mirror of
https://github.com/NGSolve/netgen.git
synced 2025-01-12 22:20:35 +05:00
4033fac1b3
Found via `codespell -q 3 -S ./external_dependencies/pybind11 -L alledges,allright,ane,anormal,ans,apoints,ba,boxs,cancle,childs,co-ordinate,co-ordinates,daty,enty,filld,hel,identifyable,ist,linz,lod,ned,nd,selt,statics,suround,thev,thist,thisy,timere,upto,wel`
2241 lines
56 KiB
C++
2241 lines
56 KiB
C++
#include <iostream>
|
|
#include <cstdlib>
|
|
#include <cmath>
|
|
#include <string>
|
|
#include <set>
|
|
|
|
#include "csg2d.hpp"
|
|
|
|
// Polygon clipping algorithm based on:
|
|
// Foster, Erich & Hormann, Kai & Popa, Romeo. (2019). Clipping Simple Polygons with Degenerate Intersections. Computers & Graphics: X. 2. 100007. 10.1016/j.cagx.2019.100007.
|
|
// extended to handle quadratic spline segments
|
|
|
|
namespace netgen
|
|
{
|
|
using ngcore::INT;
|
|
|
|
constexpr static double EPSILON=0.000000001;
|
|
|
|
void ComputeWeight( Spline & s, Point<2> p )
|
|
{
|
|
Point<2> a = s.StartPI();
|
|
Point<2> b = s.TangentPoint();
|
|
Point<2> c = s.EndPI();
|
|
|
|
double A = (p[1]-a[1])*(b[0]-p[0]) - (p[0]-a[0])*(b[1]-p[1]);
|
|
double B = (p[1]-c[1])*(b[0]-p[0]) - (p[0]-c[0])*(b[1]-p[1]);
|
|
double det = sqrt(-A*B);
|
|
double tt = fabs(A+det)<EPSILON ? 1 : (B-det)/(A+det);
|
|
auto v = b-p;
|
|
int dim = fabs(v[0]) > fabs(v[1]) ? 0 : 1;
|
|
double weight = fabs(tt*(p[dim]-a[dim])/v[dim] + 1.0/tt*(p[dim]-c[dim])/v[dim]);
|
|
s.SetWeight(weight);
|
|
}
|
|
|
|
void ToggleLabel(EntryExitLabel& status)
|
|
{
|
|
if (status == ENTRY)
|
|
{
|
|
status = EXIT;
|
|
return;
|
|
}
|
|
if (status == EXIT)
|
|
{
|
|
status = ENTRY;
|
|
return;
|
|
}
|
|
}
|
|
|
|
Spline Split( const Spline & s, double t0, double t1 )
|
|
{
|
|
if(t0==0.0 && t1==1.0) return s;
|
|
|
|
Point<2> a = s.StartPI();
|
|
if(t0!=0.0)
|
|
a = s.GetPoint(t0);
|
|
|
|
Point<2> c = s.EndPI();
|
|
if(t1!=1.0)
|
|
c = s.GetPoint(t1);
|
|
|
|
// Find new midpoints by cutting the tangents at the new end points
|
|
auto tang0 = s.GetTangent(t0);
|
|
auto tang1 = s.GetTangent(t1);
|
|
|
|
netgen::Mat<2,2> m, minv;
|
|
m(0,0) = tang0[0];
|
|
m(1,0) = tang0[1];
|
|
m(0,1) = -tang1[0];
|
|
m(1,1) = -tang1[1];
|
|
|
|
CalcInverse(m, minv);
|
|
|
|
Vec<2> lam = minv*(c-a);
|
|
|
|
Point<2> b = a+lam[0]*tang0;
|
|
|
|
auto res = Spline{a, b, c};
|
|
|
|
// compute weight of new spline such that p lies on it
|
|
Point<2> p = s.GetPoint(0.5*(t0+t1));
|
|
ComputeWeight(res, p);
|
|
return res;
|
|
}
|
|
|
|
Vertex * Vertex :: Insert(Point<2> p, double lam)
|
|
{
|
|
auto vnew = make_unique<Vertex>(p);
|
|
vnew->lam = lam;
|
|
|
|
Vertex * current = this;
|
|
|
|
if(lam > -1.0)
|
|
{
|
|
do {
|
|
current = current->next;
|
|
} while (!current->is_source && current->lam < lam);
|
|
}
|
|
else
|
|
current = current->next;
|
|
|
|
auto pre = current->prev;
|
|
if(lam > -1.0)
|
|
vnew->info = pre->info;
|
|
|
|
pre->next = vnew.get();
|
|
vnew->prev = pre;
|
|
vnew->next = current;
|
|
|
|
vnew->pnext = std::move(current->prev->pnext);
|
|
|
|
current->prev = vnew.get();
|
|
|
|
pre->pnext = std::move(vnew);
|
|
|
|
return pre->next;
|
|
}
|
|
|
|
IntersectionType ClassifyNonOverlappingIntersection( double alpha, double beta )
|
|
{
|
|
// classify alpha
|
|
bool alpha_is_0 = false;
|
|
bool alpha_in_0_1 = false;
|
|
|
|
if ( (alpha > EPSILON) && (alpha < 1.0-EPSILON) )
|
|
alpha_in_0_1 = true;
|
|
else
|
|
if (fabs(alpha) <= EPSILON)
|
|
alpha_is_0 = true;
|
|
|
|
// classify beta
|
|
bool beta_is_0 = false;
|
|
bool beta_in_0_1 = false;
|
|
|
|
if ( (beta > EPSILON) && (beta < 1.0-EPSILON) )
|
|
beta_in_0_1 = true;
|
|
else
|
|
if (fabs(beta) <= EPSILON)
|
|
beta_is_0 = true;
|
|
|
|
// distinguish intersection types
|
|
if (alpha_in_0_1 && beta_in_0_1)
|
|
return (X_INTERSECTION);
|
|
|
|
if (alpha_is_0 && beta_in_0_1)
|
|
return (T_INTERSECTION_Q);
|
|
|
|
if (beta_is_0 && alpha_in_0_1)
|
|
return (T_INTERSECTION_P);
|
|
|
|
if (alpha_is_0 && beta_is_0)
|
|
return (V_INTERSECTION);
|
|
|
|
return NO_INTERSECTION;
|
|
}
|
|
|
|
IntersectionType ClassifyOverlappingIntersection( double alpha, double beta )
|
|
{
|
|
// classify alpha
|
|
bool alpha_is_0 = false;
|
|
bool alpha_in_0_1 = false;
|
|
bool alpha_not_in_0_1 = false;
|
|
|
|
if ( (alpha > EPSILON) && (alpha < 1.0-EPSILON) )
|
|
alpha_in_0_1 = true;
|
|
else
|
|
if (fabs(alpha) <= EPSILON)
|
|
alpha_is_0 = true;
|
|
else
|
|
alpha_not_in_0_1 = true;
|
|
|
|
// classify beta
|
|
bool beta_is_0 = false;
|
|
bool beta_in_0_1 = false;
|
|
bool beta_not_in_0_1 = false;
|
|
|
|
if ( (beta > EPSILON) && (beta < 1.0-EPSILON) )
|
|
beta_in_0_1 = true;
|
|
else
|
|
if (fabs(alpha) <= EPSILON)
|
|
beta_is_0 = true;
|
|
else
|
|
beta_not_in_0_1 = true;
|
|
|
|
// distinguish intersection types
|
|
if (alpha_in_0_1 && beta_in_0_1)
|
|
return (X_OVERLAP);
|
|
|
|
if (alpha_not_in_0_1 && beta_in_0_1)
|
|
return (T_OVERLAP_Q);
|
|
|
|
if (beta_not_in_0_1 && alpha_in_0_1)
|
|
return (T_OVERLAP_P);
|
|
|
|
if (alpha_is_0 && beta_is_0)
|
|
return (V_OVERLAP);
|
|
|
|
return NO_INTERSECTION;
|
|
}
|
|
|
|
IntersectionType intersect(const Point<2> P1, const Point<2> P2, const Point<2> Q1, const Point<2> Q2, double& alpha, double& beta)
|
|
{
|
|
double AP1 = Area(P1,Q1,Q2);
|
|
double AP2 = Area(P2,Q1,Q2);
|
|
|
|
if (fabs(AP1-AP2) > EPSILON)
|
|
{
|
|
// (P1,P2) and (Q1,Q2) are not parallel
|
|
|
|
double AQ1 = Area(Q1,P1,P2);
|
|
double AQ2 = Area(Q2,P1,P2);
|
|
|
|
alpha = AP1 / (AP1-AP2);
|
|
beta = AQ1 / (AQ1-AQ2);
|
|
|
|
return ClassifyNonOverlappingIntersection(alpha, beta);
|
|
}
|
|
else
|
|
if (fabs(AP1) < EPSILON)
|
|
{
|
|
// (P1,P2) and (Q1,Q2) are collinear
|
|
|
|
auto dP = P2-P1;
|
|
auto dQ = Q2-Q1;
|
|
auto PQ = Q1-P1;
|
|
|
|
alpha = (PQ*dP) / (dP*dP);
|
|
beta = -(PQ*dQ) / (dQ*dQ);
|
|
|
|
return ClassifyOverlappingIntersection(alpha, beta);
|
|
}
|
|
return NO_INTERSECTION;
|
|
}
|
|
|
|
IntersectionType IntersectSplineSegment( const Spline & s, const Point<2> & r0, const Point<2> & r1, double& alpha, double& beta )
|
|
{
|
|
Point<2> p0 = s.StartPI();
|
|
Point<2> p1 = s.TangentPoint();
|
|
Point<2> p2 = s.EndPI();
|
|
|
|
auto vr = r1-r0;
|
|
double a0 = vr[1]*(p0[0] - r0[0]) - vr[0]*(p0[1] - r0[1]);
|
|
double a1 = vr[1]*(p1[0] - r0[0]) - vr[0]*(p1[1] - r0[1]);
|
|
double a2 = vr[1]*(p2[0] - r0[0]) - vr[0]*(p2[1] - r0[1]);
|
|
a1 *= s.GetWeight();
|
|
|
|
double a_ = a0-a1+a2;
|
|
double b_ = a1-2*a0;
|
|
double c_ = a0;
|
|
|
|
double det = b_*b_ - 4*a_*c_;
|
|
if(det<0.0)
|
|
return NO_INTERSECTION;
|
|
|
|
double t;
|
|
|
|
if(fabs(a_)>EPSILON)
|
|
{
|
|
double sqrt_det = sqrt(det);
|
|
double t1 = 1.0/(2*a_) * (-b_ + sqrt_det);
|
|
double t2 = 1.0/(2*a_) * (-b_ - sqrt_det);
|
|
t = min(t1, t2);
|
|
if(t<alpha)
|
|
t = max(t1,t2);
|
|
}
|
|
else // degenerate quadratic equation
|
|
t = -c_/b_;
|
|
|
|
if(t+EPSILON<alpha)
|
|
return NO_INTERSECTION;
|
|
|
|
alpha = t;
|
|
|
|
int dim = fabs(vr[0]) > fabs(vr[1]) ? 0 : 1;
|
|
beta = 1.0/vr[dim] * (s.GetPoint(t)[dim] - r0[dim]);
|
|
|
|
return ClassifyNonOverlappingIntersection(alpha, beta);
|
|
}
|
|
|
|
IntersectionType IntersectSplineSegment1( const Spline & s, const Point<2> & r0, const Point<2> & r1, double& alpha, double& beta, bool first=false)
|
|
{
|
|
Point<2> p0 = s.StartPI();
|
|
Point<2> p1 = s.TangentPoint();
