netgen/libsrc/csg/polyhedra.cpp
Joachim Schoeberl 91d5c9888d ARRAY -> Array
2009-01-25 12:35:25 +00:00

739 lines
17 KiB
C++

#include <mystdlib.h>
#include <linalg.hpp>
#include <csg.hpp>
namespace netgen
{
Polyhedra::Face::Face (int pi1, int pi2, int pi3,
const Array<Point<3> > & points,
int ainputnr)
{
inputnr = ainputnr;
pnums[0] = pi1;
pnums[1] = pi2;
pnums[2] = pi3;
bbox.Set (points[pi1]);
bbox.Add (points[pi2]);
bbox.Add (points[pi3]);
v1 = points[pi2] - points[pi1];
v2 = points[pi3] - points[pi1];
n = Cross (v1, v2);
nn = n;
nn.Normalize();
// PseudoInverse (v1, v2, w1, w2);
Mat<2,3> mat;
Mat<3,2> inv;
for (int i = 0; i < 3; i++)
{
mat(0,i) = v1(i);
mat(1,i) = v2(i);
}
CalcInverse (mat, inv);
for (int i = 0; i < 3; i++)
{
w1(i) = inv(i,0);
w2(i) = inv(i,1);
}
}
Polyhedra :: Polyhedra ()
{
surfaceactive.SetSize(0);
surfaceids.SetSize(0);
eps_base1 = 1e-8;
}
Polyhedra :: ~Polyhedra ()
{
;
}
Primitive * Polyhedra :: CreateDefault ()
{
return new Polyhedra();
}
INSOLID_TYPE Polyhedra :: BoxInSolid (const BoxSphere<3> & box) const
{
/*
for (i = 1; i <= faces.Size(); i++)
if (FaceBoxIntersection (i, box))
return DOES_INTERSECT;
*/
for (int i = 0; i < faces.Size(); i++)
{
if (!faces[i].bbox.Intersect (box))
continue;
//(*testout) << "face " << i << endl;
const Point<3> & p1 = points[faces[i].pnums[0]];
const Point<3> & p2 = points[faces[i].pnums[1]];
const Point<3> & p3 = points[faces[i].pnums[2]];
if (fabs (faces[i].nn * (p1 - box.Center())) > box.Diam()/2)
continue;
//(*testout) << "still in loop" << endl;
double dist2 = MinDistTP2 (p1, p2, p3, box.Center());
//(*testout) << "p1 " << p1 << " p2 " << p2 << " p3 " << p3 << endl
// << " box.Center " << box.Center() << " box.Diam() " << box.Diam() << endl
// << " dist2 " << dist2 << " sqr(box.Diam()/2) " << sqr(box.Diam()/2) << endl;
if (dist2 < sqr (box.Diam()/2))
{
//(*testout) << "DOES_INTERSECT" << endl;
return DOES_INTERSECT;
}
};
return PointInSolid (box.Center(), 1e-3 * box.Diam());
}
INSOLID_TYPE Polyhedra :: PointInSolid (const Point<3> & p,
double eps) const
{
//(*testout) << "PointInSolid p " << p << " eps " << eps << endl;
//(*testout) << "bbox " << poly_bbox << endl;
if((p(0) > poly_bbox.PMax()(0) + eps) || (p(0) < poly_bbox.PMin()(0) - eps) ||
(p(1) > poly_bbox.PMax()(1) + eps) || (p(1) < poly_bbox.PMin()(1) - eps) ||
(p(2) > poly_bbox.PMax()(2) + eps) || (p(2) < poly_bbox.PMin()(2) - eps))
{
//(*testout) << "returning IS_OUTSIDE" << endl;
return IS_OUTSIDE;
}
Vec<3> n, v1, v2;
// random (?) numbers:
n(0) = -0.424621;
n(1) = 0.15432;
n(2) = 0.89212238;
int cnt = 0;
for (int i = 0; i < faces.Size(); i++)
{
const Point<3> & p1 = points[faces[i].pnums[0]];
Vec<3> v0 = p - p1;
double lam3 = faces[i].nn * v0;
if(fabs(lam3) < eps)
{
double lam1 = (faces[i].w1 * v0);
double lam2 = (faces[i].w2 * v0);
if (lam1 >= -eps_base1 && lam2 >= -eps_base1 && lam1+lam2 <= 1+eps_base1)
{
//(*testout) << "returning DOES_INTERSECT" << endl;
return DOES_INTERSECT;
}
}
else
{
lam3 = -(faces[i].n * v0) / (faces[i].n * n);
