netgen/libsrc/meshing/improve2.cpp
Joachim Schoeberl a675c42d89 more PointIndex
2024-12-26 16:32:50 +01:00

873 lines
25 KiB
C++

#include <mystdlib.h>
#include "meshing.hpp"
#include <opti.hpp>
namespace netgen
{
class trionedge
{
public:
SurfaceElementIndex tnr;
int sidenr;
trionedge () { tnr = 0; sidenr = 0; }
trionedge (SurfaceElementIndex atnr, int asidenr)
{ tnr = atnr; sidenr = asidenr; }
};
// check if element is quad with at least one surface point -> relevant for optimization
// (quads with 4 edge points are not optimized and can be ignored)
bool checkMixedElement(const Mesh & mesh, FlatArray<SurfaceElementIndex> seia)
{
bool mixed = false;
ParallelForRange( Range(seia), [&] (auto myrange) NETGEN_LAMBDA_INLINE
{
for (auto i : myrange)
{
const auto & sel = mesh[seia[i]];
if(sel.GetNP() == 3)
continue;
for(auto pi : Range(sel.GetNP()))
if(mesh[sel[pi]].Type() == SURFACEPOINT)
mixed = true;
}
});
return mixed;
}
bool MeshOptimize2d :: EdgeSwapping (const int usemetric,
Array<Neighbour> &neighbors,
Array<bool> &swapped,
const SurfaceElementIndex t1, const int o1,
const int t,
Array<int,PointIndex> &pdef,
const bool check_only)
{
bool should;
bool do_swap = false;
SurfaceElementIndex t2 = neighbors[t1].GetNr (o1);
int o2 = neighbors[t1].GetOrientation (o1);
if (t2 == -1) return false;
if (swapped[t1] || swapped[t2]) return false;
if (mesh[t2].IsDeleted()) return false;
if (mesh[t2].GetNP() != 3) return false;
const int faceindex = mesh[t1].GetIndex();
const int surfnr = mesh.GetFaceDescriptor (faceindex).SurfNr();
PointIndex pi1 = mesh[t1].PNumMod(o1+1+1);
PointIndex pi2 = mesh[t1].PNumMod(o1+1+2);
PointIndex pi3 = mesh[t1].PNumMod(o1+1);
PointIndex pi4 = mesh[t2].PNumMod(o2+1);
PointGeomInfo gi1 = mesh[t1].GeomInfoPiMod(o1+1+1);
PointGeomInfo gi2 = mesh[t1].GeomInfoPiMod(o1+1+2);
PointGeomInfo gi3 = mesh[t1].GeomInfoPiMod(o1+1);
PointGeomInfo gi4 = mesh[t2].GeomInfoPiMod(o2+1);
bool allowswap = true;
Vec<3> auxvec1 = mesh[pi3]-mesh[pi4];
Vec<3> auxvec2 = mesh[pi1]-mesh[pi4];
allowswap = allowswap && fabs(1.-(auxvec1*auxvec2)/(auxvec1.Length()*auxvec2.Length())) > 1e-4;
if(!allowswap)
return false;
// normal of new
Vec<3> nv1 = Cross (auxvec1, auxvec2);
auxvec1 = mesh.Point(pi4)-mesh.Point(pi3);
auxvec2 = mesh.Point(pi2)-mesh.Point(pi3);
allowswap = allowswap && fabs(1.-(auxvec1*auxvec2)/(auxvec1.Length()*auxvec2.Length())) > 1e-4;
if(!allowswap)
return false;
Vec<3> nv2 = Cross (auxvec1, auxvec2);
// normals of original
Vec<3> nv3 = Cross (mesh[pi1]-mesh[pi4], mesh[pi2]-mesh[pi4]);
Vec<3> nv4 = Cross (mesh[pi2]-mesh[pi3], mesh[pi1]-mesh[pi3]);
nv3 *= -1;
nv4 *= -1;
nv3.Normalize();
nv4.Normalize();
nv1.Normalize();
nv2.Normalize();