|
|
Point<2> p2 = s.EndPI();
|
|
|
|
auto vr = r1-r0;
|
|
double a0 = vr[1]*(p0[0] - r0[0]) - vr[0]*(p0[1] - r0[1]);
|
|
double a1 = vr[1]*(p1[0] - r0[0]) - vr[0]*(p1[1] - r0[1]);
|
|
double a2 = vr[1]*(p2[0] - r0[0]) - vr[0]*(p2[1] - r0[1]);
|
|
a1 *= s.GetWeight();
|
|
|
|
double a_ = a0-a1+a2;
|
|
double b_ = a1-2*a0;
|
|
double c_ = a0;
|
|
|
|
double det = b_*b_ - 4*a_*c_;
|
|
if(det<-EPSILON)
|
|
return NO_INTERSECTION;
|
|
|
|
if(det<EPSILON)
|
|
det = 0;
|
|
|
|
double sqrt_det = sqrt(det);
|
|
double vbeta[2];
|
|
|
|
if(fabs(a_)>EPSILON)
|
|
{
|
|
vbeta[0] = 1.0/(2*a_) * (-b_ + sqrt_det);
|
|
vbeta[1] = 1.0/(2*a_) * (-b_ - sqrt_det);
|
|
}
|
|
else // degenerate quadratic equation
|
|
vbeta[0] = vbeta[1] = -c_/b_;
|
|
|
|
int dim = fabs(vr[0]) > fabs(vr[1]) ? 0 : 1;
|
|
double valpha[2];
|
|
valpha[0] = 1.0/vr[dim] * (s.GetPoint(vbeta[0])[dim] - r0[dim]);
|
|
valpha[1] = 1.0/vr[dim] * (s.GetPoint(vbeta[1])[dim] - r0[dim]);
|
|
|
|
|
|
IntersectionType vtype[2];
|
|
vtype[0] = ClassifyNonOverlappingIntersection(valpha[0], vbeta[0]);
|
|
vtype[1] = ClassifyNonOverlappingIntersection(valpha[1], vbeta[1]);
|
|
|
|
if(valpha[0]>valpha[1])
|
|
{
|
|
swap(valpha[0], valpha[1]);
|
|
swap(vbeta[0], vbeta[1]);
|
|
swap(vtype[0], vtype[1]);
|
|
}
|
|
|
|
int choice = 0;
|
|
if(!first)
|
|
{
|
|
if(vtype[0]==NO_INTERSECTION && vtype[1]!=NO_INTERSECTION)
|
|
choice = 1;
|
|
|
|
if(valpha[0] < alpha+EPSILON)
|
|
choice = 1;
|
|
}
|
|
|
|
if(valpha[choice] < alpha+EPSILON)
|
|
return NO_INTERSECTION;
|
|
|
|
alpha = valpha[choice];
|
|
beta = vbeta[choice];
|
|
return vtype[choice];
|
|
}
|
|
|
|
bool IsOverlapping( Spline p, Spline s, double & alpha, double & beta, IntersectionType & type )
|
|
{
|
|
|
|
auto p_mid = Center(p.StartPI(), p.EndPI());
|
|
auto s_mid = Center(s.StartPI(), s.EndPI());
|
|
|
|
double lam0 = -1e3*EPSILON;
|
|
double lam1 = -1e3*EPSILON;
|
|
double lam2 = -1e3*EPSILON;
|
|
double lam3 = -1e3*EPSILON;
|
|
alpha=-1e8;
|
|
beta=-1e8;
|
|
double alpha_mid=-1e8;
|
|
double beta_mid=-1e8;
|
|
|
|
// Check if s.p0 lies on p and vice versa, also check if tangents are in same direction (TODO: TEST)
|
|
// If so, assume overlapping splines
|
|
// TODO: Better checks! False positives could happen here!
|
|
if(Dist(s.StartPI(), p.StartPI())<EPSILON)
|
|
{
|
|
lam0 = 0.0;
|
|
alpha = 0.0;
|
|
}
|
|
else if(Dist(s.StartPI(), p.EndPI())<EPSILON)
|
|
{
|
|
lam0 = 0.0;
|
|
alpha = 1.0;
|
|
}
|
|
else
|
|
IntersectSplineSegment1( p, s.StartPI(), p_mid, lam0, alpha, true );
|
|
|
|
if(Dist(p.StartPI(), s.StartPI())<EPSILON)
|
|
{
|
|
lam1 = 0.0;
|
|
beta = 0.0;
|
|
}
|
|
else if(Dist(p.StartPI(), s.EndPI())<EPSILON)
|
|
{
|
|
lam1 = 0.0;
|
|
beta = 1.0;
|
|
}
|
|
else
|
|
IntersectSplineSegment1( s, p.StartPI(), s_mid, lam1, beta, true );
|
|
|
|
// Also check if midpoints lie on other spline
|
|
IntersectSplineSegment1( p, s.GetPoint(0.4), p_mid, lam2, alpha_mid, true );
|
|
IntersectSplineSegment1( s, p.GetPoint(0.4), s_mid, lam3, beta_mid, true );
|
|
|
|
auto tang0 = s.GetTangent(0.);
|
|
auto tang1 = p.GetTangent(alpha);
|
|
double err = tang0*tang1;
|
|
err*=err;
|
|
err *= 1.0/(tang0.Length2()*tang1.Length2());
|
|
|
|
double constexpr eps = 1e3*EPSILON;
|
|
if(fabs(lam0)>eps) return false;
|
|
if(fabs(lam1)>eps) return false;
|
|
if(fabs(lam2)>eps) return false;
|
|
if(fabs(lam3)>eps) return false;
|
|
if(fabs(1.0-err)>eps) return false;
|
|
|
|
type = ClassifyOverlappingIntersection( alpha, beta );
|
|
return true;
|
|
}
|
|
|
|
bool IsInsideTrig( const array<Point<2>,3> & t, Point<2> r )
|
|
{
|
|
int w = 0;
|
|
Point<2> trig[4] = {t[0],t[1],t[2],t[0]};
|
|
for(auto i : Range(3))
|
|
w += CalcSide(trig[i], trig[i+1], r);
|
|
return ( (w % 2) != 0 );
|
|
}
|
|
|
|
bool IsCloseToTrig( const array<Point<2>,3> & t, Point<2> r, double eps=1e-4 )
|
|
{
|
|
r += eps * (Center(t[0], t[1], t[2])-r); // move point a bit to center of trig
|
|
return IsInsideTrig( t, r );
|
|
}
|
|
|
|
bool IsLeft( const Spline & s, Point<2> p )
|
|
{
|
|
Point<2> a = s.StartPI();
|
|
Point<2> b = s.TangentPoint();
|
|
Point<2> c = s.EndPI();
|
|
|
|
// simple check by approximating spline with segment
|
|
bool is_left = Area(p, a, c) > 0.0;
|
|
|
|
// not close to spline -> simple check valid
|
|
if(!IsCloseToTrig( {a, b, c} , p ))
|
|
return is_left;
|
|
|
|
// p is control point -> simple check valid
|
|
auto bp = p-b;
|
|
if(bp.Length2() < EPSILON)
|
|
return is_left;
|
|
|
|
double sab = Area(p, a, b);
|
|
double sbc = Area(p, b, c);
|
|
if(fabs(sab)<EPSILON)
|
|
return is_left;
|
|
if(fabs(sbc)<EPSILON)
|
|
return is_left;
|
|
|
|
// r close to spline, need exact test
|
|
// idea: compute weight, such that r lies on spline
|
|
// weight increases -> same side of spline as control point, simple test gives correct result
|
|
// weight decreases -> opposite side of spline as control point, adding control point to test polygon gives correct result
|
|
double old_weight = s.GetWeight();
|
|
auto s_tmp = s;
|
|
ComputeWeight( s_tmp, p );
|
|
double new_weight = s_tmp.GetWeight();
|
|
|
|
if(new_weight>old_weight)
|
|
return is_left;
|
|
|
|
double sabc = Area(a, b, c);
|
|
|
|
if (sabc > 0)
|
|
{
|
|
// chain makes a left turn
|
|
if (sab > 0 && sbc > 0)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
// chain makes a right turn (or is straight)
|
|
if (sab < 0 && sbc < 0)
|
|
return false;
|
|
else
|
|
return true;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
IntersectionType IntersectTrig( Point<2> p0, Point<2> p1, const array<Point<2>,3> & trig)
|
|
{
|
|
Point<2> lt[4] = { trig[0], trig[1], trig[2], trig[0] };
|
|
|
|
double alpha, beta;
|
|
for(auto i : IntRange(3))
|
|
{
|
|
auto type = intersect(p0, p1, lt[i], lt[i+1], alpha, beta);
|
|
if(type != NO_INTERSECTION)
|
|
return type;
|
|
}
|
|
|
|
return NO_INTERSECTION;
|
|
}
|
|
|
|
bool IntersectTrigs( const array<Point<2>,3> & trig0, const array<Point<2>,3> & trig1)
|
|
{
|
|
Point<2> lt0[4] = { trig0[0], trig0[1], trig0[2], trig0[0] };
|
|
|
|
for(auto i : IntRange(3))
|
|
{
|
|
if(IntersectTrig(lt0[i], lt0[i+1], trig1))
|
|
return true;
|
|
if(IsInsideTrig(trig0, trig1[i]))
|
|
return true;
|
|
if(IsInsideTrig(trig1, trig0[i]))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool BisectIntersect( Spline p, Spline s, double &t0, double &t1, double &s0, double &s1, int depth=-50)
|
|
{
|
|
if(depth==0)
|
|
{
|
|
s0 = s1;
|
|
t0 = t1;
|
|
return true;
|
|
}
|
|
|
|
bool side = depth%2==0;
|
|
|
|
double & lam0 = side ? t0 : s0;
|
|
double & lam1 = side ? t1 : s1;
|
|
Spline & spline = side ? p : s;
|
|
Spline & spline_other = side ? s : p;
|
|
|
|
double lam_mid = 0.5*(lam0+lam1);
|
|
auto left = Split(spline, lam0, lam_mid);
|
|
auto right = Split(spline, lam_mid, lam1);
|
|
|
|
double & lam0_other = side ? s0 : t0;
|
|
double & lam1_other = side ? s1 : t1;
|
|
auto curr = Split(spline_other, lam0_other, lam1_other);
|
|
|
|
bool left_hull_intersecting = IntersectTrigs( {left.StartPI(), left.TangentPoint(), left.EndPI()}, {curr.StartPI(), curr.TangentPoint(), curr.EndPI()});
|
|
bool right_hull_intersecting = IntersectTrigs( {right.StartPI(), right.TangentPoint(), right.EndPI()}, {curr.StartPI(), curr.TangentPoint(), curr.EndPI()});
|
|
|
|
// TODO: Additionally check if one spline intersects with convex hull of other?