if (lam3 < 0) continue;
Vec<3> rs = v0 + lam3 * n;
double lam1 = (faces[i].w1 * rs);
double lam2 = (faces[i].w2 * rs);
if (lam1 >= 0 && lam2 >= 0 && lam1+lam2 <= 1)
cnt++;
}
}
//(*testout) << " cnt = " << cnt%2 << endl;
return (cnt % 2) ? IS_INSIDE : IS_OUTSIDE;
}
void Polyhedra :: GetTangentialSurfaceIndices (const Point<3> & p,
Array<int> & surfind, double eps) const
{
for (int i = 0; i < faces.Size(); i++)
{
const Point<3> & p1 = points[faces[i].pnums[0]];
Vec<3> v0 = p - p1;
double lam3 = -(faces[i].nn * v0); // n->nn
if (fabs (lam3) > eps) continue;
double lam1 = (faces[i].w1 * v0);
double lam2 = (faces[i].w2 * v0);
if (lam1 >= -eps_base1 && lam2 >= -eps_base1 && lam1+lam2 <= 1+eps_base1)
if (!surfind.Contains (GetSurfaceId(i)))
surfind.Append (GetSurfaceId(i));
}
}
INSOLID_TYPE Polyhedra :: VecInSolid (const Point<3> & p,
const Vec<3> & v,
double eps) const
{
Array<int> point_on_faces;
INSOLID_TYPE res(DOES_INTERSECT);
Vec<3> vn = v;
vn.Normalize();
for (int i = 0; i < faces.Size(); i++)
{
const Point<3> & p1 = points[faces[i].pnums[0]];
Vec<3> v0 = p - p1;
double lam3 = -(faces[i].nn * v0); // n->nn
if (fabs (lam3) > eps) continue;
//(*testout) << "lam3 <= eps" << endl;
double lam1 = (faces[i].w1 * v0);
double lam2 = (faces[i].w2 * v0);
if (lam1 >= -eps_base1 && lam2 >= -eps_base1 && lam1+lam2 <= 1+eps_base1)
{
point_on_faces.Append(i);
double scal = vn * faces[i].nn; // n->nn
res = DOES_INTERSECT;
if (scal > eps_base1) res = IS_OUTSIDE;
if (scal < -eps_base1) res = IS_INSIDE;
}
}
//(*testout) << "point_on_faces.Size() " << point_on_faces.Size()
// << " res " << res << endl;
if (point_on_faces.Size() == 0)
return PointInSolid (p, 0);
if (point_on_faces.Size() == 1)
return res;
double mindist(0);
bool first = true;
for(int i=0; i<point_on_faces.Size(); i++)
{
for(int j=0; j<3; j++)
{
double dist = Dist(p,points[faces[point_on_faces[i]].pnums[j]]);
if(dist > eps && (first || dist < mindist))
{
mindist = dist;
first = false;
}
}
}
Point<3> p2 = p + (1e-2*mindist) * vn;
res = PointInSolid (p2, eps);
// (*testout) << "mindist " << mindist << " res " << res << endl;
return res;
}
/*
INSOLID_TYPE Polyhedra :: VecInSolid2 (const Point<3> & p,
const Vec<3> & v1,
const Vec<3> & v2,
double eps) const
{
INSOLID_TYPE res;
res = VecInSolid(p,v1,eps);
if(res != DOES_INTERSECT)
return res;
int point_on_n_faces = 0;
Vec<3> v1n = v1;
v1n.Normalize();
Vec<3> v2n = v2;
v2n.Normalize();
for (int i = 0; i < faces.Size(); i++)
{
const Point<3> & p1 = points[faces[i].pnums[0]];
Vec<3> v0 = p - p1;
double lam3 = -(faces[i].n * v0);
if (fabs (lam3) > eps) continue;
double lam1 = (faces[i].w1 * v0);
double lam2 = (faces[i].w2 * v0);
if (lam1 >= -eps && lam2 >= -eps && lam1+lam2 <= 1+eps)
{
double scal1 = v1n * faces[i].n;
if (fabs (scal1) > eps) continue;
point_on_n_faces++;
double scal2 = v2n * faces[i].n;
res = DOES_INTERSECT;
if (scal2 > eps) res = IS_OUTSIDE;
if (scal2 < -eps) res = IS_INSIDE;
}
}
if (point_on_n_faces == 1)
return res;
