f : faces)
for(auto & ident: f->identifications)
for(auto e : static_cast<GeometryFace*>(ident.from)->edges)
for(auto e_other : static_cast<GeometryFace*>(ident.to)->edges)
if(ident.trafo && e->IsMappedShape(*e_other, *ident.trafo, tol))
e->identifications.Append( {e, e_other, ident.trafo, ident.type, ident.name} );
for(auto & e : edges)
for(auto & ident: e->identifications)
{
auto & from = static_cast<GeometryEdge&>(*ident.from);
auto & to = static_cast<GeometryEdge&>(*ident.to);
GeometryVertex * pfrom[] = { &from.GetStartVertex(), &from.GetEndVertex() };
GeometryVertex * pto[] = { &to.GetStartVertex(), &to.GetEndVertex() };
if(!ident.trafo) continue;
// swap points of other edge if necessary
Point<3> p_from0 = (*ident.trafo)(from.GetStartVertex().GetPoint());
Point<3> p_from1 = (*ident.trafo)(from.GetEndVertex().GetPoint());
Point<3> p_to0 = to.GetStartVertex().GetPoint();
if(Dist(p_from1, p_to0) < Dist(p_from0, p_to0))
swap(pto[0], pto[1]);
for(auto i : Range(2))
pfrom[i]->identifications.Append( {pfrom[i], pto[i], ident.trafo, ident.type, ident.name} );
}
mirror_identifications(vertices);
mirror_identifications(edges);
mirror_identifications(faces);
auto find_primary = [&] (auto & shapes)
{
for(auto &s : shapes)
s->primary = s.get();
bool changed = true;
while(changed) {
changed = false;
for(auto &s : shapes)
{
for(auto & ident : s->identifications)
{
bool need_inverse = ident.from == s.get();
auto other = need_inverse ? ident.to : ident.from;
if(other->primary->nr < s->primary->nr)
{
s->primary = other->primary;
if(ident.trafo)
{
auto trafo = *ident.trafo;
if(need_inverse)
trafo = trafo.CalcInverse();
if(!s->primary_to_me)
s->primary_to_me = Transformation<3>( Vec<3>{0., 0., 0.} );
if(!other->primary_to_me)
other->primary_to_me = Transformation<3>( Vec<3>{0., 0., 0.} );
s->primary_to_me->Combine(trafo, *other->primary_to_me);
changed = true;
}
}
}
}
}
};
find_primary(vertices);
find_primary(edges);
find_primary(faces);
}
void NetgenGeometry :: Analyse(Mesh& mesh,
const MeshingParameters& mparam) const
{
static Timer t1("SetLocalMeshsize"); RegionTimer regt(t1);
mesh.SetGlobalH(mparam.maxh);
mesh.SetMinimalH(mparam.minh);
mesh.SetLocalH(bounding_box.PMin(), bounding_box.PMax(),
mparam.grading);
// only set meshsize for edges longer than this
double mincurvelength = 1e-3 * bounding_box.Diam();
if(mparam.uselocalh)
{
double eps = 1e-10 * bounding_box.Diam();
const char* savetask = multithread.task;
multithread.task = "Analyse Edges";
// restrict meshsize on edges
for(auto i : Range(edges))
{
multithread.percent = 100. * i/edges.Size();
const auto & edge = edges[i];
auto length = edge->GetLength();
// skip very short edges
if(length < mincurvelength)
continue;
static constexpr int npts = 20;
// restrict mesh size based on edge length
for(auto i : Range(npts+1))
mesh.RestrictLocalH(edge->GetPoint(double(i)/npts), length/mparam.segmentsperedge);
// restrict mesh size based on edge curvature
double t = 0.;
auto p_old = edge->GetPoint(t);
while(t < 1.-eps)
{
t += edge->CalcStep(t, 1./mparam.curvaturesafety);
if(t < 1.)
