mirror of
https://github.com/NGSolve/netgen.git
synced 2025-01-18 17:00:33 +05:00
544 lines
11 KiB
C++
544 lines
11 KiB
C++
#ifndef FILE_OBJECTS
|
|
#define FILE_OBJECTS
|
|
|
|
/* *************************************************************************/
|
|
/* File: geomobjects.hpp */
|
|
/* Author: Joachim Schoeberl */
|
|
/* Date: 20. Jul. 02 */
|
|
/* *************************************************************************/
|
|
|
|
#include <core/array.hpp>
|
|
|
|
#include <general/ngarray.hpp>
|
|
|
|
namespace netgen
|
|
{
|
|
using namespace ngcore;
|
|
|
|
template <int D, typename T = double> class Vec;
|
|
template <int D, typename T = double> class Point;
|
|
|
|
|
|
template <int D, typename T>
|
|
class Point
|
|
{
|
|
|
|
protected:
|
|
T x[D];
|
|
|
|
public:
|
|
Point () { ; }
|
|
Point (T ax) { for (int i = 0; i < D; i++) x[i] = ax; }
|
|
Point (T ax, T ay)
|
|
{
|
|
// static_assert(D==2, "Point<D> constructor with 2 args called");
|
|
x[0] = ax; x[1] = ay;
|
|
}
|
|
Point (T ax, T ay, T az)
|
|
{
|
|
// static_assert(D==3, "Point<D> constructor with 3 args called");
|
|
x[0] = ax; x[1] = ay; x[2] = az;
|
|
}
|
|
Point (T ax, T ay, T az, T au)
|
|
{ x[0] = ax; x[1] = ay; x[2] = az; x[3] = au;}
|
|
|
|
template <typename T2>
|
|
Point (const Point<D,T2> & p2)
|
|
{ for (int i = 0; i < D; i++) x[i] = p2(i); }
|
|
|
|
explicit Point (const Vec<D,T> & v)
|
|
{ for (int i = 0; i < D; i++) x[i] = v(i); }
|
|
|
|
|
|
template <typename T2>
|
|
Point & operator= (const Point<D,T2> & p2)
|
|
{
|
|
for (int i = 0; i < D; i++) x[i] = p2(i);
|
|
return *this;
|
|
}
|
|
|
|
Point & operator= (T val)
|
|
{
|
|
for (int i = 0; i < D; i++) x[i] = val;
|
|
return *this;
|
|
}
|
|
|
|
T & operator() (int i) { return x[i]; }
|
|
const T & operator() (int i) const { return x[i]; }
|
|
|
|
T& operator[] (int i) { return x[i]; }
|
|
const T& operator[] (int i) const { return x[i]; }
|
|
|
|
operator const T* () const { return x; }
|
|
|
|
template<typename ARCHIVE>
|
|
void DoArchive(ARCHIVE& archive)
|
|
{
|
|
for(int i=0; i<D; i++)
|
|
archive & x[i];
|
|
}
|
|
};
|
|
|
|
template <int D, typename T>
|
|
class Vec
|
|
{
|
|
|
|
protected:
|
|
T x[D];
|
|
|
|
public:
|
|
Vec () { ; } // for (int i = 0; i < D; i++) x[i] = 0; }
|
|
Vec (T ax) { for (int i = 0; i < D; i++) x[i] = ax; }
|
|
Vec (T ax, T ay)
|
|
{
|
|
// static_assert(D==2, "Vec<D> constructor with 2 args called");
|
|
x[0] = ax; x[1] = ay;
|
|
}
|
|
Vec (T ax, T ay, T az)
|
|
{
|
|
// static_assert(D==3, "Vec<D> constructor with 3 args called");
|
|
x[0] = ax; x[1] = ay; x[2] = az;
|
|
}
|
|
Vec (T ax, T ay, T az, T au)
|
|
{ x[0] = ax; x[1] = ay; x[2] = az; x[3] = au; }
|
|
|
|
Vec (const Vec<D> & p2)
|
|
{ for (int i = 0; i < D; i++) x[i] = p2.x[i]; }