|
|
// // Check if one spline intersects with convex hull of spline
|
|
// if(left_hull_intersecting)
|
|
// {
|
|
// double a,b;
|
|
// left_hull_intersecting = left.Intersect( curr.p0, curr.p1, a, b );
|
|
// left_hull_intersecting |= left.Intersect( curr.p1, curr.p2, a, b );
|
|
// left_hull_intersecting |= left.Intersect( curr.p2, curr.p0, a, b );
|
|
// }
|
|
//
|
|
// if(right_hull_intersecting)
|
|
// {
|
|
// double a,b;
|
|
// right_hull_intersecting = right.Intersect( curr.p0, curr.p1, a, b );
|
|
// right_hull_intersecting |= right.Intersect( curr.p1, curr.p2, a, b );
|
|
// right_hull_intersecting |= right.Intersect( curr.p2, curr.p0, a, b );
|
|
// }
|
|
|
|
|
|
if(!left_hull_intersecting && !right_hull_intersecting)
|
|
return false;
|
|
|
|
if(left_hull_intersecting && right_hull_intersecting)
|
|
{
|
|
// cout << "intersect both sides " << endl;
|
|
double temp_lam;
|
|
temp_lam = lam1;
|
|
lam1 = lam_mid;
|
|
|
|
double t0_ = t0;
|
|
double t1_ = t1;
|
|
double s0_ = s0;
|
|
double s1_ = s1;
|
|
|
|
// cout << "recursive bisect " << t0 << ',' << t1 << ',' << s0 << ',' << s1 << endl;
|
|
bool first_intersecting = BisectIntersect(p, s, t0_, t1_, s0_, s1_, depth+1);
|
|
if(first_intersecting)
|
|
{
|
|
t0 = t0_;
|
|
t1 = t1_;
|
|
s0 = s0_;
|
|
s1 = s1_;
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
// cout << "search other side " << endl;
|
|
// no first intersection -> search other side
|
|
lam1 = temp_lam;
|
|
left_hull_intersecting = false;
|
|
}
|
|
}
|
|
|
|
if(left_hull_intersecting)
|
|
lam1 = lam_mid;
|
|
else
|
|
lam0 = lam_mid;
|
|
|
|
return BisectIntersect(p, s, t0, t1, s0, s1, depth+1);
|
|
}
|
|
|
|
bool NewtonIntersect( Spline p, Spline s, double & alpha, double & beta )
|
|
{
|
|
|
|
Point<2> p0, s0;
|
|
Vec<2> dp, ds, ddp, dds;
|
|
|
|
p.GetDerivatives(alpha, p0, dp, ddp);
|
|
s.GetDerivatives(beta, s0, ds, dds);
|
|
|
|
netgen::Mat<2,2> m, minv;
|
|
|
|
m(0,0) = dp[0];
|
|
m(1,0) = dp[1];
|
|
m(0,1) = -ds[0];
|
|
m(1,1) = -ds[1];
|
|
|
|
CalcInverse(m, minv);
|
|
|
|
Vec<2> res = s0-p0;
|
|
Vec<2> h = minv*res;
|
|
alpha +=h[0];
|
|
beta +=h[1];
|
|
return true;
|
|
}
|
|
|
|
|
|
IntersectionType Intersect( Spline p, Spline s, double &alpha, double &beta)
|
|
{
|
|
bool is_convex_hull_intersecting = IntersectTrigs( {p.StartPI(), p.TangentPoint(), p.EndPI()}, {s.StartPI(), s.TangentPoint(), s.EndPI()});
|
|
if(!is_convex_hull_intersecting)
|
|
return NO_INTERSECTION;
|
|
|
|
{
|
|
// Check if splines overlap
|
|
double alpha_ = alpha;
|
|
double beta_ = beta;
|
|
IntersectionType overlap_type;
|
|
bool have_overlap = IsOverlapping( p, s, alpha_, beta_, overlap_type );
|
|
if(have_overlap)
|
|
{
|
|
alpha = alpha_;
|
|
beta = beta_;
|
|
return overlap_type;
|
|
}
|
|
}
|
|
|
|
// Bisection
|
|
double t1 = 1.0;
|
|
double s1 = 1.0;
|
|
|
|
bool have_intersection = false;
|
|
if(alpha>0.0) // alpha > 0 means, we have found one intersection already
|
|
{
|
|
// reverse parametrization of first spline to make sure, we find the second intersection first
|
|
auto p_ = Spline{p.EndPI(), p.TangentPoint(), p.StartPI(), p.GetWeight()};
|
|
t1 = 1.0-alpha;
|
|
alpha = 0.0;
|
|
beta = 0.0;
|
|
|
|
have_intersection = BisectIntersect(p_,s,alpha,t1,beta,s1);
|
|
alpha = 1.0-alpha;
|
|
}
|
|
else
|
|
have_intersection = BisectIntersect(p,s,alpha,t1,beta,s1);
|
|
|
|
if(have_intersection)
|
|
{
|
|
for(auto i : IntRange(10))
|
|
NewtonIntersect(p, s, alpha, beta);
|
|
return ClassifyNonOverlappingIntersection( alpha, beta );
|
|
}
|
|
|
|
return NO_INTERSECTION;
|
|
}
|
|
|
|
|
|
IntersectionType intersect(const Edge& edgeP, const Edge& edgeQ, double& alpha, double& beta)
|
|
{
|
|
const Point<2>& P1 = *edgeP.v0;
|
|
const Point<2>& P2 = *edgeP.v1;
|
|
const Point<2>& Q1 = *edgeQ.v0;
|
|
const Point<2>& Q2 = *edgeQ.v1;
|
|
|
|
if(edgeP.v0->spline)
|
|
{
|
|
if(edgeQ.v0->spline)
|
|
return Intersect(*edgeP.v0->spline, *edgeQ.v0->spline, alpha, beta);
|
|
else
|
|
return IntersectSplineSegment(*edgeP.v0->spline, Q1, Q2, alpha, beta);
|
|
}
|
|
else
|
|
{
|
|
if(edgeQ.v0->spline)
|
|
return IntersectSplineSegment1(*edgeQ.v0->spline, P1, P2, alpha, beta);
|
|
else
|
|
return intersect(P1, P2, Q1, Q2, alpha, beta);
|
|
}
|
|
}
|
|
|
|
void AddIntersectionPoint(Edge edgeP, Edge edgeQ, IntersectionType i, double alpha, double beta)
|
|
{
|
|
Point<2> I;
|
|
Vertex* I_P;
|
|
Vertex* I_Q;
|
|
|
|
Vertex* P1 = edgeP.v0;
|
|
Vertex* Q1 = edgeQ.v0;
|
|
|
|
switch(i)
|
|
{
|
|
case X_INTERSECTION:
|
|
if(edgeP.v0->spline)
|
|
I = edgeP.v0->spline->GetPoint(alpha);
|
|
else
|
|
I = *edgeP.v0 + alpha*(*edgeP.v1 - *edgeP.v0);
|
|
I_P = edgeP.v0->Insert(I, alpha);
|
|
I_Q = edgeQ.v0->Insert(I, beta);
|
|
I_P->Link(I_Q);
|
|
break;
|
|
|
|
case X_OVERLAP:
|
|
I_Q = edgeQ.v0->Insert(*P1, beta);
|
|
P1->Link( I_Q);
|
|
|
|
I_P = edgeP.v0->Insert(*Q1, alpha);
|
|
I_P->Link( Q1);
|
|
break;
|
|
|
|
case T_INTERSECTION_Q:
|
|
case T_OVERLAP_Q:
|
|
I_Q = edgeQ.v0->Insert(*P1, beta);
|
|
P1->Link( I_Q);
|
|
break;
|
|
|
|
case T_INTERSECTION_P:
|
|
case T_OVERLAP_P:
|
|
I_P = edgeP.v0->Insert(*Q1, alpha);
|
|
I_P->Link( Q1);
|
|
break;
|
|
|
|
case V_INTERSECTION:
|
|
case V_OVERLAP:
|
|
P1->Link(Q1);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void RemoveDuplicates(Loop & poly)
|
|
{
|
|
if(poly.first==nullptr)
|
|
return;
|
|
|
|
Vertex * last = poly.first->prev;
|
|
for(auto v : poly.Vertices(ALL))
|
|
{
|
|
if(Dist2(*v, *last)<EPSILON*EPSILON)
|
|
poly.Remove(last);
|
|
last = v;
|
|
}
|
|
}
|
|
|
|
void RemoveDuplicates(Solid2d & sr)
|
|
{
|
|
static Timer tall("RemoveDuplicates"); RegionTimer rtall(tall);
|
|
for(auto & poly : sr.polys)
|
|
RemoveDuplicates(poly);
|
|
}
|
|
|
|
|
|
void SplitSplines( Loop & l)
|
|
{
|
|
// Split splines at new vertices
|
|
for (Vertex* v : l.Vertices(SOURCE))
|
|
{
|
|
if(!v->spline)
|
|
continue;
|
|
Spline ori{*v->spline};
|
|
Vertex * curr = v;
|
|
do
|
|
{
|
|
auto next = curr->next;
|
|
if(!curr->is_source || !next->is_source)
|
|
{
|
|
double t0 = curr->is_source ? 0.0 : curr->lam;
|
|
double t1 = next->is_source ? 1.0 : next->lam;
|
|
curr->spline = Split(ori, t0, t1);
|
|
curr->lam = -1;
|
|
curr->is_source = true;
|
|
}
|
|
curr = next;
|
|
} while(!curr->is_source);
|
|
};
|
|
RemoveDuplicates(l);
|
|
}
|
|
|
|
void ComputeIntersections(Edge edgeP , Loop & l2)
|
|
{
|
|
for (Edge edgeQ : l2.Edges(SOURCE))
|
|
{
|
|
double alpha = -EPSILON;
|
|
double beta = -EPSILON;
|
|
IntersectionType i = intersect(edgeP, edgeQ, alpha, beta);
|
|
AddIntersectionPoint(edgeP, edgeQ, i, alpha, beta);
|
|
if(i==X_INTERSECTION && (edgeP.v0->spline || edgeQ.v0->spline))
|
|
{
|
|
double alpha1 = alpha+1e2*EPSILON;
|
|
double beta1 = 0.0; //beta+1e2*EPSILON;
|
|
|
|
// search for possible second intersection
|
|
i = intersect(edgeP, edgeQ, alpha1, beta1);
|
|
if(i!=NO_INTERSECTION && alpha+EPSILON<alpha1)
|
|
{
|
|
// Add midpoint of two intersection points to avoid false overlap detection of splines
|
|
// TODO: Check if this is really necessary
|
|
auto alpha_mid = 0.5*(alpha+alpha1);
|
|
auto beta_mid = 0.5*(beta+beta1);
|
|
Point<2> MP;
|
|
if(edgeP.v0->spline)
|
|
{
|
|
MP = edgeP.v0->spline->GetPoint(alpha_mid);
|
|
edgeP.v0->Insert(MP, alpha_mid);
|
|
}
|
|
else
|
|