{
auto p = edge->GetPoint(t);
auto dist = (p-p_old).Length();
mesh.RestrictLocalH(p, dist);
p_old = p;
}
}
}
multithread.task = "Analyse Faces";
// restrict meshsize on faces
for(auto i : Range(faces))
{
multithread.percent = 100. * i/faces.Size();
const auto& face = faces[i];
face->RestrictH(mesh, mparam);
}
if(mparam.closeedgefac.has_value())
{
multithread.task = "Analyse close edges";
constexpr int sections = 100;
Array<Line> lines;
lines.SetAllocSize(sections*edges.Size());
BoxTree<3> searchtree(bounding_box.PMin(),
bounding_box.PMax());
for(const auto& edge : edges)
{
if(edge->GetLength() < eps)
continue;
double t = 0.;
auto p_old = edge->GetPoint(t);
auto t_old = edge->GetTangent(t);
t_old.Normalize();
for(auto i : IntRange(1, sections+1))
{
t = double(i)/sections;
auto p_new = edge->GetPoint(t);
auto t_new = edge->GetTangent(t);
t_new.Normalize();
auto cosalpha = fabs(t_old * t_new);
if((i == sections) || (cosalpha < cos(10./180 * M_PI)))
{
auto index = lines.Append({p_old, p_new});
searchtree.Insert(p_old, p_new, index);
p_old = p_new;
t_old = t_new;
}
}
}
Array<int> linenums;
for(auto i : Range(lines))
{
const auto& line = lines[i];
if(line.Length() < eps) continue;
multithread.percent = 100.*i/lines.Size();
Box<3> box;
box.Set(line.p0);
box.Add(line.p1);
// box.Increase(max2(mesh.GetH(line.p0), mesh.GetH(line.p1)));
box.Increase(line.Length());
double mindist = 1e99;
linenums.SetSize0();
searchtree.GetIntersecting(box.PMin(), box.PMax(),
linenums);
for(auto num : linenums)
{
if(i == num) continue;
const auto & other = lines[num];
if((line.p0 - other.p0).Length2() < eps ||
(line.p0 - other.p1).Length2() < eps ||
(line.p1 - other.p0).Length2() < eps ||
(line.p1 - other.p1).Length2() < eps)
continue;
mindist = min2(mindist, line.Dist(other));
}
if(mindist == 1e99) continue;
mindist /= *mparam.closeedgefac + 1e-10;
if(mindist < 1e-3 * bounding_box.Diam())
{
(*testout) << "extremely small local h: " << mindist
<< " --> setting to " << 1e-3 * bounding_box.Diam() << endl;
(*testout) << "somewhere near " << line.p0 << " - " << line.p1 << endl
;
mindist = 1e-3 * bounding_box.Diam();
}
mesh.RestrictLocalHLine(line.p0, line.p1, mindist);
}
}
multithread.task = savetask;
}
for(const auto& mspnt : mparam.meshsize_points)
mesh.RestrictLocalH(mspnt.pnt, mspnt.h);
mesh.LoadLocalMeshSize(mparam.meshsizefilename);
}
void GeometryEdge :: Divide(const MeshingParameters & mparam, const Mesh & mesh, Array<Point<3>> & points, Array<double> & params)
{
static Timer tdivedgesections("Divide edge sections");
static Timer tdivide("Divide Edges");
RegionTimer rt(tdivide);
// -------------------- DivideEdge -----------------
if(properties.partition)
{
points.SetSize(properties.partition->Size());
params.SetSize(properties.partition->Size()+2);
params[0] = 0.0;
params.Last() = 1.0;
for(auto i : Range(properties.partition->Size()))
{
params[i+1] = (*properties.partition)[i];
points[i] = GetPoint(params[i+1]);
}
return;
}
tdivedgesections.Start();
auto layer = properties.layer;
double safety = 0.5*(1.-mparam.grading);
double lam = 0.0;
Point<3> p = GetPoint(0.0);
auto old_p = p;
Array<double> hvalue, fine_params;
hvalue.Append(.0);
while (lam<1. && hvalue.Size() < 20000) {
fine_params.Append(lam);
auto h = mesh.GetH(old_p, layer);