auto nvp3 = geo.GetNormal (surfnr, mesh.Point(pi3), &gi3);
nvp3.Normalize();
auto nvp4 = geo.GetNormal (surfnr, mesh.Point(pi4), &gi4);
nvp4.Normalize();
double critval = cos (M_PI / 6); // 30 degree
allowswap = allowswap &&
(nv1 * nvp3 > critval) &&
(nv1 * nvp4 > critval) &&
(nv2 * nvp3 > critval) &&
(nv2 * nvp4 > critval) &&
(nvp3 * nv3 > critval) &&
(nvp4 * nv4 > critval);
double horder = Dist (mesh[pi1], mesh[pi2]);
if ( // nv1 * nv2 >= 0 &&
nv1.Length() > 1e-3 * horder * horder &&
nv2.Length() > 1e-3 * horder * horder &&
allowswap )
{
if (!usemetric)
{
int e = pdef[pi1] + pdef[pi2] - pdef[pi3] - pdef[pi4];
double d =
Dist2 (mesh[pi1], mesh[pi2]) -
Dist2 (mesh[pi3], mesh[pi4]);
should = e >= t && (e > 2 || d > 0);
}
else
{
double loch = 0.25*(mesh.GetH(pi1) + mesh.GetH(pi2) + mesh.GetH(pi3) + mesh.GetH(pi4));
should =
CalcTriangleBadness (mesh[pi4], mesh[pi3], mesh[pi1], metricweight, loch) +
CalcTriangleBadness (mesh[pi3], mesh[pi4], mesh[pi2], metricweight, loch) <
CalcTriangleBadness (mesh[pi1], mesh[pi2], mesh[pi3], metricweight, loch) +
CalcTriangleBadness (mesh[pi2], mesh[pi1], mesh[pi4], metricweight, loch);
}
if (allowswap)
{
Element2d sw1 (pi4, pi3, pi1);
Element2d sw2 (pi3, pi4, pi2);
int legal1 =
mesh.LegalTrig (mesh[t1]) +
mesh.LegalTrig (mesh[t2]);
int legal2 =
mesh.LegalTrig (sw1) + mesh.LegalTrig (sw2);
if (legal1 < legal2) should = true;
if (legal2 < legal1) should = false;
}
do_swap = should;
if (should && !check_only)
{
// do swapping !
mesh[t1] = { { pi1, gi1 }, { pi4, gi4 }, { pi3, gi3 } };
mesh[t2] = { { pi2, gi2 }, { pi3, gi3 }, { pi4, gi4 } };
pdef[pi1]--;
pdef[pi2]--;
pdef[pi3]++;
pdef[pi4]++;
swapped[t1] = true;
swapped[t2] = true;
}
}
return do_swap;
}
void MeshOptimize2d :: EdgeSwapping (int usemetric)
{
static Timer timer("EdgeSwapping (2D)"); RegionTimer reg(timer);
static Timer timer_nb("EdgeSwapping-Find neighbors");
if (usemetric)
PrintMessage (3, "Edgeswapping, metric");
else
PrintMessage (3, "Edgeswapping, topological");
static Timer timerstart("EdgeSwapping 2D start");
timerstart.Start();
Array<SurfaceElementIndex> seia;
mesh.GetSurfaceElementsOfFace (faceindex, seia);
if(checkMixedElement(mesh, seia))
{
timerstart.Stop();
return GenericImprove();
}
Array<Neighbour> neighbors(mesh.GetNSE());
auto elements_on_node = mesh.CreatePoint2SurfaceElementTable(faceindex);
Array<bool> swapped(mesh.GetNSE());
Array<int,PointIndex> pdef(mesh.GetNP());
Array<double,PointIndex> pangle(mesh.GetNP());
static const double minangle[] = { 0, 1.481, 2.565, 3.627, 4.683, 5.736, 7, 9 };
if(faceindex == 0)
{
ParallelFor( Range(pangle), [&] (auto i) NETGEN_LAMBDA_INLINE
{
pangle[i] = 0.0;
});
}
else
{
ParallelFor( Range(seia), [&] (auto i) NETGEN_LAMBDA_INLINE