MP = edgeQ.v0->spline->GetPoint(beta_mid);
|
|
|
|
if(edgeQ.v0->spline)
|
|
edgeQ.v0->Insert(MP, beta_mid);
|
|
|
|
AddIntersectionPoint(edgeP, edgeQ, i, alpha1, beta1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void ComputeIntersections(Loop & l1, Loop & l2)
|
|
{
|
|
static Timer t_intersect("find intersections");
|
|
static Timer t_split("split splines");
|
|
|
|
t_intersect.Start();
|
|
for (Edge edgeP : l1.Edges(SOURCE))
|
|
ComputeIntersections(edgeP, l2);
|
|
t_intersect.Stop();
|
|
|
|
RegionTimer rt_split(t_split);
|
|
|
|
SplitSplines(l1);
|
|
SplitSplines(l2);
|
|
}
|
|
|
|
void ComputeIntersections(Solid2d & s1, Solid2d & s2)
|
|
{
|
|
static Timer tall("ComputeIntersections"); RegionTimer rtall(tall);
|
|
|
|
for (Loop& l1 : s1.polys)
|
|
for (Edge edgeP : l1.Edges(SOURCE))
|
|
for (Loop& l2 : s2.polys)
|
|
ComputeIntersections(edgeP, l2);
|
|
|
|
for (Loop& l1 : s1.polys)
|
|
SplitSplines(l1);
|
|
|
|
for (Loop& l2 : s2.polys)
|
|
SplitSplines(l2);
|
|
}
|
|
|
|
enum RelativePositionType
|
|
{
|
|
LEFT,
|
|
RIGHT,
|
|
IS_P_m,
|
|
IS_P_p
|
|
};
|
|
|
|
inline RelativePositionType oracle_decide( double s1, double s2, double s3 )
|
|
{
|
|
if (s3 > 0)
|
|
{
|
|
// chain makes a left turn
|
|
if (s1 > 0 && s2 > 0)
|
|
return(LEFT);
|
|
else
|
|
return(RIGHT);
|
|
}
|
|
else
|
|
{
|
|
// chain makes a right turn (or is straight)
|
|
if (s1 < 0 && s2 < 0)
|
|
return(RIGHT);
|
|
else
|
|
return(LEFT);
|
|
}
|
|
}
|
|
|
|
// no splines involved here
|
|
// decides if Point q is left or right of chain (p1,p2,p3)
|
|
RelativePositionType oracle_simple(Point<2> q, Point<2> p1, Point<2> p2, Point<2> p3)
|
|
{
|
|
double s1 = Area( q, p1, p2);
|
|
double s2 = Area( q, p2, p3);
|
|
double s3 = Area( p1, p2, p3);
|
|
|
|
// check relative position of q with respect to chain (p1,p2,p3)
|
|
return oracle_decide(s1, s2, s3);
|
|
}
|
|
|
|
// (p1,p2) or (p2,p3) is a spline segment, compare with tangent (p1t,p2) instead of Segment (p1,p2)
|
|
// BUT take care if tangent is collinear with (q,p2) (then use the segment (p1,p2) again)
|
|
RelativePositionType oracle_spline_p(Point<2> q, Point<2> p1, Point<2> p1t, Point<2> p2, Point<2> p3, Point<2> p3t)
|
|
{
|
|
double s1 = Area( q, p1t, p2);
|
|
double s2 = Area( q, p2, p3t);
|
|
|
|
if(fabs(s1) < EPSILON)
|
|
{
|
|
p1t = p1;
|
|
s1 = Area( q, p1t, p2 );
|
|
}
|
|
|
|
if(fabs(s2) < EPSILON)
|
|
{
|
|
p3t = p3;
|
|
s2 = Area( q, p2, p3t );
|
|
}
|
|
|
|
double s3 = Area( p1t, p2, p3t);
|
|
|
|
return oracle_decide(s1, s2, s3);
|
|
}
|
|
|
|
// (q,p2) is a spline segment, compare with tangent (qt,p2) instead of Segment (q,p2)
|
|
// BUT take care if tangent at p2 is collinear with either (p1,p2) or (p2,p3) (then use the segment (q,p2) again)
|
|
RelativePositionType oracle_spline_q(Point<2> q, Point<2> qt, Point<2> p1, Point<2> p2, Point<2> p3)
|
|
{
|
|
double s1 = Area( qt, p1, p2);
|
|
double s2 = Area( qt, p2, p3);
|
|
double s3 = Area( p1, p2, p3);
|
|
|
|
if(fabs(s1) < EPSILON)
|
|
s1 = Area( q, p1, p2 );
|
|
|
|
if(fabs(s2) < EPSILON)
|
|
s2 = Area( q, p2, p3 );
|
|
|
|
return oracle_decide(s1, s2, s3);
|
|
}
|
|
|
|
// splines at (Q,P2) and either (P1,P2) or (P2,P3)
|
|
// first use tangents to decide local orientation
|
|
// if tangents of two splines match, use IsLeft(spline, other end point)
|
|
// if tangent of spline and segment match, use simple methond (just end points)
|
|
RelativePositionType oracle_spline(bool prev, Vertex *Q, Vertex *P1, Vertex *P2, Vertex *P3)
|
|
{
|
|
Point<2> p1t = *P1;
|
|
Point<2> p3t = *P3;
|
|
|
|
auto sq = prev ? Q->spline : Q->prev->spline;
|
|
auto qt = sq->TangentPoint();
|
|
if(P1->spline) p1t = P1->spline->TangentPoint();
|
|
if(P2->spline) p3t = P2->spline->TangentPoint();
|
|
|
|
// Check using tangent directions first
|
|
double s1 = Area( qt, p1t, *P2 );
|
|
double s2 = Area( qt, *P2 , p3t);
|
|
double s3 = Area( p1t, *P2, p3t);
|
|
|
|
// tangents are facing in same direction
|
|
if(fabs(s1) < EPSILON)
|
|
{
|
|
if(P1->spline)
|
|
s1 = IsLeft(*P1->spline, *Q) ? 1 : -1;
|
|
else
|
|
s1 = Area( *Q, *P1, *P2 );
|
|
}
|
|
|
|
// tangents are facing in same direction
|
|
if(fabs(s2) < EPSILON)
|
|
{
|
|
if(P2->spline)
|
|
s2 = IsLeft(*P2->spline, *Q) ? 1 : -1;
|
|
else
|
|
s2 = Area( *Q, *P2, *P3 );
|
|
}
|
|
|
|
return oracle_decide(s1, s2, s3);
|
|
}
|
|
|
|
|
|
RelativePositionType oracle(bool prev, Vertex* P2)
|
|
{
|
|
auto Q = prev ? P2->neighbour->prev : P2->neighbour->next;
|
|
auto sq = prev ? Q->spline : Q->prev->spline;
|
|
Vertex* P1 = P2->prev;
|
|
Vertex* P3 = P2->next;
|
|
|
|
// is Q linked to P1 ?
|
|
if ( P1->is_intersection && (P1->neighbour == Q) )
|
|
return(IS_P_m);
|
|
|
|
// is Q linked to P2 ?
|
|
if ( P3->is_intersection && (P3->neighbour == Q) )
|
|
return(IS_P_p);
|
|
|
|
// no splines -> simple variant
|
|
if(!P1->spline && !P2->spline && !Q->spline)
|
|
return oracle_simple(*Q, *P1, *P2, *P3);
|
|
|
|
Point<2> qt=*Q, p1t=*P1, p3t=*P3;
|
|
|
|
// splines -> also consider tangent points
|
|
if( sq) qt = Q->spline->TangentPoint();
|
|
if(P1->spline) p1t = P1->spline->TangentPoint();
|
|
if(P2->spline) p3t = P2->spline->TangentPoint();
|
|
|
|
// only spline at Q
|
|
if(!P1->spline && !P2->spline && Q->spline)
|
|
return oracle_spline_q(*Q, qt, *P1, *P2, *P3);
|
|
|
|
// only spline at P
|
|
if((P1->spline || !P2->spline) && !Q->spline)
|
|
return oracle_spline_p(*Q, *P1, p1t, *P2, *P3, p3t);
|
|
|
|
// spline at Q and P1 or P2
|
|
return oracle_spline(prev, Q, P1, P2, P3);
|
|
}
|
|
|
|
|
|
void LabelIntersections(Solid2d & sp, Solid2d & sq, Solid2d & sr, bool UNION)
|
|
{
|
|
auto & PP = sp.polys;
|
|
auto & QQ = sq.polys;
|
|
auto & RR = sr.polys;
|
|
|
|
// 1) initial classification
|
|
for (Loop& P : PP)
|
|
for (Vertex* I : P.Vertices(INTERSECTION))
|
|
{
|
|
|
|
// determine local configuration at this intersection vertex
|
|
// check positions of Q- and Q+ relative to (P-, I, P+)
|
|
RelativePositionType Q_m_type = oracle(true, I);
|
|
RelativePositionType Q_p_type = oracle(false, I);
|
|
|
|
// check non-overlapping cases
|
|
if ((Q_m_type == LEFT && Q_p_type == RIGHT) ||
|
|
(Q_m_type == RIGHT && Q_p_type == LEFT ))
|
|
{
|
|
I->label = CROSSING;
|
|
}
|
|
|
|
if ((Q_m_type == LEFT && Q_p_type == LEFT ) ||
|
|
(Q_m_type == RIGHT && Q_p_type == RIGHT))
|
|
{
|
|
I->label = BOUNCING;
|
|
}
|
|
|
|
// check overlapping cases
|
|
if ( ( (Q_p_type == IS_P_p) && (Q_m_type == RIGHT) ) ||
|
|
( (Q_m_type == IS_P_p) && (Q_p_type == RIGHT) ) )
|
|
I->label = LEFT_ON;
|
|
|
|
if ( ( (Q_p_type == IS_P_p) && (Q_m_type == LEFT) ) ||
|
|
( (Q_m_type == IS_P_p) && (Q_p_type == LEFT) ) )
|
|
I->label = RIGHT_ON;
|
|
|
|
if ( ( (Q_p_type == IS_P_p) && (Q_m_type == IS_P_m) ) ||
|
|
( (Q_m_type == IS_P_p) && (Q_p_type == IS_P_m) ) )
|
|
I->label = ON_ON;
|
|
|
|
if ( ( (Q_m_type == IS_P_m) && (Q_p_type == RIGHT) ) ||
|
|
( (Q_p_type == IS_P_m) && (Q_m_type == RIGHT) ) )
|
|
I->label = ON_LEFT;
|
|
|
|
if ( ( (Q_m_type == IS_P_m) && (Q_p_type == LEFT) ) ||
|
|
( (Q_p_type == IS_P_m) && (Q_m_type == LEFT) ) )
|
|
I->label = ON_RIGHT;
|
|
}
|
|
|
|
// 2) classify intersection chains
|
|
for (Loop& P : PP)
|
|
for (Vertex* I : P.Vertices(INTERSECTION))
|
|
{
|
|
|
|
// start of an intersection chain ?