auto step = safety * h/GetTangent(lam).Length();
lam += step;
lam = min2(lam, 1.0);
p = GetPoint(lam);
hvalue.Append((hvalue.Size()==0 ? 0.0 : hvalue.Last()) + 1./h * (p-old_p).Length());
old_p = p;
}
fine_params.Append(1.0);
if(hvalue.Size()==20000 && lam<1.0)
cout << "Warning: Could not divide Edge" << endl;
tdivedgesections.Stop();
// auto n = hvalue.Size()-1;
int nsubedges = max2(1, int(floor(hvalue.Last()+0.5)));
points.SetSize(nsubedges-1);
params.SetSize(nsubedges+1);
int i1 = 0;
for(auto i : Range(1,nsubedges))
{
auto h_target = i*hvalue.Last()/nsubedges;
while(hvalue[i1]<h_target && i1<hvalue.Size())
i1++;
if(i1==hvalue.Size())
{
points.SetSize(i-1);
params.SetSize(i+1);
cout << "divide edge: local h too small" << endl;
break;
}
// interpolate lam between points
auto lam0 = fine_params[i1-1];
auto lam1 = fine_params[i1];
auto h0 = hvalue[i1-1];
auto h1 = hvalue[i1];
auto fac = (h_target-h0)/(h1-h0);
auto lam = lam0 + fac*(lam1-lam0);
params[i] = lam;
points[i-1] = MeshPoint(GetPoint(params[i]));
}
params[0] = 0.;
params[nsubedges] = 1.;
if(params[nsubedges] <= params[nsubedges-1])
{
cout << "CORRECTED" << endl;
points.SetSize (nsubedges-2);
params.SetSize (nsubedges);
params[nsubedges-1] = 1.;
}
}
void NetgenGeometry :: FindEdges(Mesh& mesh,
const MeshingParameters& mparam) const
{
static Timer t1("MeshEdges"); RegionTimer regt(t1);
const char* savetask = multithread.task;
multithread.task = "Mesh Edges";
PointTree tree( bounding_box );
auto & identifications = mesh.GetIdentifications();
Array<PointIndex> vert2meshpt(vertices.Size());
vert2meshpt = PointIndex::INVALID;
for(auto & vert : vertices)
{
auto pi = mesh.AddPoint(vert->GetPoint(), vert->properties.layer);
vert2meshpt[vert->nr] = pi;
mesh[pi].Singularity(vert->properties.hpref);
mesh[pi].SetType(FIXEDPOINT);
Element0d el(pi, pi);
el.name = vert->properties.GetName();
mesh.SetCD3Name(pi, el.name);
mesh.pointelements.Append (el);
}
for(auto & vert : vertices)
for(auto & ident : vert->identifications)
identifications.Add(vert2meshpt[ident.from->nr],
vert2meshpt[ident.to->nr],
ident.name,
ident.type);
// size_t segnr = 0;
auto nedges = edges.Size();
Array<Array<PointIndex>> all_pnums(nedges);
Array<Array<double>> all_params(nedges);
for (auto edgenr : Range(edges))
{
auto edge = edges[edgenr].get();
PointIndex startp, endp;
// throws if points are not found
startp = vert2meshpt[edge->GetStartVertex().nr];
endp = vert2meshpt[edge->GetEndVertex().nr];
// ignore collapsed edges
if(edge->IsDegenerated())
continue;
// ----------- Add Points to mesh and create segments -----
auto & pnums = all_pnums[edgenr];
auto & params = all_params[edgenr];
Array<Point<3>> edge_points;
Array<double> edge_params;
if(edge->primary == edge)
{
// check if start and end vertex are identified (if so, we only insert one segment and do z-refinement later)
bool is_identified_edge = false;
auto v0 = vertices[edge->GetStartVertex().nr].get();
auto v1 = vertices[edge->GetEndVertex().nr].get();
for(auto & ident : v0->identifications)
{
auto other = ident.from == v0 ? ident.to : ident.from;
if(other->nr == v1->nr && ident.type == Identifications::CLOSESURFACES)
{
is_identified_edge = true;
break;
}
}
if(is_identified_edge)
{
params.SetSize(2);
params[0] = 0.;
params[1] = 1.;