|
|
|
|
explicit Vec (const Point<D,T> & p)
|
|
{ for (int i = 0; i < D; i++) x[i] = p(i); }
|
|
|
|
explicit Vec(const Point<D,T>& p1, const Point<D,T>& p2)
|
|
{ for(int i=0; i<D; i++) x[i] = p2(i)-p1(i); }
|
|
|
|
template <typename T2>
|
|
Vec & operator= (const Vec<D,T2> & p2)
|
|
{
|
|
for (int i = 0; i < D; i++) x[i] = p2(i);
|
|
return *this;
|
|
}
|
|
|
|
Vec & operator= (T s)
|
|
{
|
|
for (int i = 0; i < D; i++) x[i] = s;
|
|
return *this;
|
|
}
|
|
|
|
bool operator== (const Vec<D,T> &a) const
|
|
{
|
|
bool res = true;
|
|
for (auto i : Range(D))
|
|
res &= (x[i]==a.x[i]);
|
|
return res;
|
|
}
|
|
|
|
T & operator() (int i) { return x[i]; }
|
|
const T & operator() (int i) const { return x[i]; }
|
|
|
|
T& operator[] (int i) { return x[i]; }
|
|
const T& operator[] (int i) const { return x[i]; }
|
|
|
|
operator const T* () const { return x; }
|
|
|
|
void DoArchive(Archive& archive)
|
|
{
|
|
for(int i=0; i<D; i++)
|
|
archive & x[i];
|
|
}
|
|
|
|
T Length () const
|
|
{
|
|
T l = 0;
|
|
for (int i = 0; i < D; i++)
|
|
l += x[i] * x[i];
|
|
return sqrt (l);
|
|
}
|
|
|
|
T Length2 () const
|
|
{
|
|
T l = 0;
|
|
for (int i = 0; i < D; i++)
|
|
l += x[i] * x[i];
|
|
return l;
|
|
}
|
|
|
|
Vec & Normalize ()
|
|
{
|
|
T l = Length();
|
|
// if (l != 0)
|
|
for (int i = 0; i < D; i++)
|
|
x[i] /= (l+1e-40);
|
|
return *this;
|
|
}
|
|
|
|
Vec<D> GetNormal () const;
|
|
};
|
|
|
|
template <int D>
|
|
inline ostream & operator<< (ostream & ost, const Vec<D> & a)
|
|
{
|
|
ost << "(";
|
|
for (int i = 0; i < D-1; i++)
|
|
ost << a(i) << ", ";
|
|
ost << a(D-1) << ")";
|
|
return ost;
|
|
}
|
|
|
|
template <int D>
|
|
inline ostream & operator<< (ostream & ost, const Point<D> & a)
|
|
{
|
|
ost << "(";
|
|
for (int i = 0; i < D-1; i++)
|
|
ost << a(i) << ", ";
|
|
ost << a(D-1) << ")";
|
|
return ost;
|
|
}
|
|
|
|
template<int D>
|
|
inline Vec<D> operator-(const Point<D>& p1, const Point<D>& p2)
|
|
{
|
|
Vec<D> result;
|
|
for(auto i : Range(D))
|
|
result[i] = p1[i] - p2[i];
|
|
return result;
|
|
}
|
|
|
|
template<int D>
|
|
inline Vec<D> operator*(const Vec<D>& v, double d)
|
|
{
|
|
Vec<D> result;
|
|
for(auto i : Range(D))
|
|
result[i] = d*v[i];
|
|
return result;
|
|
}
|
|
|
|
inline double Cross2(const Vec<2>& v1, const Vec<2>& v2)
|
|
{
|
|
return v1[0] * v2[1] - v1[1] * v2[0];
|
|
}
|
|
|
|
// are points clockwise?
|
|
inline bool CW(const Point<2>& p1, const Point<2>& p2,
|
|
const Point<2>& p3)
|
|
{
|
|
return Cross2(p2-p1, p3-p2) < 0;
|
|
}
|
|
|
|
// are points counterclockwise?
|
|
inline bool CCW(const Point<2>& p1, const Point<2>& p2,
|
|
const Point<2>& p3)
|
|
{
|
|
return Cross2(p2-p1, p3-p2) > 0;
|
|
}
|
|
|
|
// are strictly points counterclockwise?