|
|
if (I->label == LEFT_ON ||
|
|
I->label == RIGHT_ON)
|
|
{
|
|
|
|
// remember status of the first chain vertex and vertex itself
|
|
RelativePositionType x;
|
|
if (I->label == LEFT_ON)
|
|
x = LEFT;
|
|
else
|
|
x = RIGHT;
|
|
Vertex* X = I;
|
|
|
|
// proceed to end of intersection chain and mark all visited vertices as NONE
|
|
do {
|
|
I->label = NONE;
|
|
I = I->next;
|
|
} while (I->label == ON_ON);
|
|
|
|
RelativePositionType y;
|
|
if (I->label == ON_LEFT)
|
|
y = LEFT;
|
|
else
|
|
y = RIGHT;
|
|
|
|
// determine type of intersection chain
|
|
IntersectionLabel chainType;
|
|
if (x != y)
|
|
chainType = DELAYED_CROSSING;
|
|
else
|
|
chainType = DELAYED_BOUNCING;
|
|
|
|
// mark both ends of an intersection chain with chainType (i.e., as DELAYED_*)
|
|
X->label = chainType;
|
|
I->label = chainType;
|
|
}
|
|
}
|
|
|
|
// 3) copy labels from P to Q
|
|
// loop over intersection vertices of P
|
|
for (Loop& P : PP)
|
|
for (Vertex* I : P.Vertices(INTERSECTION))
|
|
I->neighbour->label = I->label;
|
|
|
|
// 3.5) check for special cases
|
|
|
|
set<Loop*> noIntersection[2];
|
|
set<Loop*> identical[2];
|
|
|
|
for (int i=0; i<2; ++i)
|
|
{
|
|
Array<Loop>* P_or_Q = &PP; // if i=0, then do it for P w.r.t. Q
|
|
Array<Loop>* Q_or_P = &QQ;
|
|
|
|
if (i==1) { // if i=1, then do it for Q w.r.t. P
|
|
P_or_Q = &QQ;
|
|
Q_or_P = &PP;
|
|
}
|
|
|
|
// loop over all components of P (or Q)
|
|
for (Loop& P : *P_or_Q)
|
|
if (P.noCrossingVertex(UNION))
|
|
{
|
|
// P_ has no crossing vertex (but may have bounces or delayed bounces, except for UNION),
|
|
// hence it does not intersect with Q_or_P
|
|
noIntersection[i].insert(&P); // remember component, and ignore it later in step 4
|
|
|
|
// is P identical to some component of and Q_or_P?
|
|
if (P.allOnOn())
|
|
{
|
|
identical[i].insert(&P); // -> remember for further processing below
|
|
}
|
|
else
|
|
{
|
|
// is P inside Q_or_P?
|
|
bool isInside = false;
|
|
auto p = P.getNonIntersectionPoint();
|
|
for (Loop& Q : *Q_or_P)
|
|
if ( Q.IsInside(p) )
|
|
isInside = !isInside;
|
|
if (isInside ^ UNION)
|
|
RR.Append(P); // -> add P to the result
|
|
}
|
|
}
|
|
}
|
|
|
|
// handle components of P that are identical to some component of Q
|
|
for (Loop* P : identical[0])
|
|
{
|
|
// is P a hole?
|
|
bool P_isHole = false;
|
|
for (Loop& P_ : PP)
|
|
if ( ( P_.first.get() != P->first.get() ) && (P_.IsInside(*P->first)) )
|
|
P_isHole = !P_isHole;
|
|
|
|
for (Loop* Q : identical[1])
|
|
for (Vertex* V : Q->Vertices(ALL))
|
|
if (V == P->first->neighbour) { // found Q that matches P
|
|
// is Q a hole?
|
|
bool Q_isHole = false;
|
|
for (Loop& Q_ : QQ)
|
|
if ( ( Q_.first.get() != Q->first.get() ) && (Q_.IsInside(*Q->first)) )
|
|
Q_isHole = !Q_isHole;
|
|
|
|
// if P and Q are both holes or both are not holes
|
|
if (P_isHole == Q_isHole)
|
|
RR.Append(*P); // -> add P to the result
|
|
goto next_P;
|
|
}
|
|
next_P: ;
|
|
}
|
|
|
|
// 4) set entry/exit flags
|
|
set<Vertex*> split[2]; // split vertex candidates for P and Q
|
|
set<Vertex*> crossing[2]; // CROSSING vertex candidates for P and Q
|
|
|
|
for (int i=0; i<2; ++i)
|
|
{
|
|
Array<Loop>* P_or_Q = &PP; // if i=0, then do it for P w.r.t. Q
|
|
Array<Loop>* Q_or_P = &QQ;
|
|
|
|
if (i==1) { // if i=1, then do it for Q w.r.t. P
|
|
P_or_Q = &QQ;
|
|
Q_or_P = &PP;
|
|
}
|
|
|
|
// loop over all components of P (or Q)
|
|
for (Loop& P : *P_or_Q)
|
|
{
|
|
|
|
// ignore P if it does not intersect with Q_or_P (detected in step 3.5 above)
|
|
if(noIntersection[i].find(&P) != noIntersection[i].end())
|
|
continue;
|
|
|
|
// start at a non-intersection vertex of P
|
|
Vertex* V = P.getNonIntersectionVertex();
|
|
|
|
// check if it is inside or outside Q (or P)
|
|
// and set ENTRY/EXIT status accordingly
|
|
EntryExitLabel status = ENTRY;
|
|
for (Loop& Q : *Q_or_P)
|
|
if (Q.IsInside(*V))
|
|
ToggleLabel(status);
|
|
|
|
// starting at V, loop over those vertices of P, that are either
|
|
// a crossing intersection or marked as ends of an intersection chain
|
|
bool first_chain_vertex = true; // needed for dealing with crossing chains
|
|
|
|
for (Vertex* I : P.Vertices(INTERSECTION, V))
|
|
{
|
|
// in the case of normal crossings, we...
|
|
if (I->label == CROSSING)
|
|
{
|
|
// mark vertex with current ENTRY/EXIT status
|
|
I->enex = status;
|
|
// toggle status from ENTRY to EXIT or vice versa
|
|
ToggleLabel(status);
|
|
}
|
|
|
|
// identify split vertex candidates (INTERIOR bouncing vertices)
|
|
if ( (I->label == BOUNCING) && ((status == EXIT) ^ UNION) )
|
|
split[i].insert(I);
|
|
|
|
//
|
|
// in the case of a delayed crossing chain, we
|
|
// mark both end points of the chain with the current ENTRY/EXIT status,
|
|
// toggling the status only at the end last chain vertex,
|
|
// and, in case of a delayed EXIT crossing, the first vertex
|
|
// or, in case of a delayed ENTRY crossing, the last vertex,
|
|
// of the chain as CROSSING
|
|
//
|
|
if (I->label == DELAYED_CROSSING)
|
|
{
|
|
// mark vertex with current ENTRY/EXIT status
|
|
I->enex = status;
|
|
|
|
if (first_chain_vertex) { // are we at the first vertex of a delayed crossing chain?
|
|
if ((status == EXIT) ^ UNION)
|
|
I->label = CROSSING; // mark first vertex as CROSSING
|
|
first_chain_vertex = false;
|
|
}
|
|
else { // here we are at the last vertex of a delayed crossing chain
|
|
if ((status == ENTRY) ^ UNION)
|
|
I->label = CROSSING; // mark last vertex as CROSSING
|
|
first_chain_vertex = true;
|
|
|
|
// toggle status from ENTRY to EXIT or vice versa (only for last chain vertex)
|
|
ToggleLabel(status);
|
|
}
|
|
}
|
|
|
|
//
|
|
// in the case of a delayed bouncing chain, we
|
|
// mark both end points of the chain with the current ENTRY/EXIT status
|
|
// toggling the status at both end points of the chain,
|
|
// and, in case of a delayed INTERIOR bouncing, both end points
|
|
// of the chain as CROSSING candidates
|
|
//
|
|
if (I->label == DELAYED_BOUNCING)
|
|
{
|
|
// mark vertex with current ENTRY/EXIT status
|
|
I->enex = status;
|
|
|
|
if (first_chain_vertex) { // are we at the first vertex of a delayed crossing chain?