}
else
{
edge->Divide(mparam, mesh, edge_points, params);
}
}
else
{
auto nr_primary = edge->primary->nr;
auto & pnums_primary = all_pnums[nr_primary];
// auto & params_primary = all_params[nr_primary];
auto trafo = edge->primary_to_me;
auto np = pnums_primary.Size();
edge_points.SetSize(np-2);
edge_params.SetSize(np-2);
for(auto i : Range(np-2))
{
edge_points[i] = mesh[pnums_primary[i+1]];
if(trafo)
edge_points[i] = (*trafo)(edge_points[i]);
EdgePointGeomInfo gi;
edge->ProjectPoint(edge_points[i], &gi);
edge_params[i] = gi.dist;
}
params.SetSize(edge_params.Size()+2);
for(auto i : Range(edge_params))
params[i+1] = edge_params[i];
if(edge_params.Size()>1)
{
// Just projecting (code below) does not work for closed edges (startp == endp)
// In this case, there are at least 2 inner points which we use to check edge orientation
bool reversed = edge_params[1] < edge_params[0];
if(reversed)
{
params[0] = 1.0;
params.Last() = 0.0;
}
else
{
params.Last() = 1.0;
params[0] = 0.0;
}
}
else
{
for(size_t i : std::vector{0UL, pnums_primary.Size()-1})
{
auto p_mapped = mesh[pnums_primary[i]];
if(trafo) p_mapped = (*trafo)(p_mapped);
EdgePointGeomInfo gi;
edge->ProjectPoint(p_mapped, &gi);
params[i] = gi.dist;
}
}
}
pnums.SetSize(edge_points.Size() + 2);
bool is_reversed = params.Last() < params[0];
pnums[0] = is_reversed ? endp : startp;
pnums.Last() = is_reversed ? startp : endp;
for(auto i : Range(edge_points))
{
auto pi = mesh.AddPoint(edge_points[i], edge->properties.layer);
if(edge->identifications.Size())
tree.Insert(mesh[pi], pi, edge->nr);
pnums[i+1] = pi;
}
for(auto i : Range(pnums.Size()-1))
{
// segnr++;
Segment seg;
seg[0] = pnums[i];
seg[1] = pnums[i+1];
seg.edgenr = edgenr+1;
seg.si = edgenr+1;
seg.epgeominfo[0].dist = params[i];
seg.epgeominfo[1].dist = params[i+1];
seg.epgeominfo[0].edgenr = edgenr;
seg.epgeominfo[1].edgenr = edgenr;
seg.singedge_left = edge->properties.hpref;
seg.singedge_right = edge->properties.hpref;
seg.domin = edge->domin+1;
seg.domout = edge->domout+1;
mesh.AddSegment(seg);
}
mesh.SetCD2Name(edgenr+1, edge->properties.GetName());
}
for (auto & edge : edges)
{
// identify points on edge
for(auto & ident : edge->identifications)
if(ident.from == edge.get())
{
auto & pnums = all_pnums[edge->nr];
if(pnums.Size() < 2) continue; // degenerated edge
// start and end vertex are already identified
for(auto pi : pnums.Range(1, pnums.Size()-1))
{
Point<3> p_other = mesh[pi];
if(ident.trafo)
p_other = (*ident.trafo)(mesh[pi]);
else
static_cast<GeometryEdge*>(ident.to)->ProjectPoint(p_other, nullptr);
auto pi_other = tree.Find(p_other, ident.to->nr);
identifications.Add(pi, pi_other, ident.name, ident.type);
}
}
}
mesh.CalcSurfacesOfNode();
multithread.task = savetask;
}
bool NetgenGeometry :: MeshFace(Mesh& mesh, const MeshingParameters& mparam,
int k, FlatArray<int, PointIndex> glob2loc) const
{
multithread.percent = 100. * k/faces.Size();
const auto& face = *faces[k];
auto bb = face.GetBoundingBox();
bb.Increase(bb.Diam()/10);
Meshing2 meshing(*this, mparam, bb);
glob2loc = 0;
int cntp = 0;
auto segments = face.GetBoundary(mesh);
for(auto& seg : segments)
{
for(auto j : Range(2))
{
auto pi = seg[j];
if(glob2loc[pi] == 0)
{
meshing.AddPoint(mesh[pi], pi);
cntp++;
glob2loc[pi] = cntp;
}