|
|
inline bool CCW(const Point<2>& p1, const Point<2>& p2,
|
|
const Point<2>& p3, double eps)
|
|
{
|
|
auto v1 = p2-p1;
|
|
auto v2 = p3-p2;
|
|
return Cross2(v1, v2) > eps*eps*max2(v1.Length2(),
|
|
v2.Length2());
|
|
}
|
|
|
|
|
|
template <int H, int W=H, typename T = double>
|
|
class Mat
|
|
{
|
|
|
|
protected:
|
|
T x[H*W];
|
|
|
|
public:
|
|
Mat () { ; }
|
|
Mat (const Mat & b)
|
|
{ for (int i = 0; i < H*W; i++) x[i] = b.x[i]; }
|
|
|
|
Mat & operator= (T s)
|
|
{
|
|
for (int i = 0; i < H*W; i++) x[i] = s;
|
|
return *this;
|
|
}
|
|
|
|
Mat & operator= (const Mat & b)
|
|
{
|
|
for (int i = 0; i < H*W; i++) x[i] = b.x[i];
|
|
return *this;
|
|
}
|
|
|
|
T & operator() (int i, int j) { return x[i*W+j]; }
|
|
const T & operator() (int i, int j) const { return x[i*W+j]; }
|
|
T & operator() (int i) { return x[i]; }
|
|
const T & operator() (int i) const { return x[i]; }
|
|
|
|
Vec<H,T> Col (int i) const
|
|
{
|
|
Vec<H,T> hv;
|
|
for (int j = 0; j < H; j++)
|
|
hv(j) = x[j*W+i];
|
|
return hv;
|
|
}
|
|
|
|
Vec<W,T> Row (int i) const
|
|
{
|
|
Vec<W,T> hv;
|
|
for (int j = 0; j < W; j++)
|
|
hv(j) = x[i*W+j];
|
|
return hv;
|
|
}
|
|
|
|
void Solve (const Vec<H,T> & rhs, Vec<W,T> & sol) const
|
|
{
|
|
Mat<W,H,T> inv;
|
|
CalcInverse (*this, inv);
|
|
sol = inv * rhs;
|
|
}
|
|
|
|
void DoArchive(Archive & ar)
|
|
{
|
|
ar.Do(x, H*W);
|
|
}
|
|
};
|
|
|
|
|
|
|
|
|
|
template <int D>
|
|
class Box
|
|
{
|
|
protected:
|
|
Point<D> pmin, pmax;
|
|
public:
|
|
Box () { ; }
|
|
|
|
Box ( const Point<D> & p1)
|
|
{
|
|
for (int i = 0; i < D; i++)
|
|
pmin(i) = pmax(i) = p1(i);
|
|
}
|
|
|
|
|
|
Box ( const Point<D> & p1, const Point<D> & p2)
|
|
{
|
|
for (int i = 0; i < D; i++)
|
|
{
|
|
pmin(i) = min2(p1(i), p2(i));
|
|
pmax(i) = max2(p1(i), p2(i));
|
|
}
|
|
}
|
|
|
|
Box (const Point<D> & p1, const Point<D> & p2, const Point<D> & p3)
|
|
: Box(p1,p2)
|
|
{
|
|
Add (p3);
|
|
}
|
|
|
|
enum EB_TYPE { EMPTY_BOX = 1 };
|
|
Box ( EB_TYPE et )
|
|
{
|
|
for (int i = 0; i < D; i++)
|
|
{
|
|
pmin(i) = 1e99;
|
|
pmax(i) = -1e99;
|
|
}
|
|
// pmin = Point<D> (1e99, 1e99, 1e99);
|
|
// pmax = Point<D> (-1e99, -1e99, -1e99);
|
|
}
|
|
|
|
const Point<D> & PMin () const { return pmin; }
|
|
const Point<D> & PMax () const { return pmax; }
|
|
|
|
void Set (const Point<D> & p)
|
|
{ pmin = pmax = p; }
|
|
|
|
void Add (const Point<D> & p)
|
|
{
|
|
for (int i = 0; i < D; i++)
|
|
{
|
|
if (p(i) < pmin(i)) pmin(i) = p(i);
|
|
/* else */ if (p(i) > pmax(i)) pmax(i) = p(i);
|
|
// optimization invalid for empty-box !