cerr << "primitive::vecinsolid2 makes nonsense for polyhedra" << endl;
return Primitive :: VecInSolid2 (p, v1, v2, eps);
}
*/
INSOLID_TYPE Polyhedra :: VecInSolid2 (const Point<3> & p,
const Vec<3> & v1,
const Vec<3> & v2,
double eps) const
{
//(*testout) << "VecInSolid2 eps " << eps << endl;
INSOLID_TYPE res = VecInSolid(p,v1,eps);
//(*testout) << "VecInSolid = " <<res <<endl;
if(res != DOES_INTERSECT)
return res;
int point_on_n_faces = 0;
Vec<3> v1n = v1;
v1n.Normalize();
Vec<3> v2n = v2 - (v2 * v1n) * v1n;
v2n.Normalize();
double cosv2, cosv2max = -1;
for (int i = 0; i < faces.Size(); i++)
{
const Point<3> & p1 = points[faces[i].pnums[0]];
Vec<3> v0 = p - p1;
if (fabs (faces[i].nn * v0) > eps) continue; // n->nn
if (fabs (v1n * faces[i].nn) > eps_base1) continue; // n->nn
double lam1 = (faces[i].w1 * v0);
double lam2 = (faces[i].w2 * v0);
if (lam1 >= -eps_base1 && lam2 >= -eps_base1 && lam1+lam2 <= 1+eps_base1)
{
// v1 is in face
Point<3> fc = Center (points[faces[i].pnums[0]],
points[faces[i].pnums[1]],
points[faces[i].pnums[2]]);
Vec<3> vpfc = fc - p;
cosv2 = (v2n * vpfc) / vpfc.Length();
if (cosv2 > cosv2max)
{
cosv2max = cosv2;
point_on_n_faces++;
double scal2 = v2n * faces[i].nn; // n->nn
res = DOES_INTERSECT;
if (scal2 > eps_base1) res = IS_OUTSIDE;
if (scal2 < -eps_base1) res = IS_INSIDE;
}
}
}
if (point_on_n_faces >= 1)
return res;
(*testout) << "primitive::vecinsolid2 makes nonsense for polyhedra" << endl;
cerr << "primitive::vecinsolid2 makes nonsense for polyhedra" << endl;
return Primitive :: VecInSolid2 (p, v1, v2, eps);
}
void Polyhedra :: GetTangentialVecSurfaceIndices2 (const Point<3> & p, const Vec<3> & v1, const Vec<3> & v2,
Array<int> & surfind, double eps) const
{
Vec<3> v1n = v1;
v1n.Normalize();
Vec<3> v2n = v2; // - (v2 * v1n) * v1n;
v2n.Normalize();
for (int i = 0; i < faces.Size(); i++)
{
const Point<3> & p1 = points[faces[i].pnums[0]];
Vec<3> v0 = p - p1;
if (fabs (v0 * faces[i].nn) > eps) continue; // n->nn
if (fabs (v1n * faces[i].nn) > eps_base1) continue; // n->nn
if (fabs (v2n * faces[i].nn) > eps_base1) continue; // n->nn
double lam01 = (faces[i].w1 * v0);
double lam02 = (faces[i].w2 * v0);
double lam03 = 1-lam01-lam02;
double lam11 = (faces[i].w1 * v1);
double lam12 = (faces[i].w2 * v1);
double lam13 = -lam11-lam12;
double lam21 = (faces[i].w1 * v2);
double lam22 = (faces[i].w2 * v2);
double lam23 = -lam21-lam22;
bool ok1 = lam01 > eps_base1 ||
(lam01 > -eps_base1 && lam11 > eps_base1) ||
(lam01 > -eps_base1 && lam11 > -eps_base1 && lam21 > eps_base1);
bool ok2 = lam02 > eps_base1 ||
(lam02 > -eps_base1 && lam12 > eps_base1) ||
(lam02 > -eps_base1 && lam12 > -eps_base1 && lam22 > eps_base1);
bool ok3 = lam03 > eps_base1 ||
(lam03 > -eps_base1 && lam13 > eps_base1) ||
(lam03 > -eps_base1 && lam13 > -eps_base1 && lam23 > eps_base1);
if (ok1 && ok2 && ok3)
{
if (!surfind.Contains (GetSurfaceId(faces[i].planenr)))
surfind.Append (GetSurfaceId(faces[i].planenr));
}
}
}
void Polyhedra :: GetPrimitiveData (const char *& classname,
Array<double> & coeffs) const