{
const Element2d & sel = mesh[seia[i]];
for (int j = 0; j < 3; j++)
pangle[sel[j]] = 0.0;
});
}
ParallelFor( Range(seia), [&] (auto i) NETGEN_LAMBDA_INLINE
{
const Element2d & sel = mesh[seia[i]];
for (int j = 0; j < 3; j++)
{
POINTTYPE typ = mesh[sel[j]].Type();
if (typ == FIXEDPOINT || typ == EDGEPOINT)
{
AtomicAdd(pangle[sel[j]],
Angle (mesh[sel[(j+1)%3]] - mesh[sel[j]],
mesh[sel[(j+2)%3]] - mesh[sel[j]]));
}
}
});
ParallelFor( Range(seia), [&] (auto i) NETGEN_LAMBDA_INLINE
{
const Element2d & sel = mesh[seia[i]];
for (int j = 0; j < 3; j++)
{
PointIndex pi = sel[j];
if (mesh[pi].Type() == INNERPOINT || mesh[pi].Type() == SURFACEPOINT)
pdef[pi] = -6;
else
for (int j = 0; j < 8; j++)
if (pangle[pi] >= minangle[j])
pdef[pi] = -1-j;
}
});
ParallelFor( Range(seia), [this, &pdef, &neighbors, &seia, &elements_on_node] (auto i) NETGEN_LAMBDA_INLINE
{
auto sei = seia[i];
for (PointIndex pi : mesh[sei].template PNums<3>())
AsAtomic(pdef[pi])++;
for (int j = 0; j < 3; j++)
{
neighbors[sei].SetNr (j, -1);
neighbors[sei].SetOrientation (j, 0);
}
const auto sel = mesh[sei];
auto index = sel.GetIndex();
for (int j = 0; j < 3; j++)
{
PointIndex pi1 = sel.PNumMod(j+2);
PointIndex pi2 = sel.PNumMod(j+3);
if(mesh.IsSegment(pi1, pi2))
continue;
for (auto sei_other : elements_on_node[pi1])
{
if(sei_other==sei) continue;
if(mesh[sei_other].GetIndex()!=index) continue;
const auto & other = mesh[sei_other];
int pi1_other = -1;
int pi2_other = -1;
bool common_edge = false;
for (int k = 0; k < 3; k++)
{
if(other[k] == pi1)
pi1_other = k;
if(other[k] == pi2)
{
pi2_other = k;
common_edge = true;
}
}
if(common_edge)
{
neighbors[sei].SetNr (j, sei_other);
neighbors[sei].SetOrientation (j, 3-pi1_other-pi2_other);
}
}
}
});
for (SurfaceElementIndex sei : seia)
swapped[sei] = false;
timerstart.Stop();
Array<std::pair<SurfaceElementIndex,int>> improvement_candidates(3*seia.Size());
atomic<int> cnt(0);
int t = 4;
bool done = false;
while (!done && t >= 2)
{
cnt = 0;
ParallelFor( Range(seia), [&] (auto i) NETGEN_LAMBDA_INLINE
{
SurfaceElementIndex t1 = seia[i];
if (mesh[t1].IsDeleted())
return;
if (swapped[t1])
return;
if(mesh[t1].GetNP() != 3)
return;
if (multithread.terminate)
throw NgException ("Meshing stopped");
for (int o1 = 0; o1 < 3; o1++)
if(EdgeSwapping(usemetric, neighbors, swapped, t1, o1, t, pdef, true))
improvement_candidates[cnt++]= std::make_pair(t1,o1);
});
auto elements_with_improvement = improvement_candidates.Range(cnt.load());
QuickSort(elements_with_improvement);
for (auto [t1,o1] : elements_with_improvement)
done |= EdgeSwapping(usemetric, neighbors, swapped, t1, o1, t, pdef, false);
t--;
}
mesh.SetNextTimeStamp();
}
double CombineImproveEdge( Mesh & mesh,