}
}
for(const auto& vert : GetFaceVertices(face))
{
PointIndex pi = vert->nr + 1;
if(glob2loc[pi] == 0)
{
auto gi = face.Project(mesh[pi]);
MultiPointGeomInfo mgi;
mgi.AddPointGeomInfo(gi);
meshing.AddPoint(mesh[pi], pi, &mgi);
cntp++;
glob2loc[pi] = cntp;
}
}
for(auto & seg : segments)
{
PointGeomInfo gi0, gi1;
gi0.trignum = gi1.trignum = k+1;
gi0.u = seg.epgeominfo[0].u;
gi0.v = seg.epgeominfo[0].v;
gi1.u = seg.epgeominfo[1].u;
gi1.v = seg.epgeominfo[1].v;
meshing.AddBoundaryElement(glob2loc[seg[0]],
glob2loc[seg[1]],
gi0, gi1);
}
// TODO Set max area 2* area of face
auto noldsurfels = mesh.GetNSE();
static Timer t("GenerateMesh"); RegionTimer reg(t);
MESHING2_RESULT res = meshing.GenerateMesh(mesh, mparam, mparam.maxh, k+1, face.properties.layer);
for(auto i : Range(noldsurfels, mesh.GetNSE()))
{
mesh.SurfaceElements()[i].SetIndex(k+1);
}
return res != MESHING2_OK;
}
void NetgenGeometry :: MeshSurface(Mesh& mesh,
const MeshingParameters& mparam) const
{
static Timer t1("Surface Meshing"); RegionTimer regt(t1);
const char* savetask = multithread.task;
multithread.task = "Mesh Surface";
mesh.ClearFaceDescriptors();
size_t n_failed_faces = 0;
Array<int, PointIndex> glob2loc(mesh.GetNP());
for(auto k : Range(faces))
{
auto & face = *faces[k];
FaceDescriptor fd(k+1, face.domin+1, face.domout+1, k+1);
if(face.properties.col)
fd.SetSurfColour(*face.properties.col);
mesh.AddFaceDescriptor(fd);
mesh.SetBCName(k, face.properties.GetName());
if(face.primary == &face)
{
// check if this face connects two identified closesurfaces
// auto & idents = mesh.GetIdentifications();
std::set<int> relevant_edges;
auto segments = face.GetBoundary(mesh);
for(const auto &s : segments)
relevant_edges.insert(s.edgenr-1);
Array<bool, PointIndex> is_point_in_tree(mesh.Points().Size());
is_point_in_tree = false;
PointTree tree( bounding_box );
for(const auto &s : segments)
for(auto pi : s.PNums())
if(!is_point_in_tree[pi])
{
tree.Insert(mesh[pi], pi, -1);
is_point_in_tree[pi] = true;
}
Array<int> mapped_edges(edges.Size());
constexpr int UNINITIALIZED = -2;
constexpr int NOT_MAPPED = -1;
mapped_edges = UNINITIALIZED;
optional<Transformation<3>> trafo;
if(face.IsConnectingCloseSurfaces())
{
Array<ArrayMem<int, 2>, PointIndex> p2seg(mesh.Points().Size());
for(int si : Range(segments))
{
const auto & s = segments[si];
p2seg[s[0]].Append(si);
p2seg[s[1]].Append(si);
}
for(const auto & s : segments)
{
auto edgenr = s.edgenr-1;
auto & edge = *edges[edgenr];
// ShapeIdentification *edge_mapping;
// have edgenr first time, search for closesurface identification
if(mapped_edges[edgenr] == UNINITIALIZED)
{
mapped_edges[edgenr] = NOT_MAPPED;
for(auto & edge_ident : edge.identifications)
{
if(edge_ident.type == Identifications::CLOSESURFACES &&
edge_ident.from->nr == edgenr &&
relevant_edges.count(edge_ident.to->nr) > 0
)
{
trafo = edge_ident.trafo;
mapped_edges[edgenr] = edge_ident.to->nr;
break;
}
}
}
// this edge has a closesurface mapping to another -> make connecting quad
if(mapped_edges[edgenr] != NOT_MAPPED)
{
Element2d sel(4);
sel[0] = s[0];
sel[1] = s[1];
auto gis = sel.GeomInfo();
for(auto i : Range(2))
{
gis[i].u = s.epgeominfo[i].u;
gis[i].v = s.epgeominfo[i].v;
}
Point<3> p2 = mesh[s[1]];
Point<3> p3 = mesh[s[0]];
if(trafo)
{