{
classname = "Polyhedra";
coeffs.SetSize(0);
coeffs.Append (points.Size());
coeffs.Append (faces.Size());
coeffs.Append (planes.Size());
/*
int i, j;
for (i = 1; i <= planes.Size(); i++)
{
planes.Elem(i)->Print (*testout);
}
for (i = 1; i <= faces.Size(); i++)
{
(*testout) << "face " << i << " has plane " << faces.Get(i).planenr << endl;
for (j = 1; j <= 3; j++)
(*testout) << points.Get(faces.Get(i).pnums[j-1]);
(*testout) << endl;
}
*/
}
void Polyhedra :: SetPrimitiveData (Array<double> & /* coeffs */)
{
;
}
void Polyhedra :: Reduce (const BoxSphere<3> & box)
{
for (int i = 0; i < planes.Size(); i++)
surfaceactive[i] = 0;
for (int i = 0; i < faces.Size(); i++)
if (FaceBoxIntersection (i, box))
surfaceactive[faces[i].planenr] = 1;
}
void Polyhedra :: UnReduce ()
{
for (int i = 0; i < planes.Size(); i++)
surfaceactive[i] = 1;
}
int Polyhedra :: AddPoint (const Point<3> & p)
{
if(points.Size() == 0)
poly_bbox.Set(p);
else
poly_bbox.Add(p);
return points.Append (p);
}
int Polyhedra :: AddFace (int pi1, int pi2, int pi3, int inputnum)
{
(*testout) << "polyhedra, add face " << pi1 << ", " << pi2 << ", " << pi3 << endl;
if(pi1 == pi2 || pi2 == pi3 || pi3 == pi1)
{
ostringstream msg;
msg << "Illegal point numbers for polyhedron face: " << pi1+1 << ", " << pi2+1 << ", " << pi3+1;
throw NgException(msg.str());
}
faces.Append (Face (pi1, pi2, pi3, points, inputnum));
Point<3> p1 = points[pi1];
Point<3> p2 = points[pi2];
Point<3> p3 = points[pi3];
Vec<3> v1 = p2 - p1;
Vec<3> v2 = p3 - p1;
Vec<3> n = Cross (v1, v2);
n.Normalize();
Plane pl (p1, n);
// int inverse;
// int identicto = -1;
// for (int i = 0; i < planes.Size(); i++)
// if (pl.IsIdentic (*planes[i], inverse, 1e-9*max3(v1.Length(),v2.Length(),Dist(p2,p3))))
// {
// if (!inverse)
// identicto = i;
// }
// // cout << "is identic = " << identicto << endl;
// identicto = -1; // changed April 10, JS
// if (identicto != -1)
// faces.Last().planenr = identicto;
// else
{
planes.Append (new Plane (p1, n));
surfaceactive.Append (1);
surfaceids.Append (0);
faces.Last().planenr = planes.Size()-1;
}
// (*testout) << "is plane nr " << faces.Last().planenr << endl;
return faces.Size();
}
int Polyhedra :: FaceBoxIntersection (int fnr, const BoxSphere<3> & box) const
{
/*
(*testout) << "check face box intersection, fnr = " << fnr << endl;
(*testout) << "box = " << box << endl;
(*testout) << "face-box = " << faces[fnr].bbox << endl;
*/
if (!faces[fnr].bbox.Intersect (box))
return 0;
const Point<3> & p1 = points[faces[fnr].pnums[0]];
const Point<3> & p2 = points[faces[fnr].pnums[1]];
const Point<3> & p3 = points[faces[fnr].pnums[2]];
double dist2 = MinDistTP2 (p1, p2, p3, box.Center());
/*
(*testout) << "p1 = " << p1 << endl;
(*testout) << "p2 = " << p2 << endl;
(*testout) << "p3 = " << p3 << endl;
(*testout) << "box.Center() = " << box.Center() << endl;
(*testout) << "center = " << box.Center() << endl;
(*testout) << "dist2 = " << dist2 << endl;
(*testout) << "diam = " << box.Diam() << endl;
*/