const Table<SurfaceElementIndex, PointIndex> & elementsonnode,
Array<Vec<3>, PointIndex> & normals,
Array<bool, PointIndex> & fixed,
PointIndex pi1, PointIndex pi2,
double metricweight,
bool check_only = true)
{
Vec<3> nv;
ArrayMem<SurfaceElementIndex, 20> hasonepi, hasbothpi;
if (!pi1.IsValid() || !pi2.IsValid())
return 0.0;
bool debugflag = 0;
if (debugflag)
{
(*testout) << "Combineimprove "
<< "pi1 = " << pi1 << " pi2 = " << pi2 << endl;
}
if (fixed[pi2])
return 0.0;
double loch = 0.5*(mesh.GetH(pi1) + mesh.GetH(pi2));
int faceindex = -1;
for (SurfaceElementIndex sei2 : elementsonnode[pi1])
{
const Element2d & el2 = mesh[sei2];
if (el2.IsDeleted()) continue;
if (el2[0] == pi2 || el2[1] == pi2 || el2[2] == pi2)
{
faceindex = el2.GetIndex();
hasbothpi.Append (sei2);
}
}
if(hasbothpi.Size()==0)
return 0.0;
nv = normals[pi2];
for (SurfaceElementIndex sei2 : elementsonnode[pi2])
{
const Element2d & el2 = mesh[sei2];
if (el2.IsDeleted()) continue;
if (!el2.PNums<3>().Contains (pi1))
hasonepi.Append (sei2);
}
double bad1 = 0;
int illegal1 = 0, illegal2 = 0;
/*
for (SurfaceElementIndex sei : hasonepi)
{
const Element2d & el = mesh[sei];
bad1 += CalcTriangleBadness (mesh[el[0]], mesh[el[1]], mesh[el[2]],
nv, -1, loch);
illegal1 += 1-mesh.LegalTrig(el);
}
*/
for (const Element2d & el : mesh.SurfaceElements()[hasonepi])
{
bad1 += CalcTriangleBadness (mesh[el[0]], mesh[el[1]], mesh[el[2]],
nv, metricweight, loch);
illegal1 += 1-mesh.LegalTrig(el);
}
for (int k = 0; k < hasbothpi.Size(); k++)
{
const Element2d & el = mesh[hasbothpi[k]];
bad1 += CalcTriangleBadness (mesh[el[0]], mesh[el[1]], mesh[el[2]],
nv, metricweight, loch);
illegal1 += 1-mesh.LegalTrig(el);
}
double bad2 = 0;
for (int k = 0; k < hasonepi.Size(); k++)
{
Element2d el = mesh[hasonepi[k]];
for (auto i : Range(3))
if(el[i]==pi2)
el[i] = pi1;
double err =
CalcTriangleBadness (mesh[el[0]], mesh[el[1]], mesh[el[2]],
nv, metricweight, loch);
bad2 += err;
Vec<3> hnv = Cross (Vec3d (mesh[el[0]],
mesh[el[1]]),
Vec3d (mesh[el[0]],
mesh[el[2]]));
if (hnv * nv < 0)
bad2 += 1e10;
for (int l = 0; l < 3; l++)
{
auto normal = normals[el[l]];
if(mesh[el[l]].Type() != SURFACEPOINT)
{
// point possibly on edge -> multiple normal vectors (for each surface), need to calculate it to be sure
const int surfnr = mesh.GetFaceDescriptor (el.GetIndex()).SurfNr();
normal = mesh.GetGeometry()->GetNormal (surfnr, mesh[el[l]], &el.GeomInfo()[l]);
}
if ( ( normal * nv) < 0.5)
bad2 += 1e10;
}
illegal2 += 1-mesh.LegalTrig(el);
}
if (debugflag)
{
(*testout) << "bad1 = " << bad1 << ", bad2 = " << bad2 << endl;
}
bool should = (illegal2<=illegal1 && bad2 < bad1 && bad2 < 1e4);
if(illegal2 < illegal1)
{
should = true;
bad1 += 1e4;