p2 = (*trafo)(p2);
p3 = (*trafo)(p3);
}
else
{
edges[mapped_edges[edgenr]]->ProjectPoint(p2, nullptr);
edges[mapped_edges[edgenr]]->ProjectPoint(p3, nullptr);
}
sel[2] = tree.Find(p2, -1);
sel[3] = tree.Find(p3, -1);
// find mapped segment to set PointGeomInfo correctly
Segment s_other;
for(auto si_other : p2seg[sel[2]])
{
s_other = segments[si_other];
if(s_other[0] == sel[2] && s_other[1] == sel[3])
break;
if(s_other[0] == sel[3] && s_other[1] == sel[2])
break;
}
for(auto i : Range(2))
{
auto i_other = sel[i+2] == s_other[i] ? i : 1-i;
gis[i+2].u = s_other.epgeominfo[i_other].u;
gis[i+2].v = s_other.epgeominfo[i_other].v;
}
sel.SetIndex(face.nr+1);
mesh.AddSurfaceElement(sel);
}
}
}
else
if(MeshFace(mesh, mparam, k, glob2loc))
n_failed_faces++;
}
}
if(n_failed_faces)
{
cout << "WARNING! NOT ALL FACES HAVE BEEN MESHED" << endl;
cout << "SURFACE MESHING ERROR OCCURRED IN " << n_failed_faces << " FACES:" << endl;
return;
}
if (mparam.perfstepsend >= MESHCONST_OPTSURFACE)
{
mesh.CalcSurfacesOfNode();
OptimizeSurface(mesh, mparam);
}
bool have_identifications = false;
std::map<tuple<PointIndex, int>, PointIndex> mapto;
for(auto & face : faces)
if(face->primary != face.get())
{
have_identifications = true;
MapSurfaceMesh(mesh, *face, mapto);
}
// identify points on faces
if(have_identifications)
{
mesh.CalcSurfacesOfNode();
BitArray is_identified_face(faces.Size());
is_identified_face = false;
for(auto & face : faces)
for(auto & ident : face->identifications)
{
is_identified_face.SetBit(ident.from->nr);
is_identified_face.SetBit(ident.to->nr);
}
PointTree tree( bounding_box );
Array<int, PointIndex> pi_to_face(mesh.GetNP());
pi_to_face = -1;
Array<SurfaceElementIndex> si_of_face;
Array<Array<PointIndex>> pi_of_face(faces.Size());
for(auto & face : faces)
if(is_identified_face[face->nr])
{
mesh.GetSurfaceElementsOfFace(face->nr+1, si_of_face);
for(auto si : si_of_face)
for(auto pi : mesh[si].PNums())
{
if(mesh[pi].Type() == SURFACEPOINT && pi_to_face[pi]==-1)
{
pi_to_face[pi] = face->nr;
tree.Insert(mesh[pi], pi, -1);
pi_of_face[face->nr].Append(pi);
}
}
}
auto & mesh_ident = mesh.GetIdentifications();
for(auto & face : faces)
for(auto & ident : face->identifications)
{
if(ident.from == face.get())
for(auto pi : pi_of_face[face->nr])
{
auto pi_primary = ident.from->primary->nr == ident.from->nr ? pi : mapto[{pi, ident.to->primary->nr}];
auto pi_other = ident.to->primary->nr == ident.to->nr ? pi_primary : mapto[{pi_primary, ident.to->nr}];
mesh_ident.Add(pi, pi_other, ident.name, ident.type);
}
}
}
mesh.CalcSurfacesOfNode();
multithread.task = savetask;
}
void NetgenGeometry :: MapSurfaceMesh( Mesh & mesh, const GeometryFace & dst, std::map<tuple<PointIndex, int>, PointIndex> & mapto ) const
{
static Timer timer("MapSurfaceMesh");
RegionTimer rt(timer);
const auto & src = dynamic_cast<const GeometryFace&>(*dst.primary);
auto trafo = dst.primary_to_me;
PrintMessage(2, "Map face ", src.nr+1, " -> ", dst.nr+1);
// point map from src to dst
auto np = mesh.Points().Size();
Array<PointIndex, PointIndex> pmap(np);
pmap = PointIndex::INVALID;
BitArray is_double_edge_point(np);
is_double_edge_point.Clear();
// first map points on edges (mapped points already in mesh, use search tree)
Array<bool, PointIndex> is_point_in_tree(mesh.Points().Size());