|
|
if ((status == EXIT) ^ UNION)
|
|
crossing[i].insert(I); // mark first EXIT vertex as CROSSING candidate
|
|
first_chain_vertex = false;
|
|
}
|
|
else { // here we are at the last vertex of a delayed crossing chain
|
|
if ((status == ENTRY) ^ UNION)
|
|
crossing[i].insert(I); // mark last ENTRY vertex as CROSSING candidate
|
|
first_chain_vertex = true;
|
|
|
|
}
|
|
// toggle status from ENTRY to EXIT or vice versa (for first AND last chain vertex)
|
|
ToggleLabel(status);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// 5) handle split vertex pairs
|
|
// loop over P's split candidates
|
|
for (Vertex* I_P : split[0])
|
|
{
|
|
Vertex* I_Q = I_P->neighbour;
|
|
|
|
// check if the neighbour on Q is also a split candidate
|
|
if (split[1].find(I_Q) != split[1].end())
|
|
{
|
|
// compute areas to compare local orientation
|
|
Point<2> p_prev = *I_P->prev;
|
|
if(I_P->prev->spline)
|
|
p_prev = I_P->prev->spline->TangentPoint();
|
|
|
|
Point<2> p_next = *I_P->next;
|
|
if(I_P->spline)
|
|
p_next = I_P->spline->TangentPoint();
|
|
|
|
Point<2> q_prev = *I_Q->prev;
|
|
if(I_Q->prev->spline)
|
|
q_prev = I_Q->prev->spline->TangentPoint();
|
|
|
|
Point<2> q_next = *I_Q->next;
|
|
if(I_Q->spline)
|
|
q_next = I_Q->spline->TangentPoint();
|
|
|
|
|
|
double sP = Area( p_prev, *I_P, p_next );
|
|
double sQ = Area( q_prev, *I_Q, q_next );
|
|
|
|
// add duplicate vertices to P and Q
|
|
auto V_P = I_P->Insert(*I_P, I_P->lam);
|
|
V_P->spline = I_P->spline;
|
|
V_P->pinfo = I_P->pinfo;
|
|
auto V_Q = I_Q->Insert(*I_Q, I_Q->lam);
|
|
V_Q->spline = I_Q->spline;
|
|
V_Q->pinfo = I_Q->pinfo;
|
|
|
|
// link vertices correctly
|
|
if (sP*sQ > 0) { // same local orientation
|
|
I_P->Link( V_Q);
|
|
I_Q->Link( V_P);
|
|
}
|
|
else { // different local orientation
|
|
V_P->Link( V_Q);
|
|
}
|
|
|
|
// mark all four vertices correctly
|
|
if (!UNION)
|
|
{
|
|
I_P->enex = EXIT;
|
|
V_P->enex = ENTRY;
|
|
I_Q->enex = EXIT;
|
|
V_Q->enex = ENTRY;
|
|
}
|
|
else
|
|
{
|
|
I_P->enex = ENTRY;
|
|
V_P->enex = EXIT;
|
|
I_Q->enex = ENTRY;
|
|
V_Q->enex = EXIT;
|
|
}
|
|
|
|
I_P->label = CROSSING;
|
|
V_P->label = CROSSING;
|
|
I_Q->label = CROSSING;
|
|
V_Q->label = CROSSING;
|
|
}
|
|
}
|
|
|
|
// 6) handle CROSSING vertex candidates
|
|
// loop over P's CROSSING candidates
|
|
for (Vertex* I_P : crossing[0])
|
|
{
|
|
Vertex* I_Q = I_P->neighbour;
|
|
|
|
// check if the neighbour on Q is also a CROSSING candidate
|
|
if (crossing[1].find(I_Q) != crossing[1].end())
|
|
{
|
|
// mark CROSSING candidate pair as such
|
|
I_P->label = CROSSING;
|
|
I_Q->label = CROSSING;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CreateResult(Solid2d & sp, Solid2d & sr, bool UNION)
|
|
{
|
|
auto & PP = sp.polys;
|
|
auto & RR = sr.polys;
|
|
//
|
|
// for all crossing vertices
|
|
//
|
|
// NOTE: all crossing vertices that are visited while constructing a
|
|
// component of the result polygon are marked as "not intersection",
|
|
// so that they cannot serve as start vertex of another component
|
|
//
|
|
|
|
for (Loop& P : PP)
|
|
{
|
|
for (Vertex* I : P.Vertices(CROSSING_INTERSECTION))
|
|
{
|
|
Loop R; // result polygon component
|
|
|
|
Vertex* V = I; // start traversal at I
|
|
V->is_intersection = false; // mark visited vertices
|
|
|
|
do {
|
|
EntryExitLabel status = V->enex;
|
|
ToggleLabel(status);
|
|
while ( !(V->enex == status)) // ... we arrive at a vertex with opposite entry/exit flag, or
|
|
{
|
|
auto & vnew = R.AppendVertex(*V);
|
|
if ((status == EXIT) ^ UNION)
|
|
{
|
|
vnew.info = V->info;
|
|
vnew.pinfo = V->pinfo;
|
|
if(V->spline)
|
|
vnew.spline = *V->spline;
|
|
else
|
|
vnew.spline = nullopt;
|
|
V = V->next; // move forward from an ENTRY vertex to the next EXIT vertex
|
|
V->is_intersection = false; // mark visited vertices
|
|
}
|
|
else
|
|
{
|
|
V = V->prev; // move backward from an EXIT vertex to the next ENTRY vertex
|
|
if(V->spline)
|
|
{
|
|
auto & s = *V->spline;
|
|
vnew.spline = Spline{s.EndPI(), s.TangentPoint(), s.StartPI(), s.GetWeight()};
|
|
}
|
|
else
|
|
vnew.spline = nullopt;
|
|
vnew.info = V->info;
|
|
vnew.pinfo = V->pinfo;
|
|
V->is_intersection = false; // mark visited vertices
|
|
}
|
|
if(V == I)
|
|
break;
|
|
}
|
|
|
|
if (V != I)
|
|
{
|
|
V = V->neighbour; // switch from P to Q or vice versa
|
|
V->is_intersection = false; // mark visited vertices
|
|
}
|
|
} while (V != I); // the result polygon component is complete,
|
|
// if we are back to the initial vertex I
|
|
RR.Append(R);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check if vertex v is not necessary (i.e. is on the line v->prev, v->next and has same info as v->prev and no pinfo
|
|
bool canRemoveVertex( Vertex * v )
|
|
{
|
|
return false;
|
|
if(v->spline)
|
|
return false;
|
|
if(v->pinfo.name != POINT_NAME_DEFAULT)
|
|
return false;
|
|
if(v->pinfo.maxh != MAXH_DEFAULT)
|
|
return false;
|
|
|
|
if(v->info.bc != v->prev->info.bc || v->info.maxh != v->prev->info.maxh )
|
|
return false;
|
|
|
|
if(fabs(Area(*v->prev,*v,*v->next)) >= EPSILON)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void CleanUpResult(Solid2d & sr)
|
|
{
|
|
auto & RR = sr.polys;
|
|
for (Loop& R : RR)
|
|
{
|
|
while ( (R.first.get() != NULL) && canRemoveVertex(R.first.get()))
|
|
R.Remove(R.first.get());
|
|
|
|
if (R.first.get() != NULL)
|
|
for (Vertex* V : R.Vertices(ALL))
|
|
if (canRemoveVertex(V))
|
|
R.Remove(V);
|
|
}
|
|
for (int i = RR.Size()-1; i>=0; i--)
|
|
if(RR[i].Size()==0)
|
|
RR.RemoveElement(i);
|
|
}
|
|
|
|
Loop RectanglePoly(double x0, double x1, double y0, double y1, string bc)
|
|
{
|
|
Loop r;
|
|
r.Append( {x0, y0} );
|
|
r.Append( {x1, y0} );
|
|
r.Append( {x1, y1} );
|
|
r.Append( {x0, y1} );
|
|
r.SetBC(bc);
|
|
return r;
|
|
}
|
|
|
|
Solid2d Rectangle(Point<2> p0, Point<2> p1, string name, string bc)
|
|
{
|
|
using P = Point<2>;
|
|
return { {p0, P{p1[0],p0[1]}, p1, P{p0[0],p1[1]}}, name, bc };
|
|
}
|
|
|
|
Solid2d Circle(Point<2> center, double r, string name, string bc)
|
|
{
|
|
double x = center[0];
|
|
double y = center[1];
|
|
using P = Point<2>;
|
|
|
|
Point<2> p[] =
|
|
{
|
|
{x+r, y+0},
|
|
{x+0, y+r},
|
|
{x-r, y+0},
|
|
{x+0, y-r},
|
|
};
|
|
|
|
EdgeInfo cp[] =
|
|
{
|
|
P{x+r, y+r},
|
|
P{x-r, y+r},
|
|
P{x-r, y-r},
|
|
P{x+r, y-r}
|
|
};
|
|
|
|
return Solid2d( { p[0], cp[0], p[1], cp[1], p[2], cp[2], p[3], cp[3] }, name, bc );
|
|
}
|
|
|
|
void AddIntersectionPoints ( Solid2d & s1, Solid2d & s2 )
|
|
{
|
|
ComputeIntersections(s1, s2);
|
|
RemoveDuplicates(s1);
|
|
RemoveDuplicates(s2);
|
|
}
|
|
|
|
void AddIntersectionPoints ( Loop & l1, Loop & l2 )
|
|
{
|
|
ComputeIntersections(l1, l2);
|
|
RemoveDuplicates(l1);
|
|
RemoveDuplicates(l2);
|
|
}
|
|
|
|
|
|
Solid2d ClipSolids ( const Solid2d & s1, const Solid2d & s2, char op)
|
|
{
|
|
return ClipSolids(Solid2d{s1}, Solid2d{s2}, op);
|
|
}
|
|
|
|
Solid2d ClipSolids ( const Solid2d & s1, Solid2d && s2, char op)
|
|
{
|
|
return ClipSolids(Solid2d{s1}, std::move(s2), op);
|
|
}
|
|
|
|
Solid2d ClipSolids ( Solid2d && s1, const Solid2d & s2, char op)
|
|
{
|
|
return ClipSolids(std::move(s1), Solid2d{s2}, op);
|
|
}
|
|
|
|
Solid2d ClipSolids ( Solid2d && s1, Solid2d && s2, char op)
|
|
{
|
|
static Timer tall("ClipSolids"); RegionTimer rtall(tall);
|
|
static Timer t0("copy");
|
|
static Timer t02("tree");
|
|
static Timer t03("search intersections");
|
|
static Timer t01("prepare");
|
|
static Timer t1("intersection");
|
|
static Timer t2("label");
|
|
static Timer t3("cut");
|
|
static Timer t4("cleanup");
|
|
static Timer t6("trivial union");
|
|
|
|
bool intersect = (op=='*' || op=='-');
|
|
|
|
Solid2d res;
|
|
res.name = s1.name;
|
|
|
|
t0.Start();
|
|
// Try to quickly handle parts of both solids that cannot intersect with the other one