}
double d_badness = should * (bad2-bad1);
if(check_only)
return d_badness;
if (should)
{
/*
(*testout) << "combine !" << endl;
(*testout) << "bad1 = " << bad1 << ", bad2 = " << bad2 << endl;
(*testout) << "illegal1 = " << illegal1 << ", illegal2 = " << illegal2 << endl;
(*testout) << "loch = " << loch << endl;
*/
PointGeomInfo gi;
// bool gi_set(false);
/*
Element2d *el1p(NULL);
int l = 0;
while(mesh[elementsonnode[pi1][l]].IsDeleted() && l<elementsonnode[pi1].Size()) l++;
if(l<elementsonnode[pi1].Size())
el1p = &mesh[elementsonnode[pi1][l]];
else
cerr << "OOPS!" << endl;
for (l = 0; l < el1p->GetNP(); l++)
if ((*el1p)[l] == pi1)
{
gi = el1p->GeomInfoPi (l+1);
// gi_set = true;
}
*/
for (auto sei : hasbothpi)
{
const Element2d & el1p = mesh[sei];
if (el1p.IsDeleted()) continue;
if(el1p.GetIndex() != faceindex) continue;
for (int l = 0; l < el1p.GetNP(); l++)
if (el1p[l] == pi1)
gi = el1p.GeomInfo()[l];
break;
}
// (*testout) << "Connect point " << pi2 << " to " << pi1 << "\n";
// for (int k = 0; k < elementsonnode[pi2].Size(); k++)
for (SurfaceElementIndex sei2 : elementsonnode[pi2])
{
Element2d & el = mesh[sei2];
if (el.IsDeleted()) continue;
if (el.PNums().Contains(pi1)) continue;
for (auto l : Range(el.GetNP()))
{
if (el[l] == pi2)
{
el[l] = pi1;
el.GeomInfo()[l] = gi;
}
fixed[el[l]] = true;
}
}
for (auto sei : hasbothpi)
mesh[sei].Delete();
}
return d_badness;
}
void MeshOptimize2d :: CombineImprove ()
{
SplitImprove();
PrintMessage (3, "Combine improve");
if (multithread.terminate)
throw NgException ("Meshing stopped");
static Timer timer ("Combineimprove 2D");
RegionTimer reg (timer);
static Timer timerstart ("Combineimprove 2D start");
timerstart.Start();
static Timer timerstart1 ("Combineimprove 2D start1");
timerstart1.Start();
Array<SurfaceElementIndex> seia;
mesh.GetSurfaceElementsOfFace (faceindex, seia);
if(checkMixedElement(mesh, seia))
{
timerstart1.Stop();
timerstart.Stop();
return;
}
int np = mesh.GetNP();
auto elementsonnode = mesh.CreatePoint2SurfaceElementTable(faceindex);
// int ntasks = ngcore::TaskManager::GetMaxThreads();
Array<std::tuple<PointIndex, PointIndex>> edges;
BuildEdgeList( mesh, elementsonnode, edges );
Array<bool,PointIndex> fixed(np);
ParallelFor( fixed.Range(), [&] (auto i) NETGEN_LAMBDA_INLINE
{ fixed[i] = mesh[i].Type() != SURFACEPOINT; });
timerstart1.Stop();
ParallelFor( mesh.LockedPoints().Range(), [&] (auto i) NETGEN_LAMBDA_INLINE
{
fixed[mesh.LockedPoints()[i]] = true;
});
Array<Vec<3>,PointIndex> normals(np);
ParallelFor( mesh.Points().Range(), [&] (auto pi) NETGEN_LAMBDA_INLINE
{
if (elementsonnode[pi].Size())
{
Element2d & hel = mesh[elementsonnode[pi][0]];
for (int k = 0; k < 3; k++)
if (hel[k] == pi)
{