is_point_in_tree = false;
PointTree tree( bounding_box );
for (Segment & seg : src.GetBoundary(mesh))
for(auto i : Range(2))
{
auto pi = seg[i];
if(!is_point_in_tree[pi])
{
auto p = mesh[pi];
if(trafo)
p = (*trafo)(p);
else
for(auto& edge: dst.edges)
if (edge->primary->nr == seg.edgenr-1)
{
if (mesh[pi].Type() == FIXEDPOINT) {
if((edge->GetStartVertex().GetPoint() - p).Length2() >\
(edge->GetEndVertex().GetPoint() - p).Length2())
p = edge->GetEndVertex().GetPoint();
else
p = edge->GetStartVertex().GetPoint();
}
else
edge->ProjectPoint(p, nullptr);
}
tree.Insert(p, pi, -1);
is_point_in_tree[pi] = true;
}
}
Array<ArrayMem<tuple<double,double>, 2>, PointIndex> uv_values(np);
for (Segment & seg : dst.GetBoundary(mesh))
{
for(auto i : Range(2))
{
auto pi = seg[i];
if(!pmap[pi].IsValid())
pmap[tree.Find(mesh[pi], -1)] = pi;
// store uv values (might be different values for same point in case of internal edges)
double u = seg.epgeominfo[i].u;
double v = seg.epgeominfo[i].v;
auto & vals = uv_values[pi];
bool found = false;
for(const auto & [u1,v1] : vals)
if((u-u1)*(u-u1)+(v-v1)*(v-v1) < 1e-7)
found = true;
if(!found)
vals.Append({u,v});
}
}
xbool do_invert = maybe;
if(!trafo) do_invert = true;
// now insert mapped surface elements
for(auto sei : mesh.SurfaceElements().Range())
{
auto sel = mesh[sei];
if(sel.GetIndex() != src.nr+1)
continue;
auto sel_new = sel;
sel_new.SetIndex(dst.nr+1);
for(auto i : Range(sel.PNums()))
{
auto pi = sel[i];
if(!pmap[pi].IsValid())
{
auto p = mesh[pi];
if(trafo)
p = (*trafo)(p);
else
dst.Project(p);
pmap[pi] = mesh.AddPoint(p, 1, SURFACEPOINT);
}
sel_new[i] = pmap[pi];
mapto[{pi, dst.nr}] = pmap[pi];
mapto[{pmap[pi], src.nr}] = pi;
}
if(do_invert.IsMaybe())
{
auto n_src = src.GetNormal(mesh[sel[0]]);
auto n_dist = dst.GetNormal(mesh[sel_new[0]]);
Mat<3> normal_matrix;
CalcInverse(Trans(trafo->GetMatrix()), normal_matrix);
do_invert = (normal_matrix * n_src) * n_dist < 0.0;
}
if(do_invert.IsTrue())
sel_new.Invert();
for(auto i : Range(sel.PNums()))
{
auto pi = sel_new[i];
if(uv_values.Range().Next() <= pi)
{
// new point (inner surface point)
PointGeomInfo gi;
dst.CalcPointGeomInfo(mesh[sel_new[i]], gi);
sel_new.GeomInfo()[i] = gi;
continue;
}
const auto & uvs = uv_values[pi];
if(uvs.Size() == 1)
{
// appears only once -> take uv values from edgepointgeominfo
const auto & [u,v] = uvs[0];
PointGeomInfo gi;
gi.u = u;
gi.v = v;
sel_new.GeomInfo()[i] = gi;
}
else if(uvs.Size() > 1)
{
// multiple uv pairs -> project to close point and select closest uv pair
double eps = 1e-3;
auto p = Point<3>((1.0-eps)*Vec<3>(mesh[sel_new.PNumMod(i+1)]) +
eps/2*Vec<3>(mesh[sel_new.PNumMod(i+2)]) +
eps/2*Vec<3>(mesh[sel_new.PNumMod(i+3)]));
PointGeomInfo gi_p, gi;
dst.CalcPointGeomInfo(p, gi_p);
gi.trignum = gi_p.trignum;
double min_dist = numeric_limits<double>::max();
for(const auto & [u,v] : uvs)
{
double dist = (gi_p.u-u)*(gi_p.u-u) + (gi_p.v-v)*(gi_p.v-v);
if(dist < min_dist)
{
min_dist = dist;
gi.u = u;
gi.v = v;
}
}
sel_new.GeomInfo()[i] = gi;
}
else
throw Exception(string(__FILE__) + ":"+ToString(__LINE__) + " shouldn't come here");
}
mesh.AddSurfaceElement(sel_new);
}
}
void NetgenGeometry :: OptimizeSurface(Mesh& mesh, const MeshingParameters& mparam) const
{