|
|
int n1 = s1.polys.Size();
|
|
int n2 = s2.polys.Size();
|
|
Array<Loop> res_polys(n1+n2);
|
|
res_polys.SetSize(0);
|
|
|
|
t02.Start();
|
|
auto s1_box = s1.GetBoundingBox();
|
|
netgen::BoxTree <2, int> tree1(s1_box);
|
|
|
|
for(auto li : IntRange(n1))
|
|
{
|
|
auto box = s1.polys[li].GetBoundingBox();
|
|
tree1.Insert(box, li);
|
|
}
|
|
|
|
auto s2_box = s2.GetBoundingBox();
|
|
netgen::BoxTree <2, int> tree2(s2.GetBoundingBox());
|
|
|
|
for(auto li : IntRange(n2))
|
|
{
|
|
auto box = s2.polys[li].GetBoundingBox();
|
|
tree2.Insert(box, li);
|
|
}
|
|
t02.Stop();
|
|
|
|
t03.Start();
|
|
|
|
for(auto li : IntRange(n1))
|
|
{
|
|
bool have_intersections = false;
|
|
auto & poly = s1.polys[li];
|
|
auto box = poly.GetBoundingBox();
|
|
tree2.GetFirstIntersecting(box.PMin(), box.PMax(), [&] (int li2)
|
|
{
|
|
return have_intersections = true;
|
|
});
|
|
if(!have_intersections)
|
|
{
|
|
if(op=='+' || op=='-')
|
|
res_polys.Append(std::move(poly));
|
|
else
|
|
poly.Clear();
|
|
}
|
|
}
|
|
t03.Stop();
|
|
|
|
for(auto li: IntRange(n1))
|
|
while(s1.polys.Size()>li && s1.polys[li].Size()==0)
|
|
s1.polys.DeleteElement(li);
|
|
|
|
t03.Start();
|
|
for(auto li : IntRange(n2))
|
|
{
|
|
bool have_intersections = false;
|
|
auto & poly = s2.polys[li];
|
|
auto box = poly.GetBoundingBox();
|
|
tree1.GetFirstIntersecting(box.PMin(), box.PMax(), [&] (int li2)
|
|
{
|
|
return have_intersections = true;
|
|
});
|
|
if(!have_intersections)
|
|
{
|
|
if(op=='+')
|
|
res_polys.Append(std::move(poly));
|
|
else
|
|
poly.Clear();
|
|
}
|
|
}
|
|
t03.Stop();
|
|
|
|
for(auto li: IntRange(n2))
|
|
while(s2.polys.Size()>li && s2.polys[li].Size()==0)
|
|
s2.polys.DeleteElement(li);
|
|
|
|
t0.Stop();
|
|
|
|
if(s1.polys.Size()==0 || s2.polys.Size()==0)
|
|
{
|
|
res.polys = std::move(res_polys);
|
|
return res;
|
|
}
|
|
|
|
t01.Start();
|
|
|
|
if(op=='-')
|
|
{
|
|
// take complement of s2 by adding loop around everything
|
|
auto box = s1_box;
|
|
box.Add(s2_box.PMin());
|
|
box.Add(s2_box.PMax());
|
|
box.Increase(2);
|
|
auto pmin = box.PMin();
|
|
auto pmax = box.PMax();
|
|
s2.Append(RectanglePoly(pmin[0], pmax[0], pmin[1], pmax[1], "JUST_FOR_CLIPPING"));
|
|
}
|
|
|
|
|
|
for(auto & poly : s1.polys)
|
|
for(auto v : poly.Vertices(ALL))
|
|
{
|
|
v->is_source = true;
|
|
v->neighbour = nullptr;
|
|
v->lam = -1.0;
|
|
v->is_intersection = false;
|
|
v->label = NONE;
|
|
v->enex = NEITHER;
|
|
}
|
|
|
|
for(auto & poly : s2.polys)
|
|
for(auto v : poly.Vertices(ALL))
|
|
{
|
|
v->is_source = true;
|
|
v->neighbour = nullptr;
|
|
v->lam = -1.0;
|
|
v->is_intersection = false;
|
|
v->label = NONE;
|
|
v->enex = NEITHER;
|
|
}
|
|
|
|
t01.Stop();
|
|
|
|
t1.Start();
|
|
ComputeIntersections(s1, s2);
|
|
t1.Stop();
|
|
|
|
t2.Start();
|
|
LabelIntersections(s1, s2, res, !intersect);
|
|
t2.Stop();
|
|
|
|
t3.Start();
|
|
CreateResult(s1, res, !intersect);
|
|
t3.Stop();
|
|
|
|
t4.Start();
|
|
CleanUpResult(res);
|
|
RemoveDuplicates(res);
|
|
t4.Stop();
|
|
|
|
res.polys.Append(std::move(res_polys));
|
|
|
|
return std::move(res);
|
|
}
|
|
|
|
Vertex* Loop :: getNonIntersectionVertex()
|
|
{
|
|
for (Vertex* v : Vertices(ALL))
|
|
if (!v->is_intersection)
|
|
return(v);
|
|
|
|
// no non-intersection vertex found -> generate and return temporary vertex
|
|
for (Vertex* v : Vertices(ALL))
|
|
// make sure that edge from V to V->next is not collinear with other polygon
|
|
if ( (v->next->neighbour != v->neighbour->prev) && (v->next->neighbour != v->neighbour->next) )
|
|
{
|
|
// add edge midpoint as temporary vertex
|
|
if(v->spline)
|
|
{
|
|
auto p = v->spline->GetPoint(0.5);
|
|
auto s = *v->spline;
|
|
v->spline = Split(s, 0, 0.5);
|
|
auto vnew = v->Insert(p);
|
|
vnew->info = v->info;
|
|
vnew->spline = Split(s, 0.5, 1.0);
|
|
return vnew;
|
|
}
|
|
else
|
|
{
|
|
auto p = Center(*v, *v->next);
|
|
auto vnew = v->Insert(p);
|
|
vnew->info = v->info;
|
|
return vnew;
|
|
}
|
|
}
|
|
return(NULL);
|
|
}
|
|
|
|
bool Loop :: IsInside( Point<2> r ) const
|
|
{
|
|
int w = 0;
|
|
for(auto e : Edges(ALL))
|
|
{
|
|
int w_simple = CalcSide(*e.v0, *e.v1, r);
|
|
if(!e.v0->spline)
|
|
w += w_simple;
|
|
else
|
|
{
|
|
auto s = *e.v0->spline;
|
|
auto s0 = s.StartPI();
|
|
auto s1 = s.TangentPoint();
|
|
auto s2 = s.EndPI();
|
|
if(!IsCloseToTrig( {s0, s1, s2} , r ))
|
|
w += w_simple;
|
|
else
|
|
{
|
|
// r close to spline, need exact test
|
|
// idea: compute weight, such that r lies on spline
|
|
// weight increases -> same side of spline as control point, simple test gives correct result
|
|
// weight decreases -> opposite side of spline as control point, adding control point to test polygon gives correct result
|
|
double old_weight = s.GetWeight();
|
|
ComputeWeight( s, r );
|
|
double new_weight = s.GetWeight();
|
|
|
|
if(new_weight >= old_weight)
|
|
w += w_simple;
|
|
else
|
|
w += CalcSide(s0, s1, r) + CalcSide(s1, s2, r);
|
|
}
|
|
}
|
|
}
|
|
return ( (w % 2) != 0 );
|
|
}
|
|
|
|
|
|
Solid2d :: Solid2d(const Array<std::variant<Point<2>, EdgeInfo, PointInfo>> & points, string name_, string bc)
|
|
: name(name_)
|
|
{
|
|
Loop l;
|
|
for (auto & v : points)
|
|
{
|
|
if(auto point = std::get_if<Point<2>>(&v))
|
|
l.Append(*point, true);
|
|
if(auto edge_info = std::get_if<EdgeInfo>(&v))
|
|
l.first->prev->info.Assign( *edge_info );
|
|
if(auto point_info = std::get_if<PointInfo>(&v))
|
|
l.first->prev->pinfo.Assign(*point_info);
|
|
}
|
|
|
|
for(auto v : l.Vertices(ALL))
|
|
{
|
|
if(v->info.bc==BC_DEFAULT)
|
|
v->info.bc = bc;
|
|
|
|
if(v->info.control_point)
|
|
v->spline = Spline(*v, *v->info.control_point, *v->next);
|
|
}
|
|
|
|
polys.Append(l);
|
|
}
|
|
|
|
Solid2d Solid2d :: operator+(const Solid2d & other) const
|
|
{
|
|
static Timer t("Solid2d::operator+"); RegionTimer rt(t);
|
|
return ClipSolids(*this, other, '+');
|
|
}
|
|
|
|
Solid2d Solid2d :: operator*(const Solid2d & other) const
|
|
{
|
|
static Timer t("Solid2d::operator*"); RegionTimer rt(t);
|
|
return ClipSolids(*this, other, '*');
|
|
}
|
|
|
|
Solid2d Solid2d :: operator-(const Solid2d & other) const
|
|
{
|
|
static Timer t("Solid2d::operator-"); RegionTimer rt(t);
|
|
return ClipSolids(*this, other, '-');
|
|
}
|
|
|
|
Solid2d & Solid2d :: operator+=(const Solid2d & other)
|
|
{
|
|
static Timer t("Solid2d::operator+="); RegionTimer rt(t);
|
|
*this = ClipSolids(std::move(*this), other, '+');
|
|
return *this;
|
|
}
|
|
|
|
Solid2d & Solid2d :: operator*=(const Solid2d & other)
|
|
{
|
|
*this = ClipSolids(std::move(*this), other, '*');
|
|
return *this;
|
|
}
|
|
|
|
Solid2d & Solid2d :: operator-=(const Solid2d & other)
|
|
{
|
|
*this = ClipSolids(std::move(*this), other, '-');
|
|
return *this;
|
|
}
|
|
|
|
Solid2d & Solid2d :: Move( Vec<2> v )
|
|
{
|
|
return Transform( [v](Point<2> p) -> Point<2> { return p+v; } );
|
|
}
|
|
|
|
Solid2d & Solid2d :: Scale( double s )
|
|
{
|
|
return Transform( [s](Point<2> p) -> Point<2> { return{p[0]*s, p[1]*s}; } );
|
|
}
|
|
|
|
Solid2d & Solid2d :: Scale( Vec<2> s )
|
|
{
|
|
return Transform( [s](Point<2> p) -> Point<2> { return{p[0]*s[0], p[1]*s[1]}; } );
|
|
}
|
|
|
|
Solid2d & Solid2d :: RotateRad( double ang, Point<2> center )
|
|
{
|
|
double sina = sin(ang);
|
|
double cosa = cos(ang);
|
|
Vec<2> c = { center[0], center[1] };
|
|
return Transform( [c, sina, cosa](Point<2> p) -> Point<2>
|
|
{
|
|
p -= c;
|
|
double x = p[0];
|
|
double y = p[1];
|
|
p[0] = cosa*x-sina*y;
|
|
p[1] = sina*x+cosa*y;
|
|
p += c;
|
|
return p;
|
|
} );
|
|
}
|
|
|
|
|
|
bool Solid2d :: IsInside( Point<2> r ) const
|
|
{
|
|
int w = 0;
|
|
for(auto & poly : polys)
|
|
w += poly.IsInside(r);
|
|
return ( (w % 2) != 0 );
|
|
}
|
|
|
|
bool Loop :: IsLeftInside( const Vertex & p0 )
|
|
{
|
|