const int faceindex = hel.GetIndex();
const int surfnr = mesh.GetFaceDescriptor (faceindex).SurfNr();
normals[pi] = geo.GetNormal (surfnr, mesh[pi], &hel.GeomInfoPi(k+1));
break;
}
}
}, TasksPerThread(4));
timerstart.Stop();
// Find edges with improvement
Array<std::tuple<double, int>> candidate_edges(edges.Size());
std::atomic<int> improvement_counter(0);
ParallelFor( Range(edges), [&] (auto i) NETGEN_LAMBDA_INLINE
{
auto [pi1, pi2] = edges[i];
double d_badness = CombineImproveEdge(mesh, elementsonnode, normals, fixed, pi1, pi2, metricweight, true);
if(d_badness < 0.0)
candidate_edges[improvement_counter++] = make_tuple(d_badness, i);
d_badness = CombineImproveEdge(mesh, elementsonnode, normals, fixed, pi2, pi1, metricweight, true);
if(d_badness < 0.0)
candidate_edges[improvement_counter++] = make_tuple(d_badness, -i);
}, TasksPerThread(4));
auto edges_with_improvement = candidate_edges.Part(0, improvement_counter.load());
QuickSort(edges_with_improvement);
for(auto [d_badness, ei] : edges_with_improvement)
{
auto [pi1, pi2] = edges[ei < 0 ? -ei : ei];
if(ei<0)
Swap(pi1,pi2);
CombineImproveEdge(mesh, elementsonnode, normals, fixed, pi1, pi2, metricweight, false);
}
// mesh.Compress();
mesh.SetNextTimeStamp();
}
void MeshOptimize2d :: SplitImprove()
{
if (!faceindex)
{
PrintMessage (3, "Split improve");
mesh.CalcSurfacesOfNode(); // TODO: needed?
for (faceindex = 1; faceindex <= mesh.GetNFD(); faceindex++)
{
SplitImprove();
if (multithread.terminate)
throw NgException ("Meshing stopped");
}
faceindex = 0;
mesh.Compress(); // TODO: needed?
return;
}
Array<SurfaceElementIndex> elements;
mesh.GetSurfaceElementsOfFace (faceindex, elements);
// return if we have quads in this surface
for (auto & ei : elements)
if (mesh[ei].GetNP() != 3)
return;
// maps from edges to adjacent trigs
INDEX_2_HASHTABLE<tuple<SurfaceElementIndex, SurfaceElementIndex>> els_on_edge(2*elements.Size() + 2);
// build els_on_edge table
for (SurfaceElementIndex sei : elements)
{
const Element2d & sel = mesh[sei];
for (int j = 0; j < 3; j++)
{
PointIndex pi1 = sel.PNumMod(j+2);
PointIndex pi2 = sel.PNumMod(j+3);
if (mesh.IsSegment (pi1, pi2)) continue;
PointIndices<2> ii2 (pi1, pi2);
ii2.Sort();
if (els_on_edge.Used (ii2))
{
auto els = els_on_edge.Get(ii2);
get<1>(els) = sei;
els_on_edge.Set(ii2, els);
}
else
{
els_on_edge.Set (ii2, make_tuple(sei, sei));
}
}
}
// split edges of illegal trigs
for (SurfaceElementIndex sei : elements)
{
Element2d & sel = mesh[sei];
if (sel.IsDeleted()) continue;
// TODO: split also bad trigs, nut just illegal ones
if (mesh.LegalTrig(sel)) continue;
// find longest edge
PointIndices<2> edge;
double edge_len = 0;
PointIndex pi1, pi2, pi3, pi4;