const auto savetask = multithread.task;
multithread.task = "Optimizing surface";
static Timer timer_opt2d("Optimization 2D");
RegionTimer reg(timer_opt2d);
auto meshopt = MeshOptimize2d(mesh);
for(auto i : Range(mparam.optsteps2d))
for(auto k : Range(mesh.GetNFD()))
{
PrintMessage(3, "Optimization step ", i);
meshopt.SetFaceIndex(k+1);
int innerstep = 0;
for(auto optstep : mparam.optimize2d)
{
multithread.percent = 100. * (double(innerstep++)/mparam.optimize2d.size() + i)/mparam.optsteps2d;
switch(optstep)
{
case 's':
meshopt.EdgeSwapping(0);
break;
case 'S':
meshopt.EdgeSwapping(1);
break;
case 'm':
meshopt.ImproveMesh(mparam);
break;
case 'c':
meshopt.CombineImprove();
break;
}
}
}
mesh.CalcSurfacesOfNode();
mesh.Compress();
multithread.task = savetask;
}
void NetgenGeometry :: FinalizeMesh(Mesh& mesh) const
{
for (int i = 0; i < std::min(solids.Size(), (size_t)mesh.GetNDomains()); i++)
if (auto name = solids[i]->properties.name)
mesh.SetMaterial (i+1, *name);
mesh.OrderElements();
}
shared_ptr<NetgenGeometry> GeometryRegisterArray :: LoadFromMeshFile (istream & ist) const
{
if (!ist.good())
return nullptr;
string token;
ist >> token;
if(token == "TextOutArchive")
{
NetgenGeometry *geo = nullptr;
size_t string_length;
ist >> string_length;
string buffer(string_length+1, '\0');
ist.read(&buffer[0], string_length);
auto ss = make_shared<stringstream>(buffer);
TextInArchive in(ss);
in & geo;
return shared_ptr<NetgenGeometry>(geo);
}
for (int i = 0; i < Size(); i++)
{
NetgenGeometry * hgeom = (*this)[i]->LoadFromMeshFile (ist, token);
if (hgeom)
return shared_ptr<NetgenGeometry>(hgeom);
}
return nullptr;
}
int NetgenGeometry :: GenerateMesh (shared_ptr<Mesh> & mesh, MeshingParameters & mp)
{
multithread.percent = 0;
// copy so that we don't change them outside
MeshingParameters mparam = mp;
if(restricted_h.Size())
for(const auto& [pnt, maxh] : restricted_h)
mparam.meshsize_points.Append({pnt, maxh});
if(mparam.perfstepsstart <= MESHCONST_ANALYSE)
{
if(!mesh)
mesh = make_shared<Mesh>();
mesh->geomtype = GetGeomType();
Analyse(*mesh, mparam);
}
if(multithread.terminate || mparam.perfstepsend <= MESHCONST_ANALYSE)
return 0;
if(mparam.perfstepsstart <= MESHCONST_MESHEDGES)
FindEdges(*mesh, mparam);
if(multithread.terminate || mparam.perfstepsend <= MESHCONST_MESHEDGES)
return 0;
if (mparam.perfstepsstart <= MESHCONST_MESHSURFACE)
{
MeshSurface(*mesh, mparam);
}
if (multithread.terminate || mparam.perfstepsend <= MESHCONST_OPTSURFACE)
return 0;
if(dimension == 2)
{
FinalizeMesh(*mesh);
mesh->SetDimension(2);
return 0;
}
if(mparam.perfstepsstart <= MESHCONST_MESHVOLUME)
{
multithread.task = "Volume meshing";
MESHING3_RESULT res = MeshVolume (mparam, *mesh);
if (res != MESHING3_OK) return 1;
if (multithread.terminate) return 0;
MeshQuality3d (*mesh);
}
if (multithread.terminate || mparam.perfstepsend <= MESHCONST_MESHVOLUME)
return 0;
if (mparam.perfstepsstart <= MESHCONST_OPTVOLUME)
{
multithread.task = "Volume optimization";
OptimizeVolume (mparam, *mesh);
if (multithread.terminate) return 0;
}
FinalizeMesh(*mesh);
return 0;
}
void NetgenGeometry :: Save (const filesystem::path & filename) const
{
throw NgException("Cannot save geometry - no geometry available");
}
static RegisterClassForArchive<NetgenGeometry> regnggeo;
}