auto & p1 = *p0.next;
|
|
if(p0.spline)
|
|
{
|
|
auto s = *p0.spline;
|
|
auto v = s.GetTangent(0.5);
|
|
auto n = Vec<2>{-v[1], v[0]};
|
|
auto q = s.GetPoint(0.5) + 1e-6*n;
|
|
return IsInside(q);
|
|
}
|
|
auto v = p1-p0;
|
|
auto n = Vec<2>{-v[1], v[0]};
|
|
auto q = p0 + 0.5*v + 1e-6*n;
|
|
|
|
return IsInside(q);
|
|
}
|
|
|
|
bool Loop :: IsRightInside( const Vertex & p0 )
|
|
{
|
|
auto & p1 = *p0.next;
|
|
if(p0.spline)
|
|
{
|
|
auto s = *p0.spline;
|
|
auto v = s.GetTangent(0.5);
|
|
auto n = Vec<2>{v[1], -v[0]};
|
|
auto q = s.GetPoint(0.5) + 1e-6*n;
|
|
return IsInside(q);
|
|
}
|
|
|
|
auto v = p1-p0;
|
|
auto n = Vec<2>{v[1], -v[0]};
|
|
auto q = p0 + 0.5*v + 1e-6*n;
|
|
return IsInside(q);
|
|
}
|
|
|
|
bool Solid2d :: IsLeftInside( const Vertex & p0 )
|
|
{
|
|
auto & p1 = *p0.next;
|
|
if(p0.spline)
|
|
{
|
|
auto s = *p0.spline;
|
|
auto v = s.GetTangent(0.5);
|
|
auto n = Vec<2>{-v[1], v[0]};
|
|
auto q = s.GetPoint(0.5) + 1e-6*n;
|
|
return IsInside(q);
|
|
}
|
|
auto v = p1-p0;
|
|
auto n = Vec<2>{-v[1], v[0]};
|
|
auto q = p0 + 0.5*v + 1e-6*n;
|
|
|
|
return IsInside(q);
|
|
}
|
|
|
|
bool Solid2d :: IsRightInside( const Vertex & p0 )
|
|
{
|
|
auto & p1 = *p0.next;
|
|
if(p0.spline)
|
|
{
|
|
auto s = *p0.spline;
|
|
auto v = s.GetTangent(0.5);
|
|
auto n = Vec<2>{v[1], -v[0]};
|
|
auto q = s.GetPoint(0.5) + 1e-6*n;
|
|
return IsInside(q);
|
|
}
|
|
|
|
auto v = p1-p0;
|
|
auto n = Vec<2>{v[1], -v[0]};
|
|
auto q = p0 + 0.5*v + 1e-6*n;
|
|
return IsInside(q);
|
|
}
|
|
|
|
netgen::Box<2> Solid2d :: GetBoundingBox() const
|
|
{
|
|
static Timer tall("Solid2d::GetBoundingBox"); RegionTimer rtall(tall);
|
|
netgen::Box<2> box(netgen::Box<2>::EMPTY_BOX);
|
|
for(auto & poly : polys)
|
|
{
|
|
auto pbox = poly.GetBoundingBox();
|
|
box.Add(pbox.PMin());
|
|
box.Add(pbox.PMax());
|
|
}
|
|
|
|
return box;
|
|
}
|
|
|
|
shared_ptr<netgen::SplineGeometry2d> CSG2d :: GenerateSplineGeometry()
|
|
{
|
|
static Timer tall("CSG2d - GenerateSplineGeometry()");
|
|
static Timer t_points("add points");
|
|
static Timer t_segments_map("build segments map");
|
|
static Timer t_is_inside("is inside check");
|
|
static Timer t_segments("add segments");
|
|
static Timer t_intersections("add intersections");
|
|
static Timer t_segtree("seg trees");
|
|
RegionTimer rt(tall);
|
|
|
|
struct Seg
|
|
{
|
|
int p0;
|
|
int p1;
|
|
int left;
|
|
int right;
|
|
int bc;
|
|
int p2;
|
|
double weight;
|
|
double maxh = 1e99;
|
|
};
|
|
|
|
auto geo = std::make_shared<netgen::SplineGeometry2d>();
|
|
std::map<std::tuple<int,int,int>, Seg> seg_map;
|
|
Array<string> bcnames;
|
|
Array<int> points;
|
|
|
|
// Cut each solid with each other one to add all possible intersection points and have conforming edges from both domains
|
|
t_intersections.Start();
|
|
|
|
// First build bounding boxes for each solid to skip non-overlapping pairs
|
|
netgen::Box<2> box(netgen::Box<2>::EMPTY_BOX);
|
|
for(auto i : Range(solids))
|
|
{
|
|
auto sbox = solids[i].GetBoundingBox();
|
|
box.Add(sbox.PMin());
|
|
box.Add(sbox.PMax());
|
|
}
|
|
|
|
netgen::BoxTree <2> solid_tree(box);
|
|
Array<INT<2>> loop_list;
|
|
|
|
for(auto i : Range(solids))
|
|
for(auto li : Range(solids[i].polys))
|
|
{
|
|
solid_tree.Insert(solids[i].polys[li].GetBoundingBox(), loop_list.Size());
|
|
loop_list.Append(INT<2>(i, li));
|
|
}
|
|
|
|
for(auto i1 : Range(solids))
|
|
for(auto li1 : Range(solids[i1].polys))
|
|
{
|
|
auto & poly1 = solids[i1].polys[li1];
|
|
auto box = poly1.GetBoundingBox();
|
|
solid_tree.GetFirstIntersecting(box.PMin(), box.PMax(), [&] (int ii)
|
|
{
|
|
auto i2 = loop_list[ii][0];
|
|
auto li2 = loop_list[ii][1];
|
|
if(i1<i2)
|
|
AddIntersectionPoints(poly1, solids[i2].polys[li2]);
|
|
return false;
|
|
});
|
|
}
|
|
|
|
|
|
t_intersections.Stop();
|
|
|
|
// Add geometry points to SplineGeometry
|
|
|
|
netgen::BoxTree <2, int> ptree(box);
|
|
|
|
auto getPoint = [&](Point<2> p )
|
|
{
|
|
int res = -1;
|
|
ptree.GetFirstIntersecting(p, p, [&] (int pi)
|
|
{
|
|
res = pi;
|
|
return true;
|
|
});
|
|
return res;
|
|
};
|
|
|
|
t_points.Start();
|
|
auto insertPoint = [&](const Vertex& p )
|
|
{
|
|
int pi = getPoint(p);
|
|
if(pi==-1)
|
|
{
|
|
// not found -> insert to tree
|
|
netgen::GeomPoint<2> gp(p);
|
|
geo->geompoints.Append(gp);
|
|
pi = geo->geompoints.Size()-1;
|
|
ptree.Insert(p,p,geo->geompoints.Size()-1);
|
|
}
|
|
geo->geompoints[pi].hmax = min2(geo->geompoints[pi].hmax, p.pinfo.maxh);
|
|
if(p.pinfo.name != POINT_NAME_DEFAULT)
|
|
geo->geompoints[pi].name = p.pinfo.name;
|
|
};
|
|
|
|
for(auto & s : solids)
|
|
for(auto & poly : s.polys)
|
|
for(auto v : poly.Vertices(ALL))
|
|
{
|
|
box.Add(*v);
|
|
insertPoint(*v);
|
|
if(v->spline)
|
|
insertPoint(v->spline->TangentPoint());
|
|
}
|
|
t_points.Stop();
|
|
|
|
|
|
// Generate segments from polygon edges and find left/right domain of each segment
|
|
t_segments_map.Start();
|
|
int dom = 0;
|
|
int bc = 1;
|
|
for(auto & s : solids)
|
|
{
|
|
dom++;
|
|
bool is_solid_degenerated = true; // Don't create new domain for degenerated solids
|
|
for(auto & poly : s.polys)
|
|
{
|
|
bool first = true;
|
|
bool is_poly_left_inside = false;
|
|
bool is_poly_right_inside = false;
|
|
|
|
for(auto v : poly.Vertices(ALL))
|
|
{
|
|
auto & p0 = *v;
|
|
auto & p1 = *v->next;
|
|
|
|
auto pi0 = getPoint(p0);
|
|
auto pi1 = getPoint(p1);
|
|
int pi2 = -1;
|
|
double weight = 0.0;
|
|
|
|
if(v->spline)
|
|
{
|
|
auto p2 = v->spline->TangentPoint();
|
|
pi2 = getPoint(p2);
|
|
weight = v->spline->GetWeight();
|
|
}
|
|
|
|
bool flip = false;
|
|
if(pi1<pi0)
|
|
{
|
|
flip = true;
|
|
Swap(pi1,pi0);
|
|
}
|
|
|
|
if(first)
|
|
{
|
|
RegionTimer rt_inside(t_is_inside);
|
|
is_poly_left_inside = s.IsLeftInside(p0);
|
|
is_poly_right_inside = s.IsRightInside(p0);
|
|
first = true;
|
|
}
|
|
|
|
auto li = is_poly_left_inside; // == poly.IsLeftInside(p0);
|
|
auto ri = is_poly_right_inside; // == poly.IsRightInside(p0);
|
|
|
|
auto & ls = seg_map[{pi0,pi1,pi2}];
|
|
ls.p0 = pi0;
|
|
ls.p1 = pi1;
|
|
ls.p2 = pi2;
|
|
ls.weight = weight;
|
|
|
|
if(ls.bc==0 || p0.info.bc != BC_DEFAULT)
|
|
{
|
|
ls.bc = bc++;
|
|
bcnames.Append(p0.info.bc);
|
|
}
|
|
|
|
ls.maxh = min(ls.maxh, p0.info.maxh);
|
|
|
|
if(li!=ri)
|
|
{
|
|
if(li != flip)
|
|
ls.left = dom;
|
|
else
|
|
ls.right = dom;
|
|
|
|
is_solid_degenerated = false;
|
|
}
|
|
}
|
|
}
|
|
if(!is_solid_degenerated)
|
|
{
|
|
geo->SetMaterial(dom, s.name);
|
|
geo->SetDomainMaxh(dom, s.maxh);
|
|
if(s.layer != 1)
|
|
geo->SetDomainLayer(dom, s.layer);
|
|
}
|
|
else
|
|
dom--; // degenerated solid, use same domain index again
|
|
}
|
|
t_segments_map.Stop();
|
|
|
|
for(auto bc : Range(bcnames))
|
|
geo->SetBCName(bc+1, bcnames[bc]);
|
|
|
|
t_segments.Start();
|
|
for(auto const &m : seg_map)
|
|
{
|
|
auto ls = m.second;
|
|
netgen::SplineSegExt * seg;
|
|
if(ls.p2!=-1)
|
|
{
|
|
// spline segment
|
|
auto * seg3 = new netgen::SplineSeg3<2>( geo->GetPoint(ls.p0), geo->GetPoint(ls.p2), geo->GetPoint(ls.p1), ls.weight );
|
|
seg = new netgen::SplineSegExt(*seg3);
|
|
}
|
|
else
|
|
{
|
|
// line segment
|
|
auto * l = new netgen::LineSeg<2>(geo->GetPoint(ls.p0), geo->GetPoint(ls.p1));
|
|
seg = new netgen::SplineSegExt(*l);
|
|
}
|
|
|
|
seg->leftdom = ls.left;
|
|
seg->rightdom = ls.right;
|
|
seg->bc = ls.bc;
|
|
seg->reffak = 1;
|
|
seg->copyfrom = -1;
|
|
seg->hmax = ls.maxh;
|
|
seg->hpref_left = 0.;
|
|
seg->hpref_right = 0.;
|
|
geo->AppendSegment(seg);
|
|
}
|
|
t_segments.Stop();
|
|
return geo;
|
|
}
|
|
|
|
shared_ptr<netgen::Mesh> CSG2d :: GenerateMesh(MeshingParameters & mp)
|
|
{
|
|
auto geo = GenerateSplineGeometry();
|
|
auto mesh = make_shared<netgen::Mesh>();
|
|
geo->GenerateMesh(mesh, mp);
|
|
return mesh;
|
|
}
|
|
|
|
}
|