PointGeomInfo gi1, gi2, gi3, gi4;
for(auto j : Range(1,4))
{
auto test_pi1 = sel.PNumMod(j);
auto test_pi2 = sel.PNumMod(j+1);
if (mesh.IsSegment(test_pi1, test_pi2))
continue;
auto len = (mesh[test_pi2]-mesh[test_pi1]).Length();
if(len > edge_len)
{
edge = {test_pi1, test_pi2};
edge.Sort();
edge_len = len;
pi1 = test_pi1;
pi2 = test_pi2;
pi3 = sel.PNumMod(j+2);
gi1 = sel.GeomInfoPiMod(j);
gi2 = sel.GeomInfoPiMod(j+1);
gi3 = sel.GeomInfoPiMod(j+2);
}
}
if(!edge_len)
throw Exception("Couldn't find edge to split, something is wrong");
// get neighbor element
auto els = els_on_edge.Get(edge);
SurfaceElementIndex other_i = get<0>(els);
if(other_i==sei) other_i = get<1>(els);
auto & other = mesh[other_i];
// find opposite point of neighbor element
for (int j = 0; j < 3; j++)
if(other[j]!=pi1 && other[j]!=pi2)
{
pi4 = other[j];
gi4 = other.GeomInfoPi(j);
break;
}
// split edge pi1,pi2
Point<3> p5;
PointIndex pi5;
PointGeomInfo gi5;
geo.PointBetween(mesh[pi1], mesh[pi2], 0.5,
faceindex,
gi1, gi2, p5, gi5);
pi5 = mesh.AddPoint(p5);
Element2d e1(3);
e1.SetIndex(faceindex);
e1={ {pi1,gi1}, {pi5,gi5}, {pi3,gi3} };
mesh.AddSurfaceElement( e1 );
Element2d e2(3);
e2.SetIndex(faceindex);
e2 ={ {pi5,gi5}, {pi2,gi2}, {pi3,gi3} };
mesh.AddSurfaceElement( e2 );
Element2d e3(3);
e3.SetIndex(faceindex);
e3 ={ {pi1,gi1}, {pi4,gi4}, {pi5,gi5} };
mesh.AddSurfaceElement( e3 );
Element2d e4(3);
e4.SetIndex(faceindex);
e4 ={ {pi4,gi4}, {pi2,gi2}, {pi5,gi5} };
mesh.AddSurfaceElement( e4 );
sel.Delete();
other.Delete();
}
mesh.SetNextTimeStamp();
}
void MeshOptimize2d :: CheckMeshApproximation (Mesh & mesh)
{
// Check angles between elements and normals at corners
/*
int i, j;
int ne = mesh.GetNSE();
int surfnr;
Vec3d n, ng;
NgArray<Vec3d> ngs(3);
(*mycout) << "Check Surface Approximation" << endl;
(*testout) << "Check Surface Approximation" << endl;
for (i = 1; i <= ne; i++)
{
const Element2d & el = mesh.SurfaceElement(i);
surfnr = mesh.GetFaceDescriptor (el.GetIndex()).SurfNr();
Vec3d n = Cross (mesh.Point (el.PNum(1)) - mesh.Point (el.PNum(2)),
mesh.Point (el.PNum(1)) - mesh.Point (el.PNum(3)));
n /= n.Length();
for (j = 1; j <= el.GetNP(); j++)
{
SelectSurfaceOfPoint (mesh.Point(el.PNum(j)), el.GeomInfoPi(j));
GetNormalVector (surfnr, mesh.Point(el.PNum(j)), ng);
ng /= ng.Length();
ngs.Elem(j) = ng;
double angle = (180.0 / M_PI) * Angle (n, ng);
if (angle > 60)
{
(*testout) << "el " << i << " node " << el.PNum(j)
<< "has angle = " << angle << endl;
}
}
for (j = 1; j <= 3; j++)
{
double angle = (180.0 / M_PI) * Angle (ngs.Get(j), ngs.Get(j%3+1));
if (angle > 60)
{
(*testout) << "el " << i << " node-node "
<< ngs.Get(j) << " - " << ngs.Get(j%3+1)
<< " has angle = " << angle << endl;
}
}
}
*/
}
}