|
|
}
|
|
}
|
|
|
|
template <typename T1, typename T2>
|
|
void Set (const NgIndirectArray<T1, T2> & points)
|
|
{
|
|
// Set (points[points.Begin()]);
|
|
Set (points[*points.Range().begin()]);
|
|
// for (int i = points.Begin()+1; i < points.End(); i++)
|
|
for (int i : points.Range().Modify(1,0))
|
|
Add (points[i]);
|
|
}
|
|
|
|
template <typename T1, typename T2>
|
|
void Add (const NgIndirectArray<T1, T2> & points)
|
|
{
|
|
// for (int i = points.Begin(); i < points.End(); i++)
|
|
for (int i : points.Range())
|
|
Add (points[i]);
|
|
}
|
|
|
|
|
|
Point<D> Center () const
|
|
{
|
|
Point<D> c;
|
|
for (int i = 0; i < D; i++)
|
|
c(i) = 0.5 * (pmin(i)+pmax(i));
|
|
return c;
|
|
}
|
|
double Diam () const { return Abs (pmax-pmin); }
|
|
|
|
Point<D> GetPointNr (int nr) const
|
|
{
|
|
Point<D> p;
|
|
for (int i = 0; i < D; i++)
|
|
{
|
|
p(i) = (nr & 1) ? pmax(i) : pmin(i);
|
|
nr >>= 1;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
|
|
bool Intersect (const Box<D> & box2) const
|
|
{
|
|
for (int i = 0; i < D; i++)
|
|
if (pmin(i) > box2.pmax(i) ||
|
|
pmax(i) < box2.pmin(i)) return 0;
|
|
return 1;
|
|
}
|
|
|
|
|
|
bool IsIn (const Point<D> & p) const
|
|
{
|
|
for (int i = 0; i < D; i++)
|
|
if (p(i) < pmin(i) || p(i) > pmax(i)) return false;
|
|
return true;
|
|
}
|
|
|
|
// is point in eps-increased box
|
|
bool IsIn (const Point<D> & p, double eps) const
|
|
{
|
|
for (int i = 0; i < D; i++)
|
|
if (p(i) < pmin(i)-eps || p(i) > pmax(i)+eps) return false;
|
|
return true;
|
|
}
|
|
|
|
|
|
void Increase (double dist)
|
|
{
|
|
for (int i = 0; i < D; i++)
|
|
{
|
|
pmin(i) -= dist;
|
|
pmax(i) += dist;
|
|
}
|
|
}
|
|
|
|
void Scale (double factor)
|
|
{
|
|
auto center = Center();
|
|
pmin = center + factor*(pmin-center);
|
|
pmax = center + factor*(pmax-center);
|
|
}
|
|
|
|
void DoArchive(Archive& archive)
|
|
{ archive & pmin & pmax; }
|
|
};
|
|
|
|
|
|
|
|
|
|
template <int D>
|
|
class BoxSphere : public Box<D>
|
|
{
|
|
protected:
|
|
///
|
|
Point<D> c;
|
|
///
|
|
double diam;
|
|
///
|
|
double inner;
|
|
public:
|
|
///
|
|
BoxSphere () { };
|
|
///
|
|
BoxSphere (const Box<D> & box)
|
|
: Box<D> (box)
|
|
{
|
|
CalcDiamCenter();
|
|
};
|
|
|
|
///
|
|
BoxSphere ( Point<D> apmin, Point<D> apmax )
|
|
: Box<D> (apmin, apmax)
|
|
{
|
|
CalcDiamCenter();
|
|
}
|
|
|
|
///
|
|
const Point<D> & Center () const { return c; }
|
|
///
|
|
double Diam () const { return diam; }
|
|
///
|
|
double Inner () const { return inner; }
|
|
|
|
|
|
///
|
|
void GetSubBox (int nr, BoxSphere & sbox) const
|
|
{
|
|
for (int i = 0; i < D; i++)
|
|
{
|
|
if (nr & 1)
|
|
{
|
|
sbox.pmin(i) = c(i);
|
|
sbox.pmax(i) = this->pmax(i);
|
|
}
|
|
else
|
|
{
|
|
sbox.pmin(i) = this->pmin(i);
|
|
sbox.pmax(i) = c(i);
|
|
}
|
|
sbox.c(i) = 0.5 * (sbox.pmin(i) + sbox.pmax(i));
|
|
nr >>= 1;
|
|
}
|
|
sbox.diam = 0.5 * diam;
|
|
sbox.inner = 0.5 * inner;
|
|
}
|
|
|
|
|
|
///
|
|
void CalcDiamCenter ()
|
|
{
|
|
c = Box<D>::Center ();
|
|
diam = Dist (this->pmin, this->pmax);
|
|
|
|
inner = this->pmax(0) - this->pmin(0);
|
|
for (int i = 1; i < D; i++)
|
|
if (this->pmax(i) - this->pmin(i) < inner)
|
|
inner = this->pmax(i) - this->pmin(i);
|
|
}
|
|
|
|
};
|
|
|
|
|
|
#ifdef PARALLEL_OLD
|
|
template <>
|
|
inline MPI_Datatype MyGetMPIType<Vec<3, double> > ()
|
|
{
|
|
static MPI_Datatype MPI_T = 0;
|
|
if (!MPI_T)
|
|
{
|
|
MPI_Type_contiguous ( 3, MPI_DOUBLE, &MPI_T);
|
|
MPI_Type_commit ( &MPI_T );
|
|
}
|
|
return MPI_T;
|
|
};
|
|
#endif
|
|
|
|
|
|
}
|
|
|
|
|
|
#endif
|