if (dist2 < sqr (box.Diam()/2))
{
// (*testout) << "intersect" << endl;
return 1;
}
return 0;
}
void Polyhedra :: GetPolySurfs(Array < Array<int> * > & polysurfs)
{
int maxnum = -1;
for(int i = 0; i<faces.Size(); i++)
{
if(faces[i].inputnr > maxnum)
maxnum = faces[i].inputnr;
}
polysurfs.SetSize(maxnum+1);
for(int i=0; i<polysurfs.Size(); i++)
polysurfs[i] = new Array<int>;
for(int i = 0; i<faces.Size(); i++)
polysurfs[faces[i].inputnr]->Append(faces[i].planenr);
}
void Polyhedra::CalcSpecialPoints (Array<Point<3> > & pts) const
{
for (int i = 0; i < points.Size(); i++)
pts.Append (points[i]);
}
void Polyhedra :: AnalyzeSpecialPoint (const Point<3> & /* pt */,
Array<Point<3> > & /* specpts */) const
{
;
}
Vec<3> Polyhedra :: SpecialPointTangentialVector (const Point<3> & p, int s1, int s2) const
{
const double eps = 1e-10*poly_bbox.Diam();
for (int fi1 = 0; fi1 < faces.Size(); fi1++)
for (int fi2 = 0; fi2 < faces.Size(); fi2++)
{
int si1 = faces[fi1].planenr;
int si2 = faces[fi2].planenr;
if (surfaceids[si1] != s1 || surfaceids[si2] != s2) continue;
//(*testout) << "check pair fi1/fi2 " << fi1 << "/" << fi2 << endl;
Vec<3> n1 = GetSurface(si1) . GetNormalVector (p);
Vec<3> n2 = GetSurface(si2) . GetNormalVector (p);
Vec<3> t = Cross (n1, n2);
//(*testout) << "t = " << t << endl;
/*
int samepts = 0;
for (int j = 0; j < 3; j++)
for (int k = 0; k < 3; k++)
if (Dist(points[faces[fi1].pnums[j]],
points[faces[fi2].pnums[k]]) < eps)
samepts++;
if (samepts < 2) continue;
*/
bool shareedge = false;
for(int j = 0; !shareedge && j < 3; j++)
{
Vec<3> v1 = points[faces[fi1].pnums[(j+1)%3]] - points[faces[fi1].pnums[j]];
double smax = v1.Length();
v1 *= 1./smax;
int pospos;
if(fabs(v1(0)) > 0.5)
pospos = 0;
else if(fabs(v1(1)) > 0.5)
pospos = 1;
else
pospos = 2;
double sp = (p(pospos) - points[faces[fi1].pnums[j]](pospos)) / v1(pospos);
if(sp < -eps || sp > smax+eps)
continue;
for (int k = 0; !shareedge && k < 3; k ++)
{
Vec<3> v2 = points[faces[fi2].pnums[(k+1)%3]] - points[faces[fi2].pnums[k]];
v2.Normalize();
if(v2 * v1 > 0)
v2 -= v1;
else
v2 += v1;
//(*testout) << "v2.Length2() " << v2.Length2() << endl;
if(v2.Length2() > 1e-18)
continue;
double sa,sb;
sa = (points[faces[fi2].pnums[k]](pospos) - points[faces[fi1].pnums[j]](pospos)) / v1(pospos);
sb = (points[faces[fi2].pnums[(k+1)%3]](pospos) - points[faces[fi1].pnums[j]](pospos)) / v1(pospos);
if(Dist(points[faces[fi1].pnums[j]] + sa*v1, points[faces[fi2].pnums[k]]) > eps)
continue;
if(sa > sb)
{
double aux = sa; sa = sb; sb = aux;
}
//testout->precision(20);
//(*testout) << "sa " << sa << " sb " << sb << " smax " << smax << " sp " << sp << " v1 " << v1 << endl;
//testout->precision(8);
shareedge = (sa < -eps && sb > eps) ||
(sa < smax-eps && sb > smax+eps) ||
(sa > -eps && sb < smax+eps);
if(!shareedge)
continue;
sa = max2(sa,0.);
sb = min2(sb,smax);
if(sp < sa+eps)
shareedge = (t * v1 > 0);
else if (sp > sb-eps)
shareedge = (t * v1 < 0);
}
}
if (!shareedge) continue;
t.Normalize();
return t;
}
return Vec<3> (0,0,0);